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We have obtained a new summation formula for »¢, bilateral basic hypergeometric series by
the method of parameter augmentation and demonstrated its various uses leading to some

development of etafunctions, g-gamma, and g-beta function identities.

1. Introduction

The summation formulae for hypergeometric series form a very interesting and useful
component of the theory of (basic) hypergeometric series. The g-binomial theorem of Cauchy
[1] is perhaps the first identity in the class of the summation formulae, which can be stated

as

where

(@), = (a;9),, = ﬁ(l - aqk>,

k=0

(@)es

(@), = (a;q), = ()’ k is an integer.

(1.1)

(1.2)
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For more details about the g-binomial theorem and about the identities which fall in this
sequel, one may refer to the book by Gasper and Rahman [2]. Another famous identity in the
sequel is the Ramanujan’s ;¢ summation formula [3]

(a)k K (az),(q) (q/az)_(b/a), b
Z P)x (Z)oo(b)oo(b/az)m(q/a)oo ’ ‘a <zl <1, |q| <1. (1.3)

There are a number of proofs of the ;¢; summation formula (1.3) in the literature. For more
details, one refers to the book by Berndt [4] and a recent paper of Johnson [5].

In this paper, we derive a new summation formula for ¢, basic bilateral hypergeomet-
ric series using the 1¢; summation formula (1.3) by the method of parameter augmentation.
We then use the formula to derive the g-analogue of Gauss summation formula and to obtain
a number of etafunction, g-gamma, and g-beta function identities, which complement the
works of Bhargava and Somashekara [6], Bhargava et al. [7], Somashekara and Mamta [8],
Srivastava [9], and Bhargava and Adiga [10].

First, we recall that g-difference operator and the g-shift operator are defined by

D, f(@ =L DIED (@) - fag), (14

respectively. In [11], Chen and Liu have constructed an operator 6 as
6=¢"'D,, (1.5)

and thereby they defined the operator E(bO) as

© (bO k _k(k-1)/2

Z( U (1.6)

= @)

Then, we have the following operator identities [12, Theorem 1]:
E(b6){(at;q)_} = (at,bt;q)_,
, at, bs, bt; (1.7)
E(b0){(as,at;q) } = (as, at, bs, bliq),, | abst <1

(abst/q;q)., q
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Further, the Dedekind etafunction is defined by
n(r) = emT/lZH( 27r1kT> — q1/24(q; 9. (1.8)

where g = €*™, and Im (1) > 0.
Jackson [13] defined the g-analogue of the gamma function by

(4:9)., 1ox
(x ) (1 ) ’

[y(x) = 0<g<l (1.9)

In his paper on the g-gamma and g-beta function, Askey [14] has obtained g-analogues of
several classical results about the gamma function. Further, he has given the definition for
g-beta function as

n+1
Bx) = (-9 S L0 (110)
In fact, he has shown that
T, (x0)T4(y)
B,(x,y) = ——— 137 1.11
V=T ) (4

In Section 2, we prove our main result. In Section 3, we deduce the well-known g-
analogue of the Gauss summation formula and some etafunction, g-gamma, and g-beta
function identities.

2. Main Result

Theorem 2.1. If0 < |z| <1, |g| <1, then

)y (@) (be/azq), o (2)5(9) ,(9/a2) . (b/ @) o (c/ @)y, (be/ azq)

E 0@ T @a0),0,0/a2)(c/az),(q/a),, 2y
Proof. Ramanujan’s 1¢; summation formula (1.3) can be written as
2 @y, & (@/0) [ b\E_ (@9),(0),.(4/02),, 0/ a).,
Z G- 1(q/a)k<“z)  (D)a ), (b/az),(q/a),, 22
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This is the same as

S {00 (2) ] £ v () )

)

On applying E(c8) to both sides with respect to b, we obtain

(2.3)

2 (bq"),,(b/az),,(cq") ,(c/az),,
k o) o)
(i { (beq*/azq),,

. © (_1)qu(k+1)/2< 1 )k (bq_k)oo(b/az)oo(Cq_k)oo(c/az)oo
o (@/a), \az (beq*/azq),,

-t (.6

Multiplying (2.4) throughout by {(bc/azq).,/(b)..(c),}, we obtain

(2.4)

&, (a),(bc/azq), PR (a)_y(bc/azq)_, N
) N Y W E R

_ (a2),(9),(q/az2) , (b/ @), (c/ a), (be/ azq),,
T (Daw0)e(0),(b/az),(c/az).,(q/a),,

(2.5)

which yields (2.1). O

3. Some Applications of the Main Identity
The following identity is the well-known g-analogue of the Gauss summation formula.

Corollary 3.1 (see [15]). If|g| < 1, |y/ap| < 1, then

=, (a) (B), (1)" _ 0/, (/P (31)

kZ::‘) (@) (1) (N (/aB),

Proof. Puttinga=a,b=q,c=y,and z = y/af in (2.1), we obtain (3.1). O
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Corollary 3.2. If |q| < 1, then

kg@ (i- qﬁi’ii‘@’;; q4)qu =q" 8%, (3.2)
k; (1+ qg;iz)j(zzz ) et ZZE;L:; (3.3)
P
D
e (1+P) P (P in 147 )

el (1- ) (q% q2)° 2T
Proof. Putting a = z = g/4, b = %%, ¢ = g°/%, and then changing g to g* in (2.1), we obtain

e (@) (a5« (@5aY). (a4

q = . (3.8)
@) (@d) T (g9Y) (6% 90

Simplifying the right hand side and then using (1.8), we obtain (3.2).

Similarly, putting a = —-q'/2, z = g'/%, b = —¢*/2, ¢ = —¢*/?, and then changing g to g2,
we obtain (3.3). Putting a = —q'/2, z = g1/2, b = ¢ = g°/2, and then changing g to 4%, we obtain
(3.4). Putting a = —-q'/?, z = /2, b = g, ¢ = ¢, and then changing q to g%, we obtain (3.5).
Putting a = g'/%,z = g1/2,b = q’/, c = g°/®, and then changing g to q°, we obtain (3.6). Finally,
putting a = -1, z = g, b = ¢ = ¢*, and then changing q to ¢q*, we obtain (3.7). O

Corollary 3.3. If0<g<1,0<x,y<1l,and 0 <x+y <1, then

Ty(1-x+y)Ty(x-y)(1-9)° )y @)@k iy

B (x,y) = (3.9)
' (1-gv)’ o (@)
Proof. Puttinga=q'*,z=¢%,andb = c = g*¥in (2.1), we get
-x X+ —X+ X— X+ 3
= (ql )k(q y)k ky _ (ql y)oo(q)oo(q y)oo (q y)oc
Z 2 q°= 1+y 1+y x ’ (3.10)
e (gt); (3) (@) o (@) . \ (77),,

On using (1.9), (1.10), and (1.11), we obtain (3.9). O
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Corollary 3.4. If0<g<1, O<x,y<1land1<x+y <2, then

-0l -y+ D +y-1) & (q"‘)k(q’”y‘l)quy.

2
Pily) = Ty (y)Tq(1 +x) k=—oco (q¥); G40

Proof. Putting a = g%, z = b = ¢ = ¢¥, in (2.1), and then using (1.9), (1.10), and (1.11), we
obtain (3.11). O

Corollary 3.5. If0<x, y<1,and 0 < x +y <1, then

T(1-x+y)T(x-y) i(l—X)k(x+y)k+i ()i

B3 (x,y) = . (3.12)
y2 k=0 (1+y)i k=1 (x)k(l_x_y)k
Proof. Letting g — 1in (3.9), we obtain (3.12). O
Corollary 3.6. If0<x,y <1,and1 <x+y <2, then
B2 (x, ) = I'y-x)I'(x-y+1) T(x+y-1)
I'(y)(1+x)
) (3.13)
= (_x)k(x+]/_1)k+ < (I-y)i
k=0 (y)i S +x)(2-x-y),
Proof. Letting g — 1in (3.11), we obtain (3.13). O
Corollary 3.7. If0<g<1,0<x,y<1,and 0 < x +y <1, then
< (@) (@) g
By(x,y) =Tq()Tq(1-y) 3~ 54" (3.14)
k=0 (q)k
Proof. Putting a = g™,z = g%, and b = ¢ = g in (2.1), we obtain (3.14). O
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