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We construct a new iterative scheme by hybrid methods and prove strong convergence theorem
for approximation of a common fixed point of two countable families of closed relatively quasi-
nonexpansive mappings which is also a solution to a system of equilibrium problems in a
uniformly smooth and strictly convex real Banach space with Kadec-Klee property using the
properties of generalized f -projection operator. Using this result, we discuss strong convergence
theorem concerning variational inequality and convex minimization problems in Banach spaces.
Our results extend many known recent results in the literature.

1. Introduction

Let E be a real Banach space with dual E∗ and C a nonempty, closed, and convex subset of E.
A mapping T : C → C is called nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T is denoted by
F(T) := {x ∈ C : Tx = x}.

We denote by J the normalized duality mapping from E to 2E
∗
defined by

J(x) =
{

f ∈ E∗ :
〈

x, f
〉

= ‖x‖2 = ∥
∥f

∥
∥
2
}

. (1.2)
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The following properties of J are well known (the reader can consult [1–3] for more details).

(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of E.

(2) J(x)/= ∅, x ∈ E.

(3) If E is reflexive, then J is a mapping from E onto E∗.

(4) If E is smooth, then J is single valued.

Throughout this paper, we denote by φ the functional on E × E defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, J
(

y
)〉

+
∥
∥y

∥
∥
2
, ∀x, y ∈ E. (1.3)

It is obvious from (1.3) that

(‖x‖ − ∥
∥y

∥
∥
)2 ≤ φ

(

x, y
) ≤ (‖x‖ + ∥

∥y
∥
∥
)2
, ∀x, y ∈ E. (1.4)

Definition 1.1. LetC be a nonempty subset of E, and let T be a mapping fromC into E. A point
p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}∞n=0 which
converges weakly to p and limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is
denoted by F̂(T). We say that a mapping T is relatively nonexpansive (see, e.g., [4–9]) if the
following conditions are satisfied:

(R1) F(T)/= ∅,
(R2) φ(p, Tx) ≤ φ(p, x), for all x ∈ C, p ∈ F(T),

(R3) F(T) = F̂(T).

If T satisfies (R1) and (R2), then T is said to be relatively quasi-nonexpansive. It is easy to
see that the class of relatively quasi-nonexpansive mappings contains the class of relatively
nonexpansive mappings. Many authors have studied the methods of approximating the fixed
points of relatively quasi-nonexpansive mappings (see, e.g., [10–12] and the references cited
therein). Clearly, in Hilbert space H , relatively quasi-nonexpansive mappings and quasi-
nonexpansive mappings are the same, for φ(x, y) = ‖x−y‖2, for all x, y ∈ H , and this implies
that

φ
(

p, Tx
) ≤ φ

(

p, x
) ⇐⇒ ∥

∥Tx − p
∥
∥ ≤ ∥

∥x − p
∥
∥, ∀x ∈ C, p ∈ F(T). (1.5)

The examples of relatively quasi-nonexpansive mappings are given in [11].
Let F be a bifunction of C ×C into �. The equilibrium problem (see, e.g., [13–25]) is to

find x∗ ∈ C such that

F
(

x∗, y
) ≥ 0, (1.6)

for all y ∈ C. We will denote the solutions set of (1.6) by EP(F). Numerous problems in
physics, optimization, and economics reduce to find a solution of problem (1.6). The equi-
librium problems include fixed point problems, optimization problems, and variational
inequality problems as special cases (see, e.g., [26]).
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In [7], Matsushita and Takahashi introduced a hybrid iterative scheme for approxima-
tion of fixed points of relatively nonexpansive mapping in a uniformly convex real Banach
space which is also uniformly smooth: x0 ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Hn =
{

w ∈ C : φ
(

w, yn

) ≤ φ(w, xn)
}

,

Wn = {w ∈ C : 〈xn −w, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0, n ≥ 0.

(1.7)

They proved that {xn}∞n=0 converges strongly toΠF(T)x0, where F(T)/= ∅.
In [27], Plubtieng and Ungchittrakool introduced the following hybrid projection

algorithm for a pair of relatively nonexpansive mappings: x0 ∈ C,

zn = J−1
(

β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)

,

yn = J−1(αnJx0 + (1 − αn)Jzn),

Cn =
{

z ∈ C : φ
(

z, yn

) ≤ φ(z, xn) + αn

(

‖x0‖2 + 2〈w, Jxn − Jx0〉
)}

,

Qn = {z ∈ C : 〈xn − z, Jxn − Jx0〉 ≤ 0},
xn+1 = PCn∩Qnx0,

(1.8)

where {αn}, {β(1)n }, {β(2)n }, and {β(3)n } are sequences in (0, 1) satisfying β
(1)
n + β

(2)
n + β

(3)
n = 1 and

T and S are relatively nonexpansive mappings and J is the single-valued duality mapping on
E. They proved under the appropriate conditions on the parameters that the sequence {xn}
generated by (1.8) converges strongly to a common fixed point of T and S.

In [9], Takahashi and Zembayashi introduced the following hybrid iterative scheme
for approximation of fixed point of relatively nonexpansive mapping which is also a solution
to an equilibrium problem in a uniformly convex real Banach space which is also uniformly
smooth: x0 ∈ C, C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + (1 − αn)JTxn),

F
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

w ∈ Cn : φ(w, un) ≤ φ(w, xn)
}

,

xn+1 = ΠCn+1x0, n ≥ 1,

(1.9)

where J is the duality mapping on E. Then, they proved that {xn}∞n=0 converges strongly to
ΠFx0, where F = EP(F) ∩ F(T)/= ∅.
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Furthermore, in [28], Qin et al. introduced the following hybrid iterative algorithm for
approximation of common fixed point of two countable families of closed relatively quasi-
nonexpansive mappings in a uniformly convex and uniform smooth real Banach space:

zi,n = J−1
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)

,

yi,n = J−1(αn,iJx0 + (1 − αn,i)Jzi,n),

Cn,i =
{

z ∈ C : φ
(

z, yi,n

) ≤ φ(z, xn) + αn,i

(

‖x0‖2 + 2〈z, Jxn − Jx0〉
}

,

Cn =
⋂

i∈I
Cn,i,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0, n ≥ 0.

(1.10)

They proved that the sequence {xn} converges strongly to a common fixed point of the count-
able families {Ti} and {Si} of closed relatively quasi-nonexpansive mappings in a uniformly
convex and uniformly smooth Banach space under some appropriate conditions on {β(1)n,i },
{β(2)n,i }, {β

(3)
n,i }, and {αn,i}.

Recently, Li et al. [29] introduced the following hybrid iterative scheme for approxima-
tion of fixed points of a relatively nonexpansive mapping using the properties of generalized
f-projection operator in a uniformly smooth real Banach space which is also uniformly
convex: x0 ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 =
{

w ∈ Cn : G
(

w, Jyn

) ≤ G(w, Jxn)
}

,

xn+1 = Πf

Cn+1
x0, n ≥ 0.

(1.11)

They proved a strong convergence theorem for finding an element in the fixed points set of
T . We remark here that the results of Li et al. [29] extended and improved on the results of
Matsushita and Takahashi [7].

Quite recently, motivated by the results of Takahashi and Zembayashi [9], Cholamjiak
and Suantai [30] proved the following strong convergence theorem by hybrid iterative
scheme for approximation of common fixed point of a countable family of closed relatively
quasi-nonexpansive mappings which is also a solution to a system of equilibrium problems
in uniformly convex and uniformly smooth Banach space.

Theorem 1.2. Let E be a uniformly convex real Banach space which is also uniformly smooth, and let
C be a nonempty, closed, and convex subset of E. For each k = 1, 2, . . . , m, let Fk be a bifunction from
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C × C satisfying (A1)–(A4). Suppose {Ti}∞i=1 is an infinitely countable family of closed and relatively
quasi-nonexpansive mappings ofC into itself such thatΩ :=

⋂m
k=1 EP(Fk)∩(

⋂∞
i=1 F(Ti))/= ∅. Suppose

{xn}∞n=0 is iteratively generated by x0 ∈ C, C0 = C,

yi,n = J−1(αnJxn + (1 − αn)JTixn),

ui,n = TFm
rm,nT

Fm−1
rm−1,n · · ·TF2

r2 ,nT
F1
r1,nyi,n,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, ui,n) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 0.

(1.12)

Assume that {αn}∞n=1 and {rk,n}∞n=1 (k = 1, 2, . . . , m) are sequences which satisfy the following
conditions:

(i) lim supn→∞αn < 1,

(ii) lim infn→∞rk,n > 0 (k = 1, 2, . . . , m).

Then, {xn}∞n=0 converges strongly toΠΩx0.

Motivated by the above-mentioned results and the on-going research, it is our purpose
in this paper to prove a strong convergence theorem for two countable families of closed
relatively quasi-nonexpansive mappings which is also a solution to a system of equilibrium
problems in a uniformly smooth and strictly convex real Banach space with Kadec-Klee
property using the properties of generalized f-projection operator. Our results extend the
results of Matsushita and Takahashi [7], Takahashi and Zembayashi [9], Qin et al. [28],
Cholamjiak and Suantai [30], Li et al. [29], and many other recent known results in the
literature.

2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the function ρE : [0,∞) →
[0,∞) defined by

ρE(t) := sup
{
1
2
(∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥
) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}

. (2.1)

E is uniformly smooth if and only if

lim
t→ 0

ρE(t)
t

= 0. (2.2)

Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
: ‖x‖ =

∥
∥y

∥
∥ = 1; ε =

∥
∥x − y

∥
∥

}

. (2.3)
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E is uniformly convex if, for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if x, y ∈ E with
‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ε, then ‖(1/2)(x + y)‖ ≤ 1 − δ. Equivalently, E is uniformly
convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. A normed space E is called strictly convex if
for all x, y ∈ E, x /=y, ‖x‖ = ‖y‖ = 1, we have ‖λx + (1 − λ)y‖ < 1, for all λ ∈ (0, 1).

Let E be a smooth, strictly convex, and reflexive real Banach space, and let C be
a nonempty, closed, and convex subset of E. Following Alber [31], the generalized projection
ΠC from E onto C is defined by

ΠC(x) := argmin
y∈C

φ
(

y, x
)

, ∀x ∈ E. (2.4)

The existence and uniqueness of ΠC follows from the property of the functional φ(x, y) and
strict monotonicity of the mapping J (see, e.g., [3, 31–34]). If E is a Hilbert space, then ΠC is
the metric projection of H onto C.

Next, we recall the concept of generalized f-projector operator, together with its
properties. Let G : C × E∗ → � ∪ {+∞} be a functional defined as follows:

G
(

ξ, ϕ
)

= ‖ξ‖2 − 2
〈

ξ, ϕ
〉

+
∥
∥ϕ

∥
∥
2 + 2ρf(ξ), (2.5)

where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number, and f : C → � ∪ {+∞} is proper, convex,
and lower semicontinuous. From the definitions of G and f , it is easy to see the following
properties:

(i) G(ξ, ϕ) is convex and continuous with respect to ϕwhen ξ is fixed,

(ii) G(ξ, ϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.

Definition 2.1 (see Wu and Huang [35]). Let E be a real Banach space with its dual E∗. Let C
be a nonempty, closed, and convex subset of E. We say that Πf

C : E∗ → 2C is a generalized
f-projection operator if

Πf

Cϕ =
{

u ∈ C : G
(

u, ϕ
)

= inf
ξ∈C

G
(

ξ, ϕ
)
}

, ∀ϕ ∈ E∗. (2.6)

For the generalized f-projection operator, Wu and Huang [35] proved the following
theorem basic properties.

Lemma 2.2 (see Wu and Huang [35]). Let E be a real reflexive Banach space with its dual E∗. Let
C be a nonempty, closed, and convex subset of E. Then, the following statements hold:

(i) Πf

C is a nonempty closed convex subset of C for all ϕ ∈ E∗,

(ii) if E is smooth, then, for all ϕ ∈ E∗, x ∈ Πf

C if and only if

〈

x − y, ϕ − Jx
〉

+ ρf
(

y
) − ρf(x) ≥ 0, ∀y ∈ C, (2.7)

(iii) if E is strictly convex and f : C → �∪{+∞} is positive homogeneous (i.e., f(tx) = tf(x)
for all t > 0 such that tx ∈ C where x ∈ C), then Πf

C is a single-valued mapping.
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Fan et al. [36] showed that the condition f is positive homogeneous which appeared
in Lemma 2.2 can be removed.

Lemma 2.3 (see Fan et al. [36]). Let E be a real reflexive Banach space with its dual E∗ and C

a nonempty, closed, and convex subset of E. Then, if E is strictly convex, then Πf

C is a single-valued
mapping.

Recall that J is a single-valuedmappingwhen E is a smooth Banach space. There exists
a unique element ϕ ∈ E∗ such that ϕ = Jx for each x ∈ E. This substitution in (2.5) gives

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉 + ‖x‖2 + 2ρf(ξ). (2.8)

Now, we consider the second generalized f-projection operator in a Banach space.

Definition 2.4. Let E be a real Banach space and C a nonempty, closed, and convex subset of
E. We say that Πf

C : E → 2C is a generalized f-projection operator if

Πf

Cx =
{

u ∈ C : G(u, Jx) = inf
ξ∈C

G(ξ, Jx)
}

, ∀x ∈ E. (2.9)

Obviously, the definition of T : C → C is a relatively quasi-nonexpansive mapping
and is equivalent to

(R′1) F(T)/= ∅,
(R′2) G(p, JTx) ≤ G(p, Jx), for all x ∈ C, p ∈ F(T).

Lemma 2.5 (see Li et al. [29]). Let E be a Banach space, and let f : E → � ∪ {+∞} be a lower
semicontinuous convex functional. Then, there exists x∗ ∈ E∗ and α ∈ � such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E. (2.10)

We know that the following lemmas hold for operatorΠf

C.

Lemma 2.6 (see Li et al. [29]). Let C be a nonempty, closed, and convex subset of a smooth and
reflexive Banach space E. Then, the following statements hold:

(i) Πf

Cx is a nonempty closed and convex subset of C for all x ∈ E,

(ii) for all x ∈ E, x̂ ∈ Πf

Cx if and only if

〈

x̂ − y, Jx − Jx̂
〉

+ ρf
(

y
) − ρf(x) ≥ 0, ∀y ∈ C, (2.11)

(iii) if E is strictly convex, thenΠf

Cx is a single-valued mapping.

Lemma 2.7 (see Li et al. [29]). Let C be a nonempty, closed, and convex subset of a smooth and
reflexive Banach space E. Let x ∈ E and x̂ ∈ Πf

Cx. Then,

φ(y, x̂) +G(x̂, Jx) ≤ G
(

y, Jx
)

, ∀y ∈ C. (2.12)
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The fixed points set F(T) of a relatively quasi-nonexpansive mapping is closed and
convex as given in the following lemma.

Lemma 2.8 (see Chang et al. [37]). Let C be a nonempty, closed, and convex subset of a uniformly
smooth and strictly convex real Banach space E which also has Kadec-Klee property. Let T be a closed
relatively quasi-nonexpansive mapping of C into itself. Then, F(T) is closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 2.9 (see Cho et al. [38]). Let E be a uniformly convex real Banach space. For arbitrary
r > 0, let Br(0) := {x ∈ E : ‖x‖ ≤ r} and λ, μ, γ ∈ [0, 1] such that λ + μ + γ = 1. Then, there exists
a continuous strictly increasing convex function

g : [0, 2r] −→ �, g(0) = 0, (2.13)

such that, for every x, y, z ∈ Br(0), the following inequality holds:

∥
∥λx + μy + γz

∥
∥
2 ≤ λ‖x‖2 + μ

∥
∥y

∥
∥
2 − λμg

(∥
∥x − y

∥
∥
)

. (2.14)

For solving the equilibrium problem for a bifunction F : C × C → �, let us assume
that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y ∈ C, limt→ 0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.10 (see Blum and Oettli [26]). Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, and let F be a bifunction of C × C into � satisfying
(A1)–(A4). Let r > 0 and x ∈ E. Then, there exists z ∈ C such that

F
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ K. (2.15)

Lemma 2.11 (see Takahashi and Zembayashi [39]). Let C be a nonempty closed convex subset
of a smooth, strictly convex, and reflexive Banach space E. Assume that F : C × C → � satisfies
(A1)–(A4). For r > 0 and x ∈ E, define a mapping TF

r : E → C as follows:

TF
r (x) =

{

z ∈ C : F
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

(2.16)

for all z ∈ E. Then, the following hold:

(1) TF
r is singlevalued,

(2) TF
r is firmly nonexpansive-type mapping, that is, for any x, y ∈ E,

〈

TF
r x − TF

r y, JT
F
r x − JTF

r y
〉

≤
〈

TF
r x − TF

r y, Jx − Jy
〉

, (2.17)
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(3) F(TF
r ) = EP(F),

(4) EP(F) is closed and convex.

Lemma 2.12 (see Takahashi and Zembayashi [39]). Let C be a nonempty closed convex subset
of a smooth, strictly convex, and reflexive Banach space E. Assume that F : C × C → � satisfies
(A1)–(A4), and let r > 0. Then, for each x ∈ E and q ∈ F(TF

r ),

φ
(

q, TF
r x

)

+ φ
(

TF
r x, x

)

≤ φ
(

q, x
)

. (2.18)

For the rest of this paper, the sequence {xn}∞n=0 converges strongly to p and will be
denoted by xn → p as n → ∞, {xn}∞n=0 converges weakly to p and will be denoted by xn ⇀ p

and we will assume that β(1)n,i , β
(2)
n,i , β

(3)
n,i ∈ [0, 1], for all i = 1, 2, 3, . . . such that β(1)n,i + β

(2)
n,i + β

(3)
n,i =

1, for all n ≥ 0.
We recall that a Banach space E has Kadec-Klee property if, for any sequence {xn}∞n=0 ⊂ E

and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, xn → x as n → ∞. We note that every uniformly
convex Banach space has the Kadec-Klee property. For more details on Kadec-Klee property,
the reader is referred to [2, 33].

Lemma 2.13 (see Li et al. [29]). Let E be a Banach space and y ∈ E. Let f : E → � ∪ {+∞} be a
proper, convex, and lower semicontinuous mapping with convex domainD(f). If {xn} is a sequence in
D(f) such that xn ⇀ x ∈ int(D(f)) and limn→∞G(xn, Jy) = G(x, Jy), then limn→∞‖xn‖ = ‖x‖.

3. Main Results

Theorem 3.1. Let E be a uniformly smooth and strictly convex real Banach space which also has
Kadec-Klee property. Let C be a nonempty, closed, and convex subset of E. For each k = 1, 2, . . . , m,
let Fk be a bifunction from C×C satisfying (A1)–(A4). Suppose {Ti}∞i=1 and {Si}∞i=1 are two countable
families of closed relatively quasi-nonexpansive mappings ofC into itself such thatΩ :=

⋂m
k=1 EP(Fk)∩

(
⋂∞

i=1 F(Ti)) ∩ (
⋂∞

i=1 F(Si))/= ∅. Let f : E → � be a convex and lower semicontinuous mapping
with C ⊂ int(D(f)), and suppose {xn}∞n=0 is iteratively generated by x0 ∈ C, C1,i = C, C1 =
∩∞
i=1C1,i, x1 = Πf

C1
x0,

zn,i = J−1
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)

,

yn,i = J−1(αn,iJxn + (1 − αn,i)Jzn,i),

un,i = TFm
rm,nT

Fm−1
rm−1,n · · ·TF2

r2 ,nT
F1
r1,nyn,i,

Cn+1,i = {z ∈ Cn,i : G(z, Jun,i) ≤ G(z, Jxn)},

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = Πf

Cn+1
x0, n ≥ 1,

(3.1)
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with the conditions

(i) lim infn→∞β
(1)
n,i β

(2)
n,i > 0,

(ii) lim infn→∞β
(1)
n,i β

(3)
n,i > 0,

(iii) 0 ≤ αn,i ≤ α < 1 for some α ∈ (0, 1),

(iv) {rk,n}∞n=1 ⊂ (0,∞) (k = 1, 2, . . . , m) satisfying lim infn→∞rk,n > 0 (k = 1, 2, . . . , m).

Then, {xn}∞n=0 converges strongly toΠf

Ωx0.

Proof. We first show that Cn, for all n ≥ 1 is closed and convex. It is obvious that C1,i = C is
closed and convex. Suppose Ck,i is closed and convex for some k > 1. For each z ∈ Ck,i, we
see that G(z, Juk,i) ≤ G(z, Jxk) is equivalent to

2(〈z, Jxk〉 − 〈z, Juk,i〉) ≤ ‖xk‖2 − ‖uk,i‖2. (3.2)

By the construction of the set Ck+1,i, we see that Ck+1,i is closed and convex. Therefore, Ck+1 =
⋂∞

i=1 Ck+1,i is also closed and convex. Hence, Cn, for all n ≥ 1 is closed and convex.
By taking θkn = TFk

rk ,nT
Fk−1
rk−1 ,n · · ·TF2

r2 ,nT
F1
r1,n, k = 1, 2, . . . , m and θ0n = I for all n ≥ 1, we obtain

un,i = θmn yn,i.
We next show that Ω ⊂ Cn, for all n ≥ 1. For n = 1, we have Ω ⊂ C = C1. Then, for

each x∗ ∈ Ω, we obtain

G(x∗, Jun,i) = G
(

x∗, Jθmn yn,i

) ≤ G
(

x∗, Jyn,i

)

= G(x∗, (αn,iJxn + (1 − αn,i)Jzn,i))

= ‖x∗‖2−2αn,i〈x∗, Jxn〉−2(1 − αn,i)〈x∗, Jzn,i〉+‖αn,iJxn+(1 − αn,i)Jzn,i‖2+2ρf(x∗)

≤ ‖x∗‖2−2αn,i〈x∗, Jxn〉−2(1 − αn,i)〈x∗, Jzn,i〉+αn,i‖xn‖2+(1−αn,i)‖zn,i‖2+2ρf(x∗)

= αn,iG(x∗, Jxn) + (1 − αn,i)G(x∗, Jzn,i)

= αn,iG(x∗, Jxn) + (1 − αn,i)G
(

x∗,
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

))

≤ αn,iG(x∗, Jxn) + (1 − αn,i)
(

‖x∗‖2 − 2β(1)n,i 〈x∗, Jxn〉

− 2β(2)n,i 〈x∗, JTixn〉 − 2β(3)n,i 〈x∗, JSixn〉 + β
(1)
n,i ‖xn‖2

+β(2)n,i ‖Tixn‖2 + β
(3)
n,i ‖Sixn‖2 + 2ρf(x∗)

)

= αn,iG(x∗, Jxn) + (1 − αn,i)
(

β
(1)
n,i G(x∗, Jxn) + β

(2)
n,i G(x∗, JTixn) + β

(3)
n,i G(x∗, JSixn)

)

≤ G(x∗, Jxn).
(3.3)

So, x∗ ∈ Cn. This implies that Ω ⊂ Cn, for all n ≥ 1. Therefore, {xn} is well defined.
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We now show that limn→∞G(xn, Jx0) exists. Since f : E → � is convex and lower
semicontinuous, applying Lemma 2.5, we see that there exists u∗ ∈ E∗ and α ∈ � such that

f
(

y
) ≥ 〈

y, u∗〉 + α, ∀y ∈ E. (3.4)

It follows that

G(xn, Jx0) = ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρ〈xn, u
∗〉 + 2ρα

= ‖xn‖2 − 2
〈

xn, Jx0 − ρu∗〉 + ‖x0‖2 + 2ρα

≥ ‖xn‖2 − 2‖xn‖
∥
∥Jx0 − ρu∗∥∥ + ‖x0‖2 + 2ρα

=
(‖xn‖ −

∥
∥Jx0 − ρu∗∥∥)2 + ‖x0‖2 −

∥
∥Jx0 − ρu∗∥∥2 + 2ρα.

(3.5)

Since xn = Πf

Cn
x0, it follows from (3.5) that

G(x∗, Jx0) ≥ G(xn, Jx0) ≥
(‖xn‖ −

∥
∥Jx0 − ρu∗∥∥)2 + ‖x0‖2 −

∥
∥Jx0 − ρu∗∥∥2 + 2ρα (3.6)

for each x∗ ∈ F. This implies that {xn}∞n=0 is bounded and so is {G(xn, Jx0)}∞n=0. By the
construction of Cn, we have that Cn+1 ⊂ Cn and xn+1 = Πf

Cn+1
x0 ∈ Cn. It then follows from

Lemma 2.7 that

φ(xn+1, xn) +G(xn, Jx0) ≤ G(xn+1, Jx0). (3.7)

It is obvious that

φ(xn+1, xn) ≥ (‖xn+1‖ − ‖xn‖)2 ≥ 0, (3.8)

and so {G(xn, Jx0)}∞n=0 is nondecreasing. It follows that the limit of {G(xn, Jx0)}∞n=0 exists.
Now since {xn}∞n=0 is bounded in C and E is reflexive, we may assume that xn ⇀ p,

and since Cn is closed and convex for each n ≥ 1, it is easy to see that p ∈ Cn for each n ≥ 1.
Again since xn = Πf

Cn
x0, from the definition of Πf

Cn
, we obtain

G(xn, Jx0) ≤ G
(

p, Jx0
)

, ∀n ≥ 1. (3.9)

Since

lim inf
n→∞

G(xn, Jx0) = lim inf
n→∞

{

‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρf(xn)
}

≥ ∥
∥p

∥
∥
2 − 2

〈

p, Jx0
〉

+ ‖x0‖2 + 2ρf
(

p
)

= G
(

p, Jx0
)

,

(3.10)
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then we obtain

G
(

p, Jx0
) ≤ lim inf

n→∞
G(xn, Jx0) ≤ lim sup

n→∞
G(xn, Jx0) ≤ G

(

p, Jx0
)

. (3.11)

This implies that limn→∞G(xn, Jx0) = G(p, Jx0). By Lemma 2.13, we obtain limn→∞‖xn‖ =
‖p‖. In view of Kadec-Klee property of E, we have that limn→∞xn = p.

We next show that p ∈ ⋂m
k=1 EP(Fk) ∩ (

⋂∞
i=1 F(Ti)) ∩ (

⋂∞
i=1 F(Si)). We first show that

p ∈ ⋂∞
i=1 F(Ti)) ∩ (

⋂∞
i=1 F(Si). By the fact that Cn+1 ⊂ Cn and xn+1 = Πf

Cn+1
x0 ∈ Cn, we obtain

φ(xn+1, un,i) ≤ φ(xn+1, xn). (3.12)

Now, (3.7) implies that

φ(xn+1, un,i) ≤ φ(xn+1, xn) ≤ G(xn+1, Jx0) −G(xn, Jx0). (3.13)

Taking the limit as n → ∞ in (3.13), we obtain

lim
n→∞

φ(xn+1, xn) = 0. (3.14)

Therefore,

lim
n→∞

φ(xn+1, un,i) = 0, ∀i ≥ 1. (3.15)

It then yields that limn→∞(‖xn+1‖ − ‖un,i‖) = 0, for all i ≥ 1. Since limn→∞‖xn+1‖ = ‖p‖, we
have

lim
n→∞

‖un,i‖ =
∥
∥p

∥
∥, ∀i ≥ 1. (3.16)

Hence,

lim
n→∞

‖Jun,i‖ =
∥
∥Jp

∥
∥, ∀i ≥ 1. (3.17)

This implies that {‖Jun,i‖}∞n=0, i ≥ 1 is bounded in E∗. Since E is reflexive, and so E∗ is
reflexive, we can then assume that Jun,i ⇀ f0 ∈ E∗, for all i ≥ 1. In view of reflexivity of
E, we see that J(E) = E∗. Hence, there exists x ∈ E such that Jx = f0. Since

φ(xn+1, un,i) = ‖xn+1‖2 − 2〈xn+1, Jun,i〉 + ‖un,i‖2

= ‖xn+1‖2 − 2〈xn+1, Jun,i〉 + ‖Jun,i‖2,
(3.18)
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taking the limit inferior of both sides of (3.18) and in view of weak lower semicontinuity of
‖ · ‖, we have

0 ≥ ∥
∥p

∥
∥
2 − 2

〈

p, f0
〉

+
∥
∥f0

∥
∥
2 =

∥
∥p

∥
∥
2 − 2

〈

p, Jx
〉

+ ‖Jx‖2

=
∥
∥p

∥
∥
2 − 2

〈

p, Jx
〉

+ ‖x‖2 = φ
(

p, x
)

,

(3.19)

that is, p = x. This implies that f0 = Jp and so Jun,i ⇀ Jp, for all i ≥ 1. It follows from
limn→∞‖Jun,i‖ = ‖Jp‖, for all i ≥ 1 and Kadec-Klee property of E∗ that Jun,i → Jp, for all i ≥
1. Note that J−1 : E∗ → E is hemicontinuous; it yields that un,i ⇀ p, for all i ≥ 1. It
then follows from limn→∞‖un,i‖ = ‖p‖, for all i ≥ 1 and Kadec-Klee property of E that
limn→∞un,i = p, for all i ≥ 1. Hence,

lim
n→∞

‖xn − un,i‖ = 0, ∀i ≥ 1. (3.20)

Since J is uniformly norm-to-norm continuous on bounded sets and limn→∞‖xn − un,i‖ =
0, for all i ≥ 1, we obtain

lim
n→∞

‖Jxn − Jun,i‖ = 0, ∀i ≥ 1. (3.21)

Since {xn} is bounded, so are {zn,i}, {JTixn}, and {JSixn}. Also, since E is uniformly smooth,
E∗ is uniformly convex. Then, from Lemma 2.9, we have

G(x∗, Jun,i) = G
(

x∗, Jθmn yn,i

) ≤ G
(

x∗, Jyn,i

)

= G(x∗, (αn,iJxn + (1 − αn,i)Jzn,i))

= ‖x∗‖2−2αn,i〈x∗, Jxn〉−2(1−αn,i)〈x∗, Jzn,i〉+‖αn,iJxn+(1 − αn,i)Jzn,i‖2+2ρf(x∗)

≤ ‖x∗‖2−2αn,i〈x∗, Jxn〉−2(1−αn,i)〈x∗, Jzn,i〉+αn,i‖xn‖2+(1 − αn,i)‖zn,i‖2+2ρf(x∗)

= αn,iG(x∗, Jxn) + (1 − αn,i)G(x∗, Jzn,i)

= αn,iG(x∗, Jxn) + (1 − αn,i)G
(

x∗,
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

))

≤αn,iG(x∗, Jxn)+ (1−αn,i)
(

‖x∗‖2−2β(1)n,i 〈x∗, Jxn〉 − 2β(2)n,i 〈x∗, JTixn〉

−2β(3)n,i 〈x∗, JSixn〉 + β
(1)
n,i ‖xn‖2+β(2)n,i ‖Tixn‖2+β(3)n,i ‖Sixn‖2

−β(1)n,i β
(2)
n,i g(‖Jxn − JTixn‖) + 2ρf(x∗)

)
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= αn,iG(x∗, Jxn) + (1 − αn,i)
(

β
(1)
n,i G(x∗, Jxn) + β

(2)
n,i G(x∗, JTixn)

+β(3)n,i G(x∗, JSixn) − β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

)

≤ αn,iG(x∗, Jxn) + (1 − αn,i)
(

β
(1)
n,i G(x∗, Jxn) + β

(2)
n,i G(x∗, Jxn)

+β(3)n,i G(x∗, Jxn) − β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

)

= αn,iG(x∗, xn) + (1 − αn,i)
(

G(x∗, Jxn) − β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

)

≤ G(x∗, Jxn) − (1 − αn,i)β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖).

(3.22)

It then follows that

(1 − α)β(1)n,i β
(2)
n,i g(‖Jxn − JTixn‖) ≤ (1 − αn,i)β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ G(x∗, Jxn) −G(x∗, Jun,i).
(3.23)

But

G(x∗, Jxn) −G(x∗, Jun,i) = ‖xn‖2 − ‖un,i‖2 − 2〈x∗, Jxn − Jun,i〉

≤
∣
∣
∣‖xn‖2 − ‖un,i‖2

∣
∣
∣ + 2

∣
∣
∣〈x∗, Jxn − Jun,i〉

∣
∣
∣

≤ |‖xn‖ − ‖un,i‖|(‖xn‖ + ‖un,i‖) + 2‖x∗‖‖Jxn − Jun,i‖

≤ ‖xn − un,i‖(‖xn‖ + ‖un,i‖) + 2‖x∗‖‖Jxn − Jun,i‖.

(3.24)

From limn→∞‖xn − un,i‖ = 0 and limn→∞‖Jxn − Jun,i‖ = 0, we obtain

G(x∗, Jxn) −G(x∗, Jun,i) −→ 0, n −→ ∞. (3.25)

Using the condition lim infn→∞β
(1)
n,i β

(2)
n,i > 0, we have

lim
n→∞

g(‖Jxn − JTixn‖) = 0, ∀i ≥ 1. (3.26)

By property of g, we have limn→∞‖Jxn − JTixn‖ = 0, for all i ≥ 1. Since J−1 is also uniformly
norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Tixn‖ = 0, ∀i ≥ 1. (3.27)



International Journal of Mathematics and Mathematical Sciences 15

Similarly, we can show that

lim
n→∞

‖xn − Sixn‖ = 0, ∀i ≥ 1. (3.28)

Since xn → p and Ti, Si are closed, we have p ∈ (
⋂∞

i=1 F(Ti)) ∩ (
⋂∞

i=1 F(Si)).
Next, we show that p ∈ ⋂m

k=1 EP(Fk). Now, by Lemma 2.12, we obtain

φ
(

un,i, yn,i

)

= φ
(

θmn yn,i, yn,i

)

≤ φ
(

x∗, yn,i

) − φ
(

x∗, θmn yn,i

)

≤ φ(x∗, xn) − φ(x∗, un,i) −→ 0, n −→ ∞.

(3.29)

It then yields that limn→∞(‖un,i‖ − ‖yn,i‖) = 0. Since limn→∞‖un,i‖ = ‖p‖, i ≥ 1, we have

lim
n→∞

∥
∥yn,i

∥
∥ =

∥
∥p

∥
∥, i ≥ 1. (3.30)

Hence,

lim
n→∞

∥
∥Jyn,i

∥
∥ =

∥
∥Jp

∥
∥, i ≥ 1. (3.31)

This implies that {‖Jyn,i‖}∞n=0 is bounded in E∗. Since E is reflexive, and so E∗ is reflexive, we
can then assume that Jyn,i ⇀ f1 ∈ E∗. In view of reflexivity of E, we see that J(E) = E∗. Hence,
there exists z ∈ E such that Jz = f1. Since

φ
(

un,i, yn,i

)

= ‖un,i‖2 − 2
〈

un,i, Jyn,i

〉

+
∥
∥yn,i

∥
∥
2

= ‖un,i‖2 − 2
〈

un,i, Jyn,i

〉

+
∥
∥Jyn,i

∥
∥
2
,

(3.32)

taking the limit inferior of both sides of (3.32) and in view of weak lower semicontinuity of
‖ · ‖, we have

0 ≥ ∥
∥p

∥
∥
2 − 2

〈

p, f1
〉

+
∥
∥f1

∥
∥
2 =

∥
∥p

∥
∥
2 − 2

〈

p, Jz
〉

+ ‖Jz‖2

=
∥
∥p

∥
∥
2 − 2

〈

p, Jz
〉

+ ‖z‖2 = φ
(

p, z
)

,
(3.33)

that is, p = z. This implies that f1 = Jp and so Jyn,i ⇀ Jp. It follows from limn→∞‖Jyn,i‖ =
‖Jp‖ and Kadec-Klee property of E∗ that Jyn,i → Jp. Note that J−1 : E∗ → E is hem-
icontinuous; it yields that yn,i ⇀ p. It then follows from limn→∞‖yn,i‖ = ‖p‖ and Kadec-
Klee property of E that limn→∞yn,i = p, i ≥ 1. By the fact that θkn, k = 1, 2, . . . , m is relatively
nonexpansive and using Lemma 2.12 again, we have that

φ
(

θknyn,i, yn,i

)

≤ φ
(

x∗, yn,i

) − φ
(

x∗, θknyn,i

)

≤ φ(x∗, xn) − φ
(

x∗, θknyn,i

)

.

(3.34)
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Observe that

φ(x∗, un,i) = φ
(

x∗, θmn yn,i

)

= φ
(

x∗, TFm
rm,nT

Fm−1
rm−1,n · · ·TFk

rk,nT
Fk−1
rk−1 ,n · · ·TF2

r2,nT
F1
r1 ,nyn,i

)

= φ
(

x∗, TFm
rm,nT

Fm−1
rm−1,n · · ·θknyn,i

)

≤ φ
(

x∗, θknyn,i

)

.

(3.35)

Using (3.35) in (3.34), we obtain

φ
(

θknyn,i, yn,i

)

≤ φ(x∗, xn) − φ(x∗, un,i) −→ 0, n −→ ∞. (3.36)

It then yields that limn→∞(‖θknyn,i‖ − ‖yn,i‖) = 0. Since limn→∞‖yn,i‖ = ‖p‖, we have

lim
n→∞

∥
∥
∥θknyn,i

∥
∥
∥ =

∥
∥p

∥
∥, k = 1, 2, . . . , m. (3.37)

This implies that {‖θknyn,i‖}∞n=0 is bounded in E. Since E is reflexive, we can then assume that
θknyn,i ⇀ w ∈ E. Since

φ
(

θknyn,i, yn,i

)

=
∥
∥
∥θknyn,i

∥
∥
∥

2
− 2

〈

θknyn,i, Jyn,i

〉

+
∥
∥yn,i

∥
∥
2

=
∥
∥
∥θknyn,i

∥
∥
∥

2
− 2

〈

θknyn,i, Jyn,i

〉

+
∥
∥Jyn,i

∥
∥
2
,

(3.38)

taking the limit inferior of both sides of (3.38) and in view of weak lower semicontinuity of
‖ · ‖, we have

0 ≥ ‖w‖2 − 2
〈

w, Jp
〉

+
∥
∥p

∥
∥
2 = ‖w‖2 − 2

〈

w, Jp
〉

+
∥
∥Jp

∥
∥
2

= φ
(

w, p
)

,
(3.39)

that is, p = w. This implies that θknyn,i ⇀ p. It follows from limn→∞‖θknyn,i‖ = ‖p‖ and Kadec-
Klee property of E that

θknyn,i −→ p, n −→ ∞, k = 1, 2, . . . , m. (3.40)

Similarly, limn→∞‖p − θk−1n yn,i‖ = 0, k = 1, 2, . . . , m. This further implies that

lim
n→∞

∥
∥
∥θknyn,i − θk−1n yn,i

∥
∥
∥ = 0, i ≥ 1. (3.41)
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Also, since J is uniformly norm-to-norm continuous on bounded sets and using (3.41), we
obtain

lim
n→∞

∥
∥
∥Jθknyn,i − Jθk−1n yn,i

∥
∥
∥ = 0, i ≥ 1. (3.42)

Since lim infn→∞rk,n > 0 (k = 1, 2, . . . , m),

lim
n→∞

∥
∥Jθknyn,i − Jθk−1n yn,i

∥
∥

rk,n
= 0. (3.43)

By Lemma 2.11, we have that for each k = 1, 2, . . . , m

Fk

(

θknyn,i, y
)

+
1
rk,n

〈

y − θknyn,i, Jθ
k
nyn,i − Jθk−1n yn,i

〉

≥ 0, ∀y ∈ C. (3.44)

Furthermore, using (A2), we obtain

1
rk,n

〈

y − θknyn,i, Jθ
k
nyn,i − Jθk−1n yn,i

〉

≥ Fk

(

y, θknyn,i

)

. (3.45)

By (A4), (3.43), and θknyn,i → p, we have for each k = 1, 2, . . . , m

Fk

(

y, p
) ≤ 0, ∀y ∈ C. (3.46)

For fixed y ∈ C, let zt,y := ty + (1 − t)p for all t ∈ (0, 1]. This implies that zt,y ∈ C. This yields
that Fk(zt,y, p) ≤ 0. It follows from (A1) and (A4) that

0 = Fk

(

zt,y, zt,y
) ≤ tFk

(

zt,y, y
)

+ (1 − t)Fk

(

zt,y, p
)

≤ tFk

(

zt,y, y
)

,

(3.47)

and hence

0 ≤ Fk

(

zt,y, y
)

. (3.48)

From condition (A3), we obtain

Fk

(

p, y
) ≥ 0, ∀y ∈ C. (3.49)

This implies that p ∈ EP(Fk), k = 1, 2, . . . , m. Thus, p ∈ ⋂m
k=1 EP(Fk). Hence, we have p ∈ Ω =

⋂m
k=1 EP(Fk) ∩ (

⋂∞
n=0 F(Ti)) ∩ (

⋂∞
i=1 F(Si)).
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Finally, we show that p = Πf

Ωx0. Since Ω =
⋂m

k=1 EP(Fk) ∩ (
⋂∞

n=0 F(Ti)) ∩ (
⋂∞

i=1 F(Si))

is a closed and convex set, from Lemma 2.6, we know that Πf

Fx0 is single valued and denote

w = Πf

Ωx0. Since xn = Πf

Cn
x0 andw ∈ Ω ⊂ Cn, we have

G(xn, Jx0) ≤ G(w, Jx0), ∀n ≥ 1. (3.50)

We know that G(ξ, Jϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.
This implies that

G
(

p, Jx0
) ≤ lim inf

n→∞
G(xn, Jx0) ≤ lim sup

n→∞
G(xn, Jx0) ≤ G(w, Jx0). (3.51)

From the definition of Πf

Ωx0 and p ∈ Ω, we see that p = w. This completes the proof.

Take f(x) = 0 for all x ∈ E in Theorem 3.1, then G(ξ, Jx) = φ(ξ, x) and Πf

Cx0 = ΠCx0.
Then we obtain the following corollary.

Corollary 3.2. Let E be a uniformly smooth and strictly convex real Banach space which also has
Kadec-Klee property. Let C be a nonempty, closed, and convex subset of E. For each k = 1, 2, . . . , m,
let Fk be a bifunction from C×C satisfying (A1)–(A4). Suppose {Ti}∞i=1 and {Si}∞i=1 are two countable
families of closed relatively quasi-nonexpansive mappings ofC into itself such thatΩ :=

⋂m
k=1 EP(Fk)∩

(
⋂∞

n=1 F(Ti))∩ (
⋂∞

n=1 F(Si))/= ∅. Suppose {xn}∞n=0 is iteratively generated by x0 ∈ C, C1,i = C, C1 =
∩∞
i=1C1,i, x1 = ΠC1x0,

zn,i = J−1
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)

,

yn,i = J−1(αn,iJxn + (1 − αn,i)Jzn,i),

un,i = TFm
rm,nT

Fm−1
rm−1,n · · ·TF2

r2 ,nT
F1
r1,nyn,i,

Cn+1,i =
{

z ∈ Cn,i : φ(z, un,i) ≤ φ(z, xn)
}

,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = ΠCn+1x0, n ≥ 1,

(3.52)

with the conditions

(i) lim infn→∞β
(1)
n,i β

(2)
n,i > 0,

(ii) lim infn→∞β
(1)
n,i β

(3)
n,i > 0,

(iii) 0 ≤ αn,i ≤ α < 1 for some α ∈ (0, 1),

(iv) {rk,n}∞n=1 ⊂ (0,∞) (k = 1, 2, . . . , m) satisfying lim infn→∞rk,n > 0 (k = 1, 2, . . . , m).

Then, {xn}∞n=0 converges strongly toΠΩx0.
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Corollary 3.3 (see Li et al. [29]). Let E be a uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty, closed, and convex subset of E. Suppose T is a relatively
nonexpansive mapping of C into itself such that Ω := F(T)/= ∅. Let f : E → � be a convex and
lower semicontinuous mapping with C ⊂ int(D(f)), and suppose {xn}∞n=0 is iteratively generated by
x0 ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 =
{

w ∈ Cn : G
(

w, Jyn

) ≤ G(w, Jxn)
}

,

xn+1 = Πf

Cn+1
x0, n ≥ 0.

(3.53)

Suppose {αn}∞n=1 is a sequence in (0, 1) such that lim supn→∞αn < 1. Then, {xn}∞n=0 converges
strongly toΠΩx0.

Corollary 3.4 (see Takahashi and Zembayashi [9]). Let E be a uniformly convex real Banach
space which is also uniformly smooth. Let C be a nonempty, closed, and convex subset of E. Let F be
a bifunction from C × C satisfying (A1)–(A4). Suppose T is a relatively nonexpansive mapping of C
into itself such that Ω := EP(F) ∩ F(T)/= ∅. Let {xn}∞n=0 be iteratively generated by x0 ∈ C, C1 = C,
x1 = ΠC1x0,

yn = J−1(αn,iJxn + (1 − αn,i)JTxn),

F
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

w ∈ Cn : φ(w, un) ≤ φ(w, xn)
}

,

xn+1 = ΠCn+1x0, n ≥ 1,

(3.54)

where J is the duality mapping on E. Suppose {αn,i}∞n=1 is a sequence in (0, 1) such that
lim infn→∞αn,i(1 − αn,i) > 0 and {rn}∞n=1 ⊂ (0,∞) satisfying lim infn→∞rn > 0. Then, {xn}∞n=0
converges strongly to ΠΩx0.

4. Applications

Let A be a monotone operator from C into E∗, the classical variational inequality is to find
x∗ ∈ C such that

〈

y − x,Ax∗〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of (4.1) is denoted by VI(C,A).
Let ϕ : C → � be a real-valued function. The convex minimization problem is to find

x∗ ∈ C such that

ϕ(x∗) ≤ ϕ
(

y
)

, ∀y ∈ C. (4.2)

The set of solutions of (4.2) is denoted by CMP(ϕ).
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The following lemmas are special cases of Lemmas 2.8 and Lemma 2.9 of [39].

Lemma 4.1. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Assume that A : C → E∗ is a continuous and monotone operator. For r > 0 and
x ∈ E, define a mapping TA

r : E → C as follows:

TA
r (x) =

{

z ∈ C :
〈

Az, y − z
〉

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

. (4.3)

Then, the following hold:

(1) TA
r is singlevalued,

(2) F(TA
r ) = VI(C,A),

(3) VI(C,A) is closed and convex,

(4) φ(q, TA
r x) + φ(TA

r x, x) ≤ φ(q, x), for all q ∈ F(TA
r ).

Lemma 4.2. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Assume that ϕ : C → � is lower semicontinuous and convex. For r > 0 and x ∈ E,
define a mapping Tϕ

r : E → C as follows:

T
ϕ
r (x) =

{

z ∈ C : ϕ
(

y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ ϕ(z), ∀y ∈ C

}

. (4.4)

Then, the following hold:

(1) Tϕ
r is single valued,

(2) F(Tϕ
r ) = CMP(ϕ),

(3) CMP(ϕ) is closed and convex,

(4) φ(q, Tϕ
r x) + φ(Tϕ

r x, x) ≤ φ(q, x), for all q ∈ F(Tϕ
r ).

Then we obtain the following theorems from Theorem 3.1.

Theorem 4.3. Let E be a uniformly smooth and strictly convex real Banach space which also has
Kadec-Klee property. Let C be a nonempty, closed, and convex subset of E. For each k = 1, 2, . . . , m,
let Ak be a continuous and monotone operator from C into E∗. Suppose {Ti}∞i=1 and {Si}∞i=1 are
two countable families of closed relatively quasi-nonexpansive mappings of C into itself such that
Ω :=

⋂m
k=1 VI(C,Ak) ∩ (

⋂∞
i=1 F(Ti)) ∩ (

⋂∞
i=1 F(Si))/= ∅. Let f : E → � be a convex and lower
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semicontinuous mapping with C ⊂ int(D(f)), and suppose {xn}∞n=0 is iteratively generated by
x0 ∈ C, C1,i = C, C1 = ∩∞

i=1C1,i, x1 = Πf

C1
x0,

zn,i = J−1
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)

,

yn,i = J−1(αn,iJxn + (1 − αn,i)Jzn,i),

un,i = TAm
rm,nT

Am−1
rm−1,n · · ·TA2

r2 ,nT
A1
r1,nyn,i,

Cn+1,i = {z ∈ Cn,i : G(z, Jun,i) ≤ G(z, Jxn)},

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = Πf

Cn+1
x0, n ≥ 1,

(4.5)

with the conditions

(i) lim infn→∞β
(1)
n,i β

(2)
n,i > 0,

(ii) lim infn→∞β
(1)
n,i β

(3)
n,i > 0,

(iii) 0 ≤ αn,i ≤ α < 1 for some α ∈ (0, 1),

(iv) {rk,n}∞n=1 ⊂ (0,∞) (k = 1, 2, . . . , m) satisfying lim infn→∞rk,n > 0 (k = 1, 2, . . . , m).

Then, {xn}∞n=0 converges strongly toΠf

Ωx0.

Theorem 4.4. Let E be a uniformly smooth and strictly convex real Banach space which also has
Kadec-Klee property. Let C be a nonempty, closed, and convex subset of E. For each k = 1, 2, . . . , m,
let ϕk : C → � be lower semicontinuous and convex. Suppose {Ti}∞i=1 and {Si}∞i=1 are two
countable families of closed relatively quasi-nonexpansive mappings of C into itself such that Ω :=
⋂m

k=1 CMP(ϕk) ∩ (
⋂∞

i=1 F(Ti)) ∩ (
⋂∞

i=1 F(Si))/= ∅. Let f : E → � be a convex and lower semi-
continuous mapping with C ⊂ int(D(f)), and suppose {xn}∞n=0 is iteratively generated by x0 ∈ C,

C1,i = C, C1 =
⋂∞

i=1 C1,i, x1 = Πf

C1
x0,

zn,i = J−1
(

β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)

,

yn,i = J−1(αn,iJxn + (1 − αn,i)Jzn,i),

un,i = T
ϕm

rm,nT
ϕm−1
rm−1,n · · ·T

ϕ2
r2 ,nT

ϕ1
r1,nyn,i,

Cn+1,i = {z ∈ Cn,i : G(z, Jun,i) ≤ G(z, Jxn)},

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = Πf

Cn+1
x0, n ≥ 1,

(4.6)

with the conditions
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(i) lim infn→∞β
(1)
n,i β

(2)
n,i > 0,

(ii) lim infn→∞β
(1)
n,i β

(3)
n,i > 0,

(iii) 0 ≤ αn,i ≤ α < 1 for some α ∈ (0, 1),

(iv) {rk,n}∞n=1 ⊂ (0,∞) (k = 1, 2, . . . , m) satisfying lim infn→∞rk,n > 0 (k = 1, 2, . . . , m).

Then, {xn}∞n=0 converges strongly toΠf

Ωx0.
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