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We study the long-time behavior of solutions to nonautonomous semilinear parabolic systems
involving the Grushin operators in bounded domains. We prove the existence of a pullback ®-
attractor in (L?(€2))™ for the corresponding process in the general case. When the system has a
special gradient structure, we prove that the obtained pullback ®-attractor is more regular and has
a finite fractal dimension. The obtained results, in particular, extend and improve some existing
ones for the reaction-diffusion equations and the Grushin equations.

1. Introduction

Nonautonomous equations are of great importance and interest as they appear in many
applications in the natural sciences. One way of studying the long-time behavior of solutions
of such equations is using the theory of pullback attractors. This theory has been developed
for both the nonautonomous and random dynamical systems and has shown to be very useful
in the understanding of the dynamics of such dynamical systems (see [1] and references
therein). In recent years, the existence of pullback attractors for reaction-diffusion equations
has been studied widely (see, e.g., [2-6]). However, to the best of our knowledge, little
seems to be known for the asymptotic behavior of solutions of nonautonomous degenerate
equations.

One of the classes of degenerate equations that has been studied widely in recent years
is the class of equations involving an operator of the Grushin type [7]

Gsu=Ayu+ |x|25Ayu, X=(xy)eQc RV xRN, g>0. (1.1)
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The global existence and long-time behavior of solutions to semilinear parabolic equations
involving the Grushin operator, in both autonomous and nonautonomous cases, have been
studied in some recent works [8-10].

In this paper we consider the following nonautonomous semilinear parabolic system:

%—aGsu+f(u)=g(X,t), XeQ t>T,
u(X,t) =0, XeoQ, t>r, (1.2)
ulX,t)=u(X), XeQ,

where X = (x,y) € Q C RN x RN (N7, N, > 1), u, € (L2(Q))" is given, u = (u',...,u™) is
an unknown vector-function. Here a € Mat,(R), f(u) = (f1(u!,...,u™),..., f™ul,...,u™)),
and g(X,t) = (g1(X,t),...,8™(X,t)) satisfy the following conditions:

(H1) a € Mat,,,(R) has a positive symmetric part: (1/2)(a + a*) > pl,, > 0;

(H2) f: R™ — R™ is a C!-vector function such that:

Ciluff =Co < (f(u),u) = iff(u)uj, p>2, (1.3)
j=1
|f@)] < Co(jup™ +1), (14)
) m m af1 o
~Calof < (fu)v,0) = 3 3 = (w)olo), (1.5)

i=1 j=1

where Cy, Cq, C2, and Cj3 are positive constants;
(H3) g € W2(R; (L2(Q))™) such that

loc

0 0 s
f e'1Ps|| g (s) ||fL2(Q))mds < +oo,f J. e)‘lﬂ’||g(r)||fL2(Q))mdr ds < +oo,
- ) (1.6)

0
2
foo e)‘lﬂS”g'(s) ||(L2(Q))mds < 400,

where 1, is the first eigenvalue of the operator G, in Q with the homogeneous
Dirichlet boundary condition.

In order to study problem (1.2), we will use the natural energy space Sj(Q) :=
(S5(€2))™ defined as the complete of (CF(€2))™ in the following norm:

1/2
l[ullsyq) = <J‘Q<|qu|2 + |x|25|Vyu|2>dX> ) (1.7)

From the results in [11], we know that the embedding S(l)(Q) — [P (Q) is continuous if 1 <
p < 2% := (2N(s))/(N(s) —2), where N(s) := Nj + (s + 1) N; moreover, this embedding is
compactif1 < p <2%.
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Notations

Denote 17 (Q) := (LP(Q))™, and S(Q) the dual space of Sj(€). For functions u,v : RN —
R™, we set

m m N i i
(Vu, Vo)) = (Vi Vo) = 37 3 ou’ dv. (1.8)
i=1 i

soifa= (al-]-)zi]-:1 € Mat,,(R), then

m

m N
((aVu, Vo)) = Zaij(vui, W’) =y Zaija—ma—&(, (1.9)

i,j=1 ij=1k=1

where (-, -) denotes the inner product in RV.
Noting that by assumption (H1), we have

((aVu, Vu)) = %igl(aij +aj;) (Vui, Vuf) > ﬁé <Vuj, Vuf) = ﬂ§|Vuj|2 (1.10)

Hence
fg[((avxu, V) + |xP ((aVyu, Vyu))]dX > llullyq) (1.11)
f Q(ac;su, Gsu)dX > B|Gsullf o - (1.12)

The aim of this paper is to study the long-time behavior of solutions to problem (1.2)
by using the theory of pullback ®-attractors. We first prove, under assumptions (H1)—(H3),
the existence of a pullback ®-attractor in .2 (€2) for the process U (t, T) associated to problem
(1.2). Then, with an additional condition that the system has a special gradient structure,
namely, a = pl,, and there exists a function F : R” — R such that f(u) = grad,F(u), we
prove the existence of a pullback ®-attractor in the space S})(Q)ﬁ]LP (Q) for the process U (¢, T).
Moreover, we prove the boundedness of the pulback ®-attractor in L?P72(Q) and in SS(Q),
and give estimates of the fractal dimension of the pulback ®-attractor. It is worth noticing that
our results, in particular, extend and improve some recent results on the existence of pullback
D-attractors for the reaction-diffusion equations [3-5] and for the Grushin equations [8].

Let us explain the methods used in the paper. We first prove the existence of a
family of pullback ®-absorbing sets in Sj(Q). Thanks to the compactness of the embedding
S§(Q) — L2(Q), we immediately get the existence of a pullback ®-attractor in L? (€2). When
the system has a special gradient structure, we are able to prove the existence of a pullback
D-attractor in S})(Q) N 7 (). To do this, we follow the general lines of the approach used
in [8], with some modifications so that we can improve conditions imposed on the external
force g. In particular, we use the asymptotic a priori estimate method initiated in [12] to testify
the pullback asymptotic compactness of the corresponding process. Moreover, in this case we
also prove the regularity of the pullback D-attractor in the spaces L2 (Q) and S(<). Finally,



4 International Journal of Mathematics and Mathematical Sciences

using the recent results in [13], we give an estimate of the fractal dimension of the pullback
D-attractor. It is noticed that we do not impose the restriction on the exponent p in (H2) as in
[13].

The rest of the paper is organized as follows. In Section 2, for the convenience of the
reader, we recall some concepts and results on pullback ®-attractors which we will use. In
Section 3, we prove the existence of a pullback ®-attractor in L?(Q) in the general case. In
Section 4, under the additional assumption that the system has a gradient structure, we prove
the regularity and fractal dimension estimates of the pullback ®-attractor.

2. Preliminaries
2.1. Pullback Attractors

For convenience of the reader, we recall in this section some concepts and results on the theory
of pullback ®-attractors, which will be used in the paper.

Let X be a metric space with metric d. Denote by B(X) the set of all bounded subsets
of X. For A, B C X, the Hausdorff semidistance between A and B is defined by

dist(A, B) = itelf ;161)1; d(x,y). 2.1)

Let {U(t,T) : t > 7,7 € R} be a process in X, thatis, U(t,7) : X — X such that U(7,7) = Id
and U(t,s)U(s,7) = U(t,T) forallt > s > 7, 7 € R The process {U(t, 7)} is said to be norm-
to-weak continuous if U (t, 7)x, — U(t,T)x,as x, — xinX, forallt > 7, 7 € R The following
result is useful for verifying the norm-to-weak continuity of a process.

Proposition 2.1 (see [14]). Let X, Y be two Banach spaces, X*,Y* be, respectively, their dual spaces.
Assume that X is dense in Y, the injection i : X — Y is continuous and its adjoint i* : Y* — X*
is dense, and {U(t,T)} is a continuous or weak continuous process on Y. Then {U(t, T)} is norm-to-
weak continuous on X if and only if for t > 7, 7 € R, U(t, T) maps a compact set of X to be a bounded
set of X.

Suppose that D is a nonempty class of parameterized sets D= {D(t) : t € R} c B(X).

Definition 2.2. The process {U(t, T)} is said to be pullback ®-asymptotically compact if for
any t € R, any D e, and any sequence {7,}, with 7, < t for all n, and 7, — —oo, any
sequence x, € D(t,), the sequence {U(t, T,)x,} is relatively compact in X.

Definition 2.3. A process {U(t, T)} is called pullback w-®-limit compact if for any € > 0, any
te R, and D € D, there exists a 1) = 79(D, ¢, t) < t such that

a< Yug, T)D(T)> <g, (2.2)

T<T)
where a is the Kuratowski measure of noncompactness of B € B(X),

a(B) =inf{6 > 0 | B has a finite open cover of sets of diameter < &}. (2.3)



International Journal of Mathematics and Mathematical Sciences 5

Lemma 2.4 (see [3]). A process {U(t,T)} is pullback D-asymptotically compact if and only if it is
w-D-limit compact.

Definition 2.5. A family of bounded sets B € D is called pullback D-absorbing for the process
{U(t,T)} if for any t € R and any D € D, there exists 7 = To(§, t) < t such that

(Ju, m)D(r) c B(#). (2.4)

T<Ty
Definition 2.6. A family 4 = {A@t) : t € R} c B(X) is said to be a pullback D-attractor for
{uft, )} if
(1) A(t) is compact for all t € R;

(2) o is invariant, that is, U(t, t)A(t) = A(t), forall t > T;
(3) o4 is pullback D-attracting, that is,

Tl_i)rymdist(ll(t, T)D(7), A(t)) =0, (2.5)

forall® e Dand allt € R;

(4) if {C(t) : t € R} is another family of closed attracting sets, then A(t) C C(t), for all
te R

Theorem 2.7 (see [3]). Let {U(t,T)} be a norm-to-weak continuous process such that {U(t, T)} is
pullback D-asymptotically compact. If there exists a family of pullback D-absorbing sets B = {B(t) :
te R} €9, then {U(t, )} has a unique pullback D-attractor 4 = {A(t) : t € R} and

At = (YU, 7)B(r). (2.6)

s<t T<s

2.2. Fractal Dimension of Pullback Attractors

Given a compact K € X and € > 0, we denote by N (K, ¢) the minimum number of open balls
in X with radius € which are necessary to cover K.

Definition 2.8. For any nonempty compact set K C X, the fractal dimension of K is the number

log N(K,
mmmyﬂmﬁii—ﬂ

e~0 logl/e 2.7)

Definition 2.9. A bounded subset By C H is called a uniformly pullback absorbing set for
process U (t, T) if for every B C H is bounded, there exists a 7y > 0 such that

U(t,t— To)B € By, V12>, (28)

here, 7y does not depend on the choice of ¢.
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Theorem 2.10 (see [13]). Let U(t, T) be a process in a separable Hilbert space H, B be a uniformly
pullback absorbing set in H, A = {A(t) : t € R} be a pullback attractor for U(t, T), if there exists a
finite dimensional projection P in the space H such that

IP(U(t, t—To)us — U(t,t — To)ua) ||y < U(To)|lu1 — w2l (2.9)

forall uy, up € B and some Ty, [(Tp) > 0 and
(I = P)(U(t, t—To)ur —U(t, t — To)uz) |y < Olur — uz| (2.10)

for all uy, u, € B, where 6 < 1, To and I(Ty) are independent of the choice of t. Then the family of
pullback attractors A = {A(t) : t € R} possesses a finite fractal dimension especifically

-1
dim(A(t)) < dimPlog(l + 81’(_T‘()5)> [log : ia] , VteR (2.11)
3. Existence of Pullback ®-Attractors in > (Q)
Denote

V= [P(1, T; 1P (Q)) N L2 <T, T;S4Q)),

3.1)
V= 2 <T, T,87Q) + 1P (7.1 (Q)),

where p’ is the conjugate of p (ie., 1/p+1/p' =1).

Definition 3.1. Let T > 0 and u, € L*(Q) be given. A function u is called a weak solution of
problem (1.2) on (7, T) if

u
— eV,

0
wev, 5

U, = U, ae. in Q,
T (3.2)
f f [Co9) + (@, V) + (T 0, V1)) + (0, )] X

- fT fg(g(t),w)dx dt

for all test functions ¢ € V.

One can prove that if u € V and du/dt € V*, then u € C([0, T];L* (L)) (see [10]). This
makes the initial condition in (1.2) meaningful.
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Theorem 3.2. Under assumptions (H1)-(H3), forany r € R, T > 7, u; € L2 (Q) given, problem
(1.2) has a unique weak solution u on (7, T). Moreover, the solution u exists on the interval (T, +o0)
and the following inequality holds:

2Go|€f |
Mp

t
_ - — 2
[l 2 < € P fuar|F 2 + e Wff eI () lqyds, VE=T.  (33)
—0

Proof. The existence and uniqueness of a weak solution to problem (1.2) are proved similarly
to the scalar case in [10], so it is omitted here.

We now prove inequality (3.3). Multiplying (1.2) by u, integrating over €, and using
(1.11), we have

d
Sl + Bllul o) + fg (f (u), u)dX = fg (g(t), u)dX. (34)

NI =

Using condition (1.3) and the Cauchy inequality, we obtain

d 2 2 [E281
i1l + 2Bllullgy ) + 2Ci 7 ) — 2ColQ < E'lg(t)llv(ﬂ) + i) (85

Because ||u||§é(g) > .A,l”ll”iz(g), so (3.5) becomes

d 2 2 ]. 2

T lia) + MPllulli g < 2Col€ + P 8|12 (3.6)
Applying the Gronwall inequality we get (3.3). O

Now, we can define the family of two-parameter mappings

U(t,7): L2(Q) — SHQ) NP (Q),
(3.7)
u, — U(t, )u,,

where U(t, T)u; = u(t) is the unique weak solution of (1.2) with the initial datum u; at time
7. Then U defines a continuous process on L (Q).

Let R be the set of all functions r : R — (0, +o0) such that lim;_, _.e"#'7%(t) = 0 and
denote by D the class of all families D={DWt):teR}C B(S(l)(Q)) such that D(t) ¢ B(r(t))

for some r(t) € R, where B(r(t)) is the closed ball in S(l)(Q) with radius r(t).
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Lemma 3.3. Under assumptions (H1)-(H3), there exists a constant C > 0 such that the solution u of
problem (1.2) satisfies the following inequality for all t > 7:

1 1
2 —a(t— 2
0 < C( (14 =)+ 22 )l + (14 )

1 — ! as 2
+ (1 + ;)e tfwg ||g(s)||L2(Q)ds (3.8)

1 — ! ° ar
) [ s aras),

where a = PAy. This implies that there exists a family of pullback D-absorbing sets in Si(Q) for the
process {U(t,T)}.

Proof. We multiply (1.2) by —~G,u and integrate over Q. After some standard transformations
we obtain

1d
5 21 O15y0) + BIGH B2
(3.9)

< f | (@), Acu(®)) + 1P (F ), A, u(t))|dX +f (g, Gou(t))dX.
Q Q

Without loss of generality, we may assume that f(0) = 0. Otherwise we can replace f(u)

by f (u) = f(u) — f(0). The function f satisfies the same conditions with modified constants
Ci (i=0,1,2,3),because |f(0)| < C, (see (1.4)). Hence, since f(u(t))]aq = 0, we get

N1 m
[ sunax =33 [ s )—dX

k=1 i=1

N izj‘ af’ ou/ 6u'
ko1 inl j=17 2 aul an aX
(3.10)
Ny
ou ou

- Fu(1t) —— >dX

[ (Fo05x %

N ou 2

<G, X, dX Cgf |V ul“dX,

where we have used condition (1.5). Similarly, we have

f |x|*° (f (u), Ayu(t))dX < c3f x| |V yu|*dX. (3.11)
Q Q
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Hence
fQ (F(), Au(t))dX + fg e (f (), Agu(t)) < Collu(®)]y - (3.12)
By the Cauchy inequality we have
f (g, Gsu(t))dX < L gl 2 + E||Gsu(t)||2z . (3.13)
o = 2pl8llue 3 L2(Q)
From (3.9)—(3.13) we obtain
d 2 2 2 1o o2
a”u(t)llgé(g) + ﬂ”Gsu(t)”LZ(Q) < 2C3”u(t)||gg)(g) + B”g"LZ(Q)/ (314)
thus,
d 2 2 2 Ty 2
a”u(t)ngé(g) + “”u(t)llg(l](g) < 2C3||u(t)”5(1)(9) + B”g”LZ(Q)/ (315)
where a = fA;. Multiplying (3.15) by (t — 7)e* and integrating from 7 to t, we obtain
t t
at 2 as 2 t-7 as 2
(t = 7)elullyq) < QCs(t-7) + 1)f e [u(s) 5y s + 5 J. e”||g(s)| 20 ds
T -
(3.16)
Multiplying (3.3) by ae* and integrating from 7 to ¢, we have
t t s
as aT 2C Q 24 ar
a L e ||u(s)||H2‘2(Q)ds <a(t-T1)e ||uT||i2(Q) " 2{' |e ty foo J‘oo e ||g(r)||i2(9)dr ds.
(3.17)
Now, from (3.5) we get
4P 2 ! 2 3.18
E”u“LZ(Q) +ﬁ||”||§(l)(g) < E”g(t)llLZ(Q) + 2C1|Q|' ( : )
Multiplying this equation by e and integrating from 7 to t, we deduce that
2 ' 2
eut ||u(t) ”Lz(Q) + ﬂ J‘T e“s ||u(s) ||S(1](Q)d5
(3.19)

t t

2
e |lg) |l 2qds + af e“s||u(s)||i2(g)ds.

T

2C11Q) 1
< e |lu 2 +—eat+_
< e llurl gy + .

T
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Using (3.17), (3.19) becomes

t
2 2
)]y + B I oy
T

(Co +C1)|Q
a

< e lur||f o) + e +a(t —7)e" ||urlf2 0 (3.20)

]' ! aT ! ° ar
o e ls@ s [ e gl gdr s

Substituting (3.20) into (3.16) we obtain

1 2C 1
21 < *ll(t*T)( - 3ip > 22
””(t)llsn(g) <e 2C3 + 5 + 5 (t-71)+ ﬂi(t = lurllizq)

1 >C0+C1 1

1 a ! « 2
+ <2C3 ti o P Q| + a_ﬁ<2C3 +a+ ;)e tfwe 5||g(s)||L2(Q)ds

1 1 —at ! ° ar 2
+ B<2C3 + ;)e JL Jl e ”g(T)”LZ(Q)deS
(3.21)

Hence we get (3.8) with C = C(, Co, C1, C3, A1).

Let r2(t) be the right-hand side of (3.8), and let By(ro(t)) be the closed ball in S{(Q)
centered at 0 with radius ry(t). Obviously for any @ € D and any ¢ € R, by (3.8) there exists
Ty = To(@) < t such that the solution u with initial datum u, € 9(7) at time 7 satisfies
lu®llsya) < ro(t) forall T < 7; that is, B = {Bo(ro(t)) : £ € R} is a family of bounded

pullback ®-absorbing sets in S}(<Q). O

From the above lemma we deduce that the process {U(t, T)} maps a compact set of
Sp(Q) to be a bounded set of Sj(Q), and thus by Proposition 2.1, the process {U(t,T)} is
norm-to-weak continuous in S}J(Q). Since {U(t,7)} has a family of pullback ®-absorbing
sets in S{(Q) and the embedding S)(Q) — L*(Q) is compact, we immediately get the
following.

Theorem 3.4. Under assumptions (H1)—(H3), the process {U(t, T)} associated to problem (1.2) has
a pullback D-attractor in L2 (Q).

4. Some Further Results in the Gradient Case

In this section, instead of (H1)—(H3), we assume that

(H1bis) a = pI,,, where I, is the unit matrix and f > 0;
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(H2bis) f satisfies (H2) and f(u) = grad,F(u) = ((0F/0u')(u),..., (0F/du™)(u)), where
F: R™ — Ris a potential function satisfying

Ci|ulP = Co < F(u) < Co|ulP +Co, Vu e R",

(4.1)
with Cy, Ca, Co being positive constants
(H3bis) g € W2 (R, L? (Q)) satisfies
0 2 2
f eat<”8(t)”L2(g) + ”g,(t)”]LZ(Q)>dt < oo, (4.2)

where a = ;.

The aim of this section is to prove that the pullback ®-attractor obtained in Section 3 is more
regular and has a finite fractal dimension.

4.1. Existence of a Pullback ®-Attractor in S(l)(Q) NP (Q)

Denote by R the set of all functions r : R — (0,+c0) such that lim;_, _,e'f'r?(t) = 0
and denote by D the class of all families = {D(#) : t € R} C B(Sé(Q) N 1LF (Q)) such
that D(t) ¢ B(r(t)) for some r(t) € R, where B(r(t)) is the closed ball in So(Q) N 17 (Q)
with radius r(t). Thanks to the above gradient structure, one can prove the existence of a
pullback D-attractor, not only in L?(Q), but also in the space S})(Q) N 17 (Q) for the process
{u, )}

We first prove the following.

Lemma 4.1. Under assumptions (H1bis)-(H3bis), the solution u of problem (1.2) satisfies the
following inequality for all t > :

t
—a(f— — 2
”unéé(g) + ”u”ﬁip(g) S C<e alt T)”u”r”]Iz‘Z(Q) + 1 +e atJ. ear”g(r)”LZ(Q)dr)/ (4'3)
-0

where C = C(Co,Cl,El,Eo,ﬁ, M). This implies that there exists a family of pullback D-absorbing
sets in S(l)(Q) NI (Q) for the process {U(t,T)}.

Proof. Using (3.5) with a = 11 and the fact that ||u||§(1](g) > )L1||u||iz(g), we have
d p 2 2
1B+l + Sl ) + 2l gy <2Col + S [I8O a4
thus
d at 2 Cet 2 2 P < 2CH Q)™ 2 at ¢ 2 (4.5)
2 (el + Ce (Bllullye) + 21l ) < 2ColRe™ + Ze )22 - :
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Integrating from 7 to 5,7 < s <t + 1, and in particular, we have

S

C 2 2
e ()7 2qy < e llutellfaqy + 270|Q|e“s e f e [|g (M) |2 dr- (4.6)

T

Furthermore, multiplying (4.5) from s to s + 1 and using (4.6) we obtain

s+1
[ e (PR + 20 o )l

s

C0|Q| 2 s+1 5
< eus”u(s)”I{z‘Z(Q) + 2—a e™ + p e“’||g(r)||L2(Q)dr
S

(4.7)
2 as o ar 2 ° ar 2
<C euT||”T||L2(Q)+e + € ||”(T)||L2(Q)+ e ||”(T)”L2(Q)
T

s

t
2 2
< C<e“TI|uTI|L2(Q> +e +f e“’||u(r)||L2(Q)>.
T

By assumption (H2bis), then (4.7) becomes

t

s+1
f €“r<ﬁllu(r)||§5(g>+2F(u(r))>drSC<6‘"IIur||iz<g>+eat+f e""llu<r>lliz<g>>- (48)

s T

Multiplying (1.2) by ou/0t and integrating over €2, we have

1d 1 1
2 2 2 2
Il + 3 (Pl + [ F0ax ) = [ (s(0,u)ax < 5@+ 51150y

(4.9)

thus
e (Pulsgo +2 [ Fnax) <o (Bludlsye +2 [ Fw)ax) + g0l a
(4.10)

Using (4.8), (4.10), and the uniform Gronwall inequality, we get

t
! (Pt By, +2 | Fue)ax) < c<ew||m||%m) cers [ g(r)||i2<g)dr>.
T
(4.11)
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Now, using (H2bis) once again we have from (4.11) that

T

t
2
e (Blu(t) 0 + 20l @) < C(e”nufniz(g) tet f e“’llg<f>llu<g>dr>- (412)

Thus we obtain (4.3) with a suitable positive constant
C=C(Co,C1,C1,Co, ). (4.13)

Hence, by the argument as in the end of the proof of Lemma 3.3, we obtain a family of
bounded pullback ®-absorbing sets in Sj(Q) N L7 (Q). O

To prove that the process {U(t, T)} is pullback ®-asymptotically compact in P (€2), we
need the following lemma.

Lemma 4.2 (see [8, Lemma 3.6]). Let {U(t, T)} be a norm-to-weak continuous process in 1* (L)
and 1P (Q), and let {U(t, T)} satisfy the following two conditions:

() {U(t, 7)} is pullback D-asymptotically compact in 1> (Q);

(ii) for any € > 0, B €D, there exist constants M (e, ﬁ) and Ty(g, ﬁ) < t such that
1/p
J‘ [Ut, myu <g, forany u, € B(t), T < 1p. (4.14)
QU (t,T)ur|=M)

Then {U(t, )} is pullback D-asymptotically compact in LP (Q).

Theorem 4.3. Under assumptions (H1bis)—(H3bis), the process {U (t, T) } associated to problem (1.2)
has a pullback ®-attractor in 1P (Q).

Proof. It is sufficient to show that the process {U(t,7)} satisfies the condition (ii) in
Lemma 4.2. We will give some formal calculations, a rigorous proof is done by use of Galerkin
approximations and Lemma 11.2 in [15].

Let M be a positive number, we will write u > M (or u < —M) as any component of u
is greater than or equal to M (or as any component of u is less than or equal to —M).

Using (1.3), (1.4), and for u > M large enough, we have

(f(w),u=M) > (f(w),u) - Mv/m| f (u)]|

> Cslulf - Colul™ (4.15)

C Ci  ~
> o MP+ Lju-MP, with0< =X <G,
2 p 2

because limyy —, o0 (Calul? = ColulP™) /((Ca/2) |t = M| + (a/p)|u — M) > 1.
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Multiplying (1.2) by (u — M), |(u — M), |P~? and integrating over Q we obtain

P N L TR e
! fg(uzM) bt (<aVy(u - M), Vy<(u = M)fu - M|p‘2>>>dx (4.16)

+f lu— MP2(f(u),u— M)dX =f (g(t),u—- M)dX,
Qu>M) Q

where
u-M ifu>M,
(u-M), = (4.17)
0, in other cases.
On the other hand, by the Cauchy inequality, we have
p-2 p-1 Cy p2, 1 0
|(8(®), (= M))lu = MP2| < Ju- MPg(t)] < S - MPP? + sc; I8l (4.18)
which implies that
p-2 C4 2p-2 1 2
(g, u—M)ju-MP~=>-—u-M*7* - —|g|". (4.19)
2 2Cy
Hence, from (4.15) and (4.19), we have
_ a 1
= MP2[(f(u),u— M) + (g(t),u— M)] > = MY - o g]”. (4.20)
From (4.16), using (4.20) and noting that
f <<an(u - M), Vx<(u ~ M)|u- M|P—2>)>dx
Qu>M)
(4.21)
+ f |x|25<<avy(u ~ M), vy((u ~ M)|u- M|P—2))>dx >0, a=pl,,
Qu>M)
we have
LTy +alu- M| <L sl (4.22)
dt L(Q(uzM) wvewm) = 3¢, 181l e '
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Now, multiplying the above inequality by (t — 7)e™ and integrating from 7 to t, we get

(t - T)eat”u - M”]IPAP(Q(uzM))

t t
p 2
: f €™ llu = Ml g nay 45 + T L e llg©)liads (4.23)

T

t t
<[l et 0 [ U

T

Then

1 pe—at t 5
1= M) ) < Toe ‘”f e[l gy s + T f )| g(5) |12y - (4.24)
T 4

—00

On the other hand, integrating (4.5) from 7 to ¢, we have

t t
CQ 1 2
f e””“(s)”ip@)ds < e””u‘l'”iz(g) + 27|Q|eut t2 f eus”g(s)”LZ(Q)dS' (4.25)

T T

Therefore, substituting (4.25) into (4.24), we obtain

efa(tf'r) ) 1 1 ~ t 5
”uT”]LZ(Q) + P + —.¢ atf eaS”g(S)”LZ(Q)ds .
-

t—71

P
”(u_M)+”Lp(9) < C< T o

(4.26)

Hence, for any ¢ > 0, there exists M; > 0 and 71 < t such that for any 7 < 71 and any M > M;,
we have

f |u — MPdx < e. (4.27)
Qu(t)=M)

Repeating the same step above, just taking (#+ M) _ instead of (u—M),, we deduce that there
exist M, > 0 and 7, < t such that for any 7 < 7, and any M > Mo,

f lu+ MPdx <e, (4.28)
Q(u(t)<-M)

where

u+M, u<-M,
(u+ M)_= (4.29)
0, in other cases.
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Let My = max{M;, M,} and 7y = min{7y, 2}, we obtain

f (lu| - M)Pdx <e forT<m, M > M,. (4.30)
Q(Ju|=M)

So, we have

J. |ulPdx = f ((lu] = M) + M)Pdx
Q(ju[>2M) Q(ju[>2M)

< ovt <f (lu| - M)Pdx + f M’”dx>
Q(ju|>2M) Q(jul>2M) (4.31)
<2rt f (lu| = M)Pdx + f (lu| = M)Pdx
Q(lul=M) Q(Jul>M)
< 2P¢.
This completes the proof. O

To prove the existence of a pullback ®-attractor in S(l)(Q) NL? (Q), we need the folowing
lemma.

Lemma 4.4. Under assumptions (H1bis)-(H3bis), for any t € R and any bounded subset B C 1> (Q),
there exists a positive constant T = T(B,t) < t such that

t
()2 < C<1 +e J: e (1) 17 oy + ||3’(S)||i2<g>>ds>' (432)

forall T <T(B,t) and all u; € B, where C > 0 is independent of t and B.

Proof. We give some formal calculations, a rigorous proof is done by use of Galerkin
approximations and Lemma 11.2 in [15].
Differentiating (1.2) in time and setting v = u;, we get

vy —aGgv + f'(u)v = ¢g'(r). (4.33)

Multiplying this inequality by e*" v and integrating over Q and using (1.11), we get

1d 2 2 1 a 2 /
EE<€MHUHLZ(Q)> +peurllv||gé(g) +e" fQ (f'(w)v,v)dX < EewHU”LZ(Q) +e Q(g (r),v)dX.

(4.34)
By the Cauchy inequality and using (1.5), we obtain that
d( a a a ' 2
E<e "ol2q)) < 2Cs +a+ e [0 g + e |8/ |Faq)- (4.35)
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Let T < s <t-1.Using (3.5), we have

d 1 2
(B + Bl + 21l gy < 2 [8(5) ey + Cor®™lQ (436)

By (H2bis) we then infer from the above inequality that

d a a @ @ 2 @
%<3 s”””]%}(g)) +C<ﬂ3 s”u“ég(g) +2e ngF(u)dX) < C<e S”g(S)HLZ(Q) te S)‘

(4.37)
Integrating this inequality from r to r + 1, we obtain
r+1 )
L <ﬁe ”””55(9) +2e fg F(u)dX) ds
(4.38)
- ) r+1 s 5 s
< C<e (7)1 + L (e lIg(s)IF 2 + € )ds>.
On the other hand, integrating (4.36) from 7 to ¢, we obtain
a ar 1 as 2 Col€2 a
e t||u||%Lz(Q) <e ||uT||%Lz(Q) - f_me 8 ()| 2y s + CL le t. (4.39)
So, substituting (4.39) into (4.38), we deduce
r+1
f <ﬁe“s||u||§1<g) +2e% f F(u)dX) ds
r 0 Q
t (4.40)
aT as 2 a
< C<e ||uT||%L2(Q) + foo e ||g(s)||L2(Q)ds +e t> <o, Vrel[rt-1].
Now multiplying (1.2) by e*"v and integrating over €, we have
ar 2 d ar 2 ar
e |[vllizq) + 5 ( Pe ”””Sl(g) +2e F(u)dX
dr 0 Q
(4.41)

< cx(ﬂe“’”u”éé@) +2e fg F(u)dX> +e”[|8(1) 122

So applying the uniform Gronwall inequality, we get

t
ﬂe“’||u||§é(g) +2e fQ F(u)dX < c<e”||uT||iz(Q) +e ¢ f || g(s)||§2(g)ds>. (4.42)
—0
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Integrating (4.41) from r to r + 1 and by (4.40)—(4.42), we have

r

r+1 t
as aT a as 2
f e ||U”iz(9)d5 < C<e ||uT||%L2(Q) +e™ +f e ||g(s)||L2(Q)ds>. (4.43)
Therefore, by (4.35), (4.43), using the uniform Gronwall inequality once again, we get

¢
e“t||v||iz(g) < C<e“TIIuTlliz(9) +e + f eus<||g(5)”i2(g) + ||g'(5)||i2(g)>ds>‘ (4.44)
—0o0

Hence we get (4.32). O

Theorem 4.5. Under assumptions (H1bis)—(H3bis), the process {U (t, T) } associated to problem (1.2)
has a pullback ®-attractor in S}J(Q) N L7 (Q).

Proof. By Lemma 4.1, {U(t, T)} has a family of bounded pullback ®-absorbing sets in S(l)(Q) N
L7 (Q). It remains to show that {U(t,7)} is pullback ®-asymptotically compact in S(l)(Q) N
L7 (Q), that is, for any t € R, any Be 9, and any sequence 7, — —oo, any sequence u,, €
B(t,), the sequence {U (t, T,)ur, } is precompact in S(l)(Q) N7 (). Thanks to Theorem 4.3, we
need only to show that the sequence {U (t, T,,) 1+, } is precompact in S(l)(Q).

Let u,(t) = U(t, 74)u,,. By Theorem 3.4, we can assume that {u,(t)} is a Cauchy
sequence in 2 (Q). We have

et (£) = st (D) I3

= ~(Goun(t) = Gsupm (), un(t) — um(t))

= —<%(t) - dg—f(t),un(t) - um(t)> (D) = f (), () = um(t))  E4)
L) - Lt 1en®) = sy + Collitn ) - 1um @)
Sllae T gy e T L

where we have used condition (1.5). Because {u,(t)} is a Cauchy sequence in L. (Q) and by
Lemma 4.4, one gets

[t () = um(Dllsyq) — 0,  as m,n — oo. (4.46)
The proof is complete. O

4.2, 1#72(Q) and S}(Q2)-Boundedness of the Pullback D-Attractor

First, we prove the existence of a family of pullback ®-absorbing sets for process U(t, T) in
L772(Q).
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Proposition 4.6. Under assumptions (H1bis)-(H3bis), then for any t € R and any bounded subset
B C 1.2(Q), there exists a positive constant Ty = To(B, t) < t such that

t
N R Tl ey B (P R FIET PR I

forall T < 7y and all u, € B, where C > 0 is independent of t and B.

Proof. Multiplying (1.2) by |u[P~*u and integrating over Q we obtain

[ [(awn, v 2u))) = (a9, 9, (1 20) ) )X+ (£, 2ax

= _ fg <ut, |M|P—2u> ax + J.Q <g(t), |u|p—2u> AX.
(4.48)

By the Cauchy inequality, (1.3) and note that

Lz[((avx”f Vo (ul?u))) + x((aVyu, v, (juP2u) ) )|[dX 2 0;  here a = pl,,

(4.49)
then we get
2p-2 1 1 2 Cr o op2
Cl ||u||LZp72(Q) S C_l ||ut||I[2‘2(Q) + C_l ”g(t) ”]LZ + 7 ”u”H‘prZ' (450)
Hence, by (4.32) we deduce from (4.16) that
Ci, 2p-2 1 . 2 , 2 1 2
7””“@:—2(9) < C_1C<1 te tf_m e s(llg(s)”LZ(Q) +lg (S)||L2(9)>d5 + G ”g(t)”LZ(Q)'
(4.51)
Therefore, we get (4.47) and the proof is complete. O
And now, we denote by SS(Q) the closure of (C3°(Q))™ in the norm
1/2
lulls2y = (f <|Axu|2 + |x|25Ayu|2>dX> . (4.52)
Q

It is easy to see that S3(Q) is a Banach space endowed with the above norm. We now prove
the Sg(Q)-boundedness of the pullback ®-attractor.
First, we recall a lemma (see [15]) which is necessary for our proof.
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Lemma 4.7. Let X,Y be Banach spaces such that X is reflexive, and the inclusion X C Y is
continuous. Assume that {u,} is a bounded sequence in L*(t,T; X) such that u, — u weakly in
Li(t,T; X) for some q € [1,+00) and u € C([7,T];Y). Then, u(t) € X forall t € [1,T] and
lu®)llx < sup,s;llunlli=(7,T; X), forall t € [7,T].

Let u,(t) be the Galerkin approximations of the solution u(t) of (1.2) then by Lemma 4.7
with noticing that u, = U(t, T)upr — u = U(t, T)u, in L*(7,T;S}(Q)) and the inclusion
S3(Q) C S5(Q) is continuous, we only need the estimation on u(t) = U (t, T)ux.

Theorem 4.8. Under assumptions (H1bis)-(H3bis), the pullback ®-attractor A ={A{t):teR} in
Se(Q) NP (Q) of the process {UL(t, T)} is bounded in S3(Q). More precisely, for any T < Ty < T, the
set Urer, 1, A(t) is a bounded subset of SA(Q).

Proof. Let us fix a bounded set B C L?(Q), T € R, ¢ > 0,t > 7 + € and u, € B. Multiplying the

first equation in (1.2) by Gsu and integrating over €, we have

f (aGsu(r), Gsu(r))dX = J. (u,, Gsu(r))dX +I (f (u(r)), Gsu(r))dX
Q Q Q
(4.53)
- fg(g(r),Gsu(r))dX.

By the Cauchy inequality we have

- f (80, Gou(r))dxX < %IIg(r)IIim) + §||Gsu<r>||iz<g>,
(4.54)

! 2 !
fQ (i), Gou(r))dX < B”ur”éé@) + gucsu(r)uiz@).

Using (3.12), (1.12), and (4.54), then from (4.53) we get

200
ﬂlleu(r)”iz(Q) < C3||u(r)||§(1](g) + B(””r”iqg) + ||8(T)||i2<9)> + g”Gsu(T)“iZ(Q)
2 /0012 2 p 2
=Cs J.Q(u(r)' ~Ggu(r))dX + E<”ur”L2(9) + ”g(r)”]LZ(Q)> + Z”GS”(T)”LZ(Q)

c 2 2,002 2 2 p 2
< T”u(T)HLZ(Q) + E””r”u}(g) + E”g(T)HLZ(Q) + EHGS”(”)HLZ(Q)‘

(4.55)
Hence,

2C2 2., 2
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Differentiating the first equation in (1.2) in time f and setting v(r) = u/(r), then multiplying
by v(r) and using (1.11) we get

3 PO + BRI 0) <= [ (Futwom, o) dX + [ (g, 00)dx |
(4.57

1 1 2
< Gl It + 510 + 5118/ ) lz)-
Hence,

d ,
oM@ < @Cs + Dlo)E2@) + 18020 (4.58)

Integrating the above inequality, we have

t t
||v(r>||i2(g>snv<s>||iz<g>+(2cs+1)f /2||v(9>||iz<g>+f /leg'<9>||i2(g>d9, (4.59)

T+E

forallT+e¢/2<s<r<t
Now, integrating with respect to s between 7 + ¢/2 and r, we get

€ 2
(r=7-3)ll®l:q

:
<[ s

T+e/2

t t
£ 2 £ ! 2
+C+)(r-7-3) LE/Z lo@)F 28+ (r-7-5) LE/Z 18/ ©O)]]72() 40
t t
£ 2 & ’ 2
<(@G+D(t-r-3)+1) LH/Z o) F2@yd0 + (r-7- ) sz 18" ©) 2 6.

(4.60)

for all 7 + £/2 < r < t, and in particular, for all » € [T + ¢,t] we have that (from the above
estimate)

t

()20 < g((zc3 +) (-7~ g) +1) f

€ T+e

t
P ||U(9)||i2(g)d9 + f llg'(©) ”]Iz}(Q)dQ‘
T
(4.61)

On the other hand, multiplying the first equation in (1.2) by v(r) and integrating over Q, we
deduce that

d
o220y + gauuw@é@ v fg (f(u,0))dX < L(g, v)dX, (4.62)
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where we have used (1.11). Using the Cauchy inequality and condition (H2bis), then (4.62)
becomes

d
Il + (ﬂllu(r)lléé(g) +2 fQ F(u(r))dX> <lg™)Iz2)- (4.63)

Integrating from 7 + /2 to t we have

2

ft [2(O) 120 46 + Bllue(t) I3 +2 fQ F(u(t))dX < p||u<T + g)

T+e/2 SH(®)
t (4.64)
+2 fg F(u(r+5))ax+ fm/z 1O
and hence because of (4.1), we get
t _
LE/Z [0(0) 1122y < p|u (7 + %) ||;(9) +2Co|u(r + g) ;@)
(4.65)

t
+ 4Tl +f 1O
T
Now, substituting (4.65) into (4.61) we deduce
2 2 £
lo(@)I1Z) < - (@Cs+1)(t-7- §> +1)
£
» <p||u<T L5

t
2 2
[ 5 @I e

2

si@

) ¥ 262”11(7- + g) ”;(g) +4Co|Q| + ﬂ llg(©) ||i2(g)d9>

(4.66)

for all r € [T + ¢, t]. Finally, from (4.66) and (4.56) we obtain

8
pre

(b5

SHRQ)

2
”Gsu(r)”]LZ(Q) <

<(2C3+l)<t—7— g) +1)

+ 2@”1{(7 + g) ;(g

t
. 4Co|Q| + f lg(®) ||§2(Q)d9>

2 (., 2
+3 f 18/ O)17 2y d0 + 7 ()2 + 208N 2y ), ¥r € [7+et].
(4.67)

Because ||u|| |G5u||iz(9) then from (4.67), the proof is complete. O

2 — |
SHQ)
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4.3. Fractal Dimensional Estimates of the Pullback ®-Attractor

Theorem 4.9. Under assumptions (H1bis)-(H3bis), the process U(t, T) possesses a pullback D-
attractor oy 2(q) which has a finite fractal dimension in L* (Q) and

, 8- 25 2 11!

where 6 <1,k € N, and Cs in (1.5).

Proof. Let Hy = spanfey, ey, ..., ex} C [?(Q) and Py : L?(Q) — Hj be the orthogonal
projection, where ey, e, ..., ¢j, ... are the eigenvectors of the operator —G; corresponding to
eigenvalues {)L]-}‘;Zl suchthat0 <Ay <l <A3<---<1j<---and\j — +oo0asj — +oo.
From (4.3), we can easily show that there exists a uniformly pullback absorbing set B
of process U(t, T) in S(l)(Q). We set uy (t) = U(t, T)uy, and up(t) = U(t, T)up, to be solutions
associated to problem (1.2) with initial datum u;,, u; € B.
Let w = u; — uy, because u1, uy being two solutions of (1.2) then we have

aa—‘f —aGyw + f(uy) - f(uz) = 0. (4.69)

Multiplying (4.69) with w and integrating over Q then we have

%nw(t)niz(g) + Bl g + f () = (), w0)dX <0, (4.70)

NI =

here, we have used (1.11).
Using (1.5) then we have

d

ZiI0 O ) < 2Cs 0B q)- (471)
Thus,

lw®)I}2q) < €W (T)|} (- (4.72)

Let w(t) = w1 (t) + wy(t) where w; (t) := Pew(t) and wy(t) := (I — Pr)w(t). Therefore, by (4.72)
we have

[w01(B)F2) < €W (T)I[} 2y (4.73)
Now, taking the inner product of (4.69) with w; in L (Q), we have

%sz(t)ﬂiz(g) +p”w2||§})(g) < —J.(f(u1) - f(u2), w,)dX. (4.74)

N —
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Using the Holder inequality and (1.4), we have

[ (Pl = ), w)ax < [ |7 - utu)|wnldx
Q Q

= (L |f ) —f(uz)lzalx>1/2<fQ |w2|2dX>1/2
< C(,[Q <1 e |u2|2p—2>dX>1/2||w2||L2(Q) (4.75)
1/

2p-2 2p-2 2
<C(1+lml s g + el sg) Il

2p-2 2p-2
< C(1+ i g + el o)) lollz)-

Therefore, by (4.74), (4.75), and Proposition 4.6 we obtain

d 2 2
a ”ZlJz(t) ”LZ(Q) + ﬂ”w2llgé(g)

N —

t
< C<1 + ||g(t)||i2(g) +e ™ f, 3a5<"3(5)"i2(g) + ”8’(5)”112}(9)>d5> l[w(®)ll2-
(4.76)

Because ||wz(t)||§(1)(9) > Ak||wz(t)||iz(g), then (4.76) implies that

d
Ellwz(t)lliz@) + 2ﬁ)tk||w2||i2(§2)

t
< 2C<1 + ”g(t)”iZ(Q) +e ™ f_ eas<”g(5)”i2(g) + ||g’(5)”i2(g)>d5> o2
(4.77)

Now, multiplying (4.77) by ef* and integrating from 7 to t, we get

t
”w2(t)”i2(g) < e*ﬂlk(t—r)“w(ﬂ”iz(g) + 2Ce*ﬂ1ktJ‘ e Phs

T

2 at [* ar 2 T 4.78
<[ s e [ e (el 1 )] 47

X ”w(S)HLZ(Q)dS'
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Using (4.73) we have

t
2 — — 2 _ _
nwwmmmSem“ﬂwwmmm+qumwmwmﬁem%@“ﬂ

Now, because

X

T

2 —as ° ar 2 ’ 2
L+ g i@ +e f_ e <||8(T)||Lz(g>+||g(r)||Lz<Q>>dT]dS

t
< e PO o) g + Cllo(m) e [ e
—0o0

X

< efmk(H)”w(T)”iZ(Q) + Cllw (7)o e

X

Ll e+ e [ e (I8N + 18O )] ds
Cs(t-7)

[ e[ sl e s [ emne=
ﬂ)tk L2(Q) B

—0o0 [*e]

(e (s + 18 0 ) )]

¢
J. e”‘s”g(s)”iz(mds < +o0,
—00

we can see that, for all t € R (see, e.g., [6, Lemma 3.6]),

and we have

¢
foo e Ph(t=s) ||g(s)||i2(9)ds — 0 as k — +oo,

t s
= =s) ,—pPris ar 2 ! 2
f, I (f e <||g(r)||L2(Q)+||g(r)||L2(Q)>dr>ds

t t
< <J‘ e_ﬂ)tkt+ﬂ(/\k—/\1)sds> (I eur<||g(r)||i2<g) + ||g’(r)||iz(g)>dr>

e

efat

t
p 2 ! 2
a f_me s<”g(r)”]L2(Q) + g (r)||L2<Q>>dT'

25

(4.79)

(4.80)

(4.81)

(4.82)
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Thus, for any t € R, from (4.82) we have

t S
[ emeaers([ e (g0 + I8 Ol )dr)ds — 0 ask— o
(4.83)

Combining (4.81), (4.83) and taking Ty = t —7 = 1, we get k is sufficient large then from (4.79)
we deduce

w2 ()72 < Bllw(T)[F2qy, here 0<6<1. (4.84)
From (4.73) and (4.31), we have
w01 (B)1F2c) < bollw(D)I2qy,  [w2(B)F2q) < 6ll0(T)F2q), VEER (4.85)

Here, Iy = €25, 0 < 6 < 1; Ty = 1. Thus, the process U(t, T) associated to (1.2) satisfies all
conditions of Theorem 2.10. This completes the proof. O
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