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We introduce a new class of mappings called quasi-ω-confluent maps, and we study the relation
between these mappings, and some other forms of confluent maps. Moreover, we prove several
results about some operations on quasi-ω-confluent mappings such as: composition, factorization,
pullbacks, and products.

1. Introduction

A generalization of the notion of the classical open sets which has received much attention
lately is the so-called ω-open sets. These sets are characterized as follows [1]: a subset W of
a topological space (X, τ) is an ω-open set if and only if for each x ∈ W , there exists U ∈ τ
such that x ∈ U and U − W is countable. One can then show that the family of all ω-open
subsets of a space (X, τ), denoted by τw, forms a topology onX finer than τ . Using this notion
of ω-open sets, one can then define notions such as ω-compact and ω-connected sets whose
definitions follow closely the definitions of the related classical notions. For example, a space
X is called ω-connected provided that X is not the union of two disjoint nonempty ω-open
sets. AndX is said to beω-compact if everyω-open cover ofX has a finite subcover. For more
information regarding these notions and some recent related results, see [2–4].

Recall that a subset K of a space X is said to be a continuum if K is connected and
compact. Using this idea of a continuum, Charatonik introduced and studied the idea of a
confluent mapping between topological spaces [5] as follow: A mapping f : X → Y is said
to be confluent provided that for each continuumK of Y and for each component C of f−1(K),
we have f(C) = K.

In [6], motivated by Charatonik’s work, we have introduced the notion ofω-confluent
mappings and studied its basic properties. In particular, we say a spaceX is anω-continuum
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if it is ω-connected and ω-compact at the same time, and a subsetK of a space X is said to be
ω-continuum if K is ω-connected and ω-compact as a subspace of X. Moreover, a mapping
f : X → Y is said to be ω-confluent provided that for eachω-continuum K of Y and for each
component C of f−1(K), we have f(C) = K.

In this paper, we are interested in the further generalizations of the work of Charatonik
in the context of ω-open sets and the idea of quasicomponents. Recall that a quasicomponent
of space X containing a point p ∈ X is the intersection of all nonempty clopen sets
in X containing p [7]. In particular, we will introduce the notion of quasi-ω-confluent
maps and study its relation with the classical mappings such as confluent, ω-confluent,
and quasiconfluent maps. We also study operations on such mappings like compositions,
pullback of quasi-ω-confluent, factorizations, and products.

2. Quasi-ω-Confluent Mappings

In this section, we introduce and study a new form ofω-confluent mapping, which is a quasi-
ω-confluent mapping. Throughout this paper, all mappings are assumed to be continuous.

Now, we introduce the following notion.

Definition 2.1. Amapping f : X → Y is said to be quasi-ω-confluent (resp., quasiconfluent) if
for eachω-continuum (resp., continuum)K in Y and for each quasicomponentQC of f−1(K),
we have f(QC) = K.

First, we need the following theorem.

Theorem 2.2 (see [6]). Let X be a topological space. Then,

(1) every ω-connected subset K of X is connected,

(2) every ω-compact subset K of X is compact,

(3) every ω-continuum subset K of X is a continuum.

Proposition 2.3. (1) Every ω-confluent mapping is quasi-ω-confluent.
(2) Every quasiconfluent mapping is quasi-ω-confluent.

Proof. (1) Suppose that f : X → Y be an ω-confluent mapping, letK be any ω-continuum in
Y , and let x be any point in f−1(K) andQCx be the quasicomponent of x in f−1(K). Then, any
component Cx of x in f−1(K) contained in the quasicomponents QCx, or Cx ⊂ QCx. Thus,
f(Cx) ⊂ f(QCx). Since f is anω-confluent, then f(Cx) = K. This implies,K ⊂ f(QCx). But we
have QCx ⊂ f−1(K). So, f(QCx) ⊂ K. Thus, f(QCx) = K. Therefore, f is quasi-ω-confluent
mapping.

(2) Let K be any ω-continuum in Y and QC be any quasicomponent of f−1(K). Then,
K is a continuum in Y by the Theorem 2.2(3). Since, f is quasiconfluent. So that, f(QC) = K.
Thus, f is quasi-ω-confluent mapping.

Remark 2.4. It is clear that every ω-confluent (confluent or quasiconfluent) mapping is quasi-
ω-confluent, but the converses are not necessarily true, as shown by the following examples.

Example 2.5. LetK = {1/n : n is a positive integer}, D = K × [0, 1].
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(a) Let X = D ∪ {(0, 0), (0, 1)} subspaces of �2 under the usual topology τu, and Y =
{0, 1}, with the topology τY = {φ, Y}. Let f : X → Y be the mapping defined by

f
(
x, y
)
=

⎧
⎨

⎩

0, for
(
x, y
) ∈ {(0, 0), (0, 1)},

1, for
(
x, y
) ∈ {k} × [0, 1], for each k ∈ K.

(2.1)

Then, f is quasi-ω-confluent but not quasiconfluent. Since, if we take the continuum K =
{0, 1} in Y , then the quasicomponents of f−1(K) are {(0, 0), (0, 1)} and D. So, f({(0, 0),
(0, 1)})/=K, and f(D)/=K.

(b) LetX = D ∪ {(0, 0), (0, 1)}∪ ([0, 1]× {0}) subspaces of �2 under the usual topology
τu, and Y = {0, 1}, with the topology τY = {φ, Y}. Let f : X → Y be the mapping defined by

f
(
x, y
)
=

⎧
⎨

⎩

0, for
(
x, y
)
= (0, 1),

1, otherwise.
(2.2)

Then, f is quasi-ω-confluent, but not confluent. Since if we take the continuum K = {0, 1} in
Y , then the components of f−1(K) are {(0, 1)} and X\{(0, 1)}. So, f({(0, 1)})/=K, and f(X \
{(0, 1)}/=K.

Example 2.6. Let X = {p, q, r} and Y = {a, b, c} with topologies τ = {φ,X, {p}, {q}, {p, q}} and
σ = {φ, Y, {a}} defined on X and Y , respectively. Let f : X → Y be a mapping defined by
f(p) = a, f(q) = b, f(r) = c. Then, f is quasi-ω- confluent, but it is not confluent.

Remark 2.7. Quasi-ω-confluent does not imply ω-confluent in general, since the quasicompo-
nent containing p, QC(X, p) may be different from the component containing p, C(X, p), as
the following example shows.

Example 2.8. Let X = K × [0, 1] ∪ {(0, 0), (0, 1)} ∪ ([0, 1] × {0}) be a subspaces of �2 under
the usual topology τu, where K be as in Example 2.5, and let Y = [0, 1] with the topology
τind = {φ, Y, }. Let f : X → Y be the mapping defined by

f
(
x, y
)
= x, ∀(x, y) ∈ X. (2.3)

Then, f is quasi-ω-confluent, but f is not ω-confluent. Note that if we take the ω-continuum
K = [0, 1], then the components of f−1(K) are C1 = {(0, 1)} and C2 = X − {(0, 1)}. Thus,
f(C1)/=K and f(C2) = K.

The following diagram summarizes the relations between confluent mapping, quasi-
confluent mapping, and ω-confluent mapping with quasi-ω-confluent mapping.

confluent quasi-confluent

ω-confluent quasi-ω-confluent

The following theorem shows that under certain conditions, quasi-ω-confluent map-
ping will be ω-confluent.
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Theorem 2.9. Every quasi-ω-confluent mapping f : X → Y of a compact Hausdorff space X into a
Hausdorff space Y is ω-confluent.

Proof. Let K be any ω-continuum in Y and C any component of f−1(K). Then, by the
Theorem 2.2, K is continuum subset of Y . Since Y is Hausdorff, then K is closed in Y and
since f is continuous, then f−1(K) is closed in X, since X is compact Hausdorff space, so that
f−1(K) is compact Hausdorff space. Thus, the quasicomponents are connected and coincide
with components of f−1(K). Thus, f(C) = K. Therefore, f is ω-confluent.

Proposition 2.10. If X is hereditarily locally connected, then any quasi-ω-confluent mapping f :
X → Y is ω-confluent.

Proof. It follows that from the fact that in locally connected space, the components and
quasicomponents are the same.

Definition 2.11 (see [2]). A space (X, τ) is said to be ω-space if every ω-open set is open in X.
It is easy to see that in an ω-space that the continuum and ω-continuum sets coincide.

Proposition 2.12. If Y is an ω-space and if f : X → Y is a mapping of a compact Hausdorff space
X into a Hausdorff space Y , then the following are equivalent:

(1) f is confluent,

(2) f is ω-confluent,

(3) f is quasiconfluent,

(4) f is quasi-ω-confluent.

Proof. (1)⇒ (2). Obvious.
(2) ⇒ (3). Let f be an ω-confluent mapping, K any continuum in Y , and QC any

quasicomponent of f−1(K). Since Y is an ω-space, then K is an ω-continuum, since Y is
Hausdorff and X is compact Hausdorff, so that the components and quasicomponents of
f−1(K) are the same. Hence, f(QC) = K by assumption. Thus, f is quasiconfluent mapping.

(3)⇒ (4). It follows from Proposition 2.3(2).
(4) ⇒ (1). Let f is quasi-ω-confluent mapping, K ⊆ Y any continuum, and C be an

arbitrary component of f−1(K), since Y is an ω-space, then K is an ω-continuum in Y , since
X is a compact Hausdorff and Y is a Hausdorff. Then,C is a quasicomponent of f−1(K). Thus,
f(C) = K. Therefore, f is confluent mapping.

Theorem 2.13. Let f : X → Y be a mapping of zero-dimensional space X into space Y . Then, the
following are equivalent:

(1) f is an ω-confluent,

(2) f is quasi-ω-confluent.

Proof. (1)⇒ (2). Obvious.
(2) ⇒ (1). Let f be quasi-ω-confluent mapping, K ⊆ Y any ω-continuum, and

C any component of f−1(K). Since X is a zero-dimensional space, then it is totally
disconnected. Then the components of f−1(K) are coincide with quasicomponents. Thus, C
is a quasicomponent of f−1(K). Then, f(C) = K, by the assumption. Therefore, f is an ω-
confluent.



International Journal of Mathematics and Mathematical Sciences 5

Proposition 2.14. Let f : X → Y be a mapping of spaceX into zero-dimensional space Y . Then, the
following are equivalent:

(1) f is quasiconfluent,

(2) f is quasi-ω-confluent.

Proof. (1)⇒ (2). It follows immediately from the Proposition 2.3(2).
(2) ⇒ (1). Let K be any ω-continuum, and let QC be any quasicomponent of f−1(K).

Since Y is zero-dimensional space. Then, the connected subsets of Y are precisely the singleton
sets. Thus, the ω-continuum are coincide with continuum sets in Y , therefore, K is a
continuum in Y , so that f(QC) = K. Hence, f is quasiconfluent mapping.

Proposition 2.15. Let f : X → Y be any mapping. IfX is a hereditarily locally connected space, then
the following conditions (1) and (2) are equivalent, and the conditions (3) and (4) are equivalent:

(1) f is ω-confluent mapping,

(2) f quasi-ω-confluent mapping,

(3) f is confluent mapping,

(4) f quasiconfluent mapping.

Proof. Similar to the proof of Proposition 2.10.

3. Composition and Factorization of Quasi-ω-Confluent Mappings

In this section, we study the composition and factorization of quasi-ω-confluent mapping.
So, we need to recall the following theorem.

Theorem 3.1 (see [6]). Let f : X → Y and g : Y → Z be two ω-confluent mappings, where f is a
surjective. Then, h = g ◦ f is an ω-confluent mapping.

Theorem 3.2. Let f : X → Y be a surjective quasi-ω-confluent of compact Hausdorff space X into
space Y and g : Y → Z a quasi-ω-confluent of space Y into Hausdorff space Z. Then, h = g ◦ f is
quasi-ω-confluent mapping.

Proof. Since X and Y are two compact Hausdorff spaces and since f and g are two quasi-
ω-confluent mappings, then f and g are ω-confluent mappings by Theorem 2.9. Therefore,
h = g ◦ f is an ω-confluent mapping by Theorem 3.1. Then, from Proposition 2.3, h = g ◦ f is
quasi-ω-confluent mapping.

Proposition 3.3. If X is hereditarily locally connected space and if f : X → Y and g : Y → Z are
two quasi-ω-confluent mapping such that f is onto closed or open map, then h = g ◦ f is quasi-ω-
confluent mapping.

Proof. The proof follows immediately from Proposition 2.10 and Theorem 3.1.

Theorem 3.4. Let f : X → Y be a mapping of strongly connected space X into Hausdorff space Y ,
and let f be a canonical decomposition (f = inc ◦ f ′ ◦ pRf ) of the following mappings:

f ′ :
X

Rf
−→ f(X), inc :f(X) −→ Y, and pRf : X −→ X

Rf
, (3.1)
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where pRf is the quotient surjection map, inc is the inclusion map, and f ′ is the bijection mapping,
where X/Rf denote to quotients space over the kernel relation Rf = {(x, x′) : f(x) = f(x′)}. Then, f
is a canonical decomposition of ω-confluent mappings.

Proof. We have to prove that these mappings pRf , i, and f ′ are ω-confluent mappings. Let K
be any arbitrary ω-continuum in the quotients space X/Rf and C any component of p−1Rf

(K).
Since pRf is continuous mapping, then X/Rf is a Hausdorff, so that K is closed in X/Rf .
Then, by the continuity of pRf , we have p−1Rf

(K) is closed in X. But X is strongly connected.

Therefore, p−1Rf
(K) is connected. This means p−1Rf

(K) = C. So, pRf (C) = K. Thus, pRf is an
ω-confluent mapping.

It is clearly that f ′ and inc are ω-confluent mappings, since Y is a Hausdorff, then
the subspace f(X) is Hausdorff, and since X is strongly connected, then X/Rf is strongly
connected and also Hausdorff. Thus, f ′ and the inclusion map inc are ω-confluent. Hence, f
is canonical decomposition of ω-confluent mappings.

Remark 3.5. In the above theorem, if X is strongly connected compact Hausdorff space, then
the mapping f is the canonical decomposition of quasi-ω-confluent mappings.

Corollary 3.6. If X, Y , and Z are Hausdorff spaces, X is a compact space, and if f : X → Y is a
surjective ω-confluent mapping and g : Y → Z is a quasi-ω-confluent mapping, then h = g ◦ f is
ω-confluent mapping.

Corollary 3.7. If X, Y , and Z are Hausdorff spaces, X is a compact space, and if f : X → Y is a
surjective quasi-ω-confluent mapping and g : Y → Z is ω-confluent mapping, then h = g ◦ f is a
quasi-ω- confluent mapping.

Now, we study Whyburn’s factorization theorem for quasi-ω-confluent mappings.
Thus, we recall the definition of a factorable mapping.

Definition 3.8 (see [8]). If f : X → Y be a mapping, any representation of f in the form
f = f2 ◦ f1, where f1 : X → Z and f2 : Z → Y are two mappings and Z is a certain space,
will said to be factorization of f , and f is said be a factorable mapping and Z a middle space.

Before we study the factorization property, we state the following theorem.

Theorem 3.9 (see [6]). If f : X → Y is an ω-confluent of strongly connected compact space X into
Hausdorff space Y , then there exists a unique factorization for f into two ω-confluent mappings

f(x) = f2 ◦ f1(x), ∀x ∈ X, (3.2)

such that f1 is confluent mapping.

Now, we can get the factorization of a quasi-ω-confluent mapping in the following
proposition.

Proposition 3.10. If f : X → Y be a quasi-ω-confluent of strongly connected compact Hausdorff
space X into Hausdorff space Y , then there exists a unique factorization for f into two quasi-ω-
confluent mappings in the form f = f2 ◦ f1.
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Proof. Since f and g are two quasi-ω-confluent mappings and since X is strongly connected
compact Hausdorff space and Y is a Hausdorff space, then from Theorem 2.9 f and g
are ω-confluent mappings. Thus, f has unique factorization in the form f = f2 ◦ f1 by
Theorem 3.9.

Next, we study the product property of quasiconfluent mappings.
Let {Xi}i∈I and {Yi}i∈I be any two families of topological spaces. The product space

of {Xi}i∈I and {Yi}i∈I is denoted by
∏

i∈IXi and
∏

i∈IYi, respectively. Let fi : Xi → Yi be
a mapping for each i ∈ I. Let f :

∏
i∈IXi → ∏

i∈IYi be the product mappings as follows:
f((xi)) = (fi(xi)) for each (xi) ∈

∏
i∈IXi. The projection of

∏
i∈IXi and

∏
i∈IYi onto Xi and Yi,

respectively, is denoted by pi and qi.
Before we get the following result, we need to state the following theorem.

Theorem 3.11 (see [6]). Let fi : Xi → Yi be anω-confluent mapping, for each i ∈ I of spaceXi into
Hausdorff space Yi. Then,

f :
∏

i∈I
Xi −→

∏

i∈I
Yi (3.3)

is an ω-confluent mapping if the following equality holds:

(
∏

i∈I
τi

)

ω

=
∏

i∈I
(τi)ω, ∀i ∈ I. (3.4)

As immediate consequence of the above theorem, we get the following corollary.

Corollary 3.12. Let fi : Xi → Yi be a quasi-ω-confluent mapping of compact Hausdorff space X
into Hausdorff space Y for each i ∈ I, then

f :
∏

i∈I
Xi −→

∏

i∈I
Yi (3.5)

is quasi-ω-confluent mapping if the following equality holds:

(
∏

i∈I
τi

)

ω

=
∏

i∈I
(τi)ω, ∀i ∈ I. (3.6)

Proof. Since, Xi is compact Hausdorff, then the product space
∏

i∈IXi is compact Hausdorff,
and since Yi is Hausdorff, then the product space

∏
i∈IYi is also Hausdorff. From Theorem 2.9,

we infer that fi : Xi → Yi is an ω-confluent for each i ∈ I. Then, by Theorem 3.11,
f :

∏
i∈IXi → ∏

i∈IYi is an ω-confluent mapping. Therefore, f is quasi-ω-confluent by
Proposition 2.3.

4. Pullback of Quasi-ω-Confluent Mappings

In this section, we study the pullback of quasi-ω-confluent mappings. So, we recall the fol-
lowing definitions.
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Definition 4.1 (see [9]). A fiber structure is a triple (X, f, Y) consisting of two spaces X and Y
and a mapping f : X → Y . The space X is said to be the fibered (or, total) space, f is termed
the projection, and Y is the base space. Next, we recall the definition of the pullback.

Definition 4.2 (see [9]). Let (X, f, Y) be a fiber structure. LetZ be any space, and let g : Z → Y
be any mapping into the base Y . Let Ef be a subspace of the cartesian product X × Z, where
Ef = {(x, z) : f(x) = g(z)}, and let p : Ef → Z be the projection of Ef onto Z such that
p(x, z) = z, ∀(x, z) ∈ Ef . The fiber structure (Ef , p, Z) is said to be the fiber structure over Z
induced by the mapping g, and the projection p is said to be the pullback of f by g.

Now, let γ : Ef → X be the projection such that γ(x, z) = x, ∀(x, z) ∈ Ef .
We observe that the following diagram is commutative.

Ef
γ

p

X

f

Z g Y

Before we prove the main results in this section, we state the following lemma.

Lemma 4.3 (see [6]). Let f : X → Y be a mapping, let Z be any space, and let g : Z → Y be any
mapping, and ifK ⊆ Z, then p−1(K) = f−1(g(K)) ×K, where p is the pullback of f by g.

Theorem 4.4. The pullback of a quasiconfluent mapping is quasi-ω-confluent.

Proof. Let f : X → Y be a quasiconfluent mapping, let Z be any space, and let g : Z → Y
be any mapping. Let K ⊆ Z be any ω-continuum and QC any quasicomponent of p−1(K).
Then, QC is a quasicomponent of f−1(g(K)) ×K by Lemma 4.3. Since every ω-continuum is
continuum, then K is a continuum by Theorem 2.2. Thus, g(K) is continuum in Y . Since f
is quasiconfluent mapping, then f(QC′) = g(K) for each quasicomponent QC′ of f−1(g(K)).
Since p−1(K) = f−1(g(K))×K, soK = p(f−1(g(K))×K) = p(QC′ ×K) such thatQC = QC′ ×K
for some quasicomponent QC′ of f−1(g(K)). Thus, p(QC) = P(QC′ ×K) = K. Therefore, p is
quasi-ω-confluent.

The pullback of quasi-ω-confluent mapping is not necessarily quasi-ω-confluent as
shown by the following example.

Example 4.5. Let X = � be the real number with upper limit topology, Y = {a, b} with the
topology τY = {φ, {a}, Y}, and Z = � with topology τZ = {φ,�,� − {1},� − {2},� − {1, 2}}.

Let f : X → Y be a mapping defined by

f(x) =

⎧
⎨

⎩

a, if x > 0,

b, if x ≤ 0,
(4.1)

and let g : Z → Y be a mapping defined by

g(z) =

⎧
⎨

⎩

a, if z ∈ � − {1, 2},
b, if z ∈ {1, 2}.

(4.2)
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Let Ef be a subspace of the cartesian product X × Z, where

Ef =
{
(x, z) : f(x) = g(z)

}
. (4.3)

Then, the pullback of f by g is the projection p : Ef → Z which is defined by

p(x, z) = z, ∀(x, z) ∈ Ef . (4.4)

We note that f is quasi-ω-confluent mapping, but p is not quasi-ω-confluent mapping.
Since if we take the ω-continuumK = [0,∞) ⊂ Z, then by Lemma 4.3, we get p−1(K) =

f−1(g(K)) ×K. But g(K) = {a, b} is not ω-continuum in Y .
Under certain condition, the pullback p of quasi-ω-confluent mapping f will be quasi-

ω-confluent as shown by the following theorem.

Theorem 4.6. If Y is a zero -dimensional space and if f : X → Y is a quasi-ω-confluent mapping,
then the pullback p of f is quasi-ω-confluent.

Proof. Let f : X → Y be a quasi-ω-confluent mapping, let Z be any space, and let g : Z → Y
be an mapping. Let K be any ω-continuum in Z, and let QC be any quasicomponent of
p−1(K), where p is the pullback of f by g. ThenQC is the quasicomponent of f−1(g(K))×K by
Lemma 4.3. By Theorem 2.2,K is continuum. Thus, g(K) is continuum in Y by the continuity
of g. Since Y is zero-dimensional space, then the quasiconfluent mapping equivalent to
the quasi-ω-confluent by Proposition 2.14. This implies the continuum and ω-continuum
sets coincide in Y . Thus, g(K) is an ω-continuum in Y . Since f is a quasi-ω-confluent,
then f(QC′) = g(K) for each quasicomponents QC′ of f−1(g(K)), and since p−1(K) =
f−1(g(K)) × K. K = p(f−1(g(K)) × K) = p(QC′ × K) such that QC = QC′ × K for some
quasicomponent of f−1(g(K)). Thus, p(QC) = P(QC′ × K) = K. Therefore, p is a quasi-ω-
confluent.

Corollary 4.7. If f : X → Y is a quasi- ω-confluent mapping of space X into ω-space Y , then the
pullback of f is quasi-ω-confluent mapping.
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