Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 352590, 10 pages

doi:10.1155/2011 /352590

Research Article

Garding’s Inequality for Elliptic
Differential Operator with Infinite
Number of Variables

Ahmed Zabel' and Maryam Alghamdi?

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City,
11884 Cairo, Egypt

2 Department of Mathematics, King Abdulaziz University, P.O. Box 4087, Jeddah 21491,
Saudi Arabia

Correspondence should be addressed to Maryam Alghamdi, m_aljinaidi@hotmail.com
Received 21 July 2010; Accepted 17 November 2010
Academic Editor: Zayid Abdulhadi

Copyright © 2011 A. Zabel and M. Alghamdi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We formulate the elliptic differential operator with infinite number of variables and investigate
that it is well defined on infinite tensor product of spaces of square integrable functions. Under
suitable conditions, we prove Garding’s inequality for this operator.

1. Introduction

In order to solve the Dirichlet problem for a differential operator by using Hilbert space
methods (sometimes called the direct methods in the calculus of variations), Garding’s
inequality represents an essential tool [1, 2]. For strongly elliptic differential operators,
Garding’s inequality was proved by Girding [3] and its converse by Agmon [4]. One
can find a proof for Garding’s inequality and its converse in the work of Stummel [5]
for strongly semielliptic operators. Two examples for strongly elliptic and semielliptic
operators are studied in [6]. More recent results on this subject can be found in [7, 8] for
a class of differential operators containing some non-hypoelliptic operators which were first
introduced by Dynkin [9] and for differential operators in generalized divergence form (see
also [10, 11]).

The aim of this work is to study the existence of the weak solution of the Dirichlet
problem for a second-order elliptic differential operator with infinite number of variables.
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2. Some Function Spaces

In this paper, we will consider spaces of functions of infinitely many variables, see [12, 13].
For this purpose we introduce the product measure

dp(x) = (p1(x1)dx1) x (p2(x2)dxz) x - -
= (dp1(x1)) x (dpa(x2)) x -+, (2.1)
(px(xx)doxy = dpi(xx), k=1,2,...)

defined on the space R* = R' x R' x - -+ of points x = (xx)j2, xk € R', where (pi){ is a fixed
sequence of weights, such that

2 (R1> 5 pe(t) > 0, j pr(t)dt = 1. (2.2)
Rl

Fork=1,2,..., weput

R*=R'xR'x---xR!'xR! x--- (2.3)
k-1

We can write x € R®, by x = (x, X), where
E:(xl,...,xk,l,xkﬂ,...) (2.4)

and dp(x) = dp(xx) x dp(X).
With respect to dp we construct on R* the Hilbert space of functions of infinitely many
variables

Ly(R®) = Ly (R, dp(x)), (2.5)

which can be understood as the infinite tensor product

[ee]

Q) L2(R', dpi(xi) ) (2.6)

k=1,

with the identity stabilization e = (e(k))i’o, e® € Ly(RY, dpx(xx)), e® = 1. To say that the
function f € L,(R*®,dp(x)) is cylindrical, it means that there exist an m = 1,2,..., and an
fe € La(R™, dp(my(x™)), (x = (x1,...,%m)), (dpmy(x™) = @'dpi(x1)), such that f(x) =
fe(xt™), x € R*.

On the collection of functions which are / = 1,2,... times continuously differentiable
up to the boundary I' of R™ for sufficiently large m, we introduce the scalar product

(w,v), = Z(D“”' D*0) 1, (R dp(x)) (2.7)

|er|<I
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where

la o
D* 0 , al = E a;. (2.8)
<

~ (0x1)" (0:2)™

The differentiation is taken in the sense of generalized functions, and after the completion we
obtain the Sobolev spaces Wé(R”’), 1=1,2,....
Sobolev space of order / on R* is defined by

WL(R®) = {u | D*u € L,(R*,dp(x)) Va,|a| <1}, (2.9)

Wé(R‘”) endowed with the scalar product (2.7) forming a dense subspace of L, (R*, dp(x)),
with

el (re dpiyy < Ntllw (o) (2.10)

for u € WA(R®).
We use the technique of [13] to construct chains of spaces

WL(R®) C L,(R*®,dp(x)) = WY(R®) C W, (R*), 1=0,1,..., (2.11)
where W 1(R*) are the duals of W;(R°°).

3. Elliptic Differential Operator with Infinite Number of Variables

Consider (ax)j., to be a sequence of nonnegative locally bounded functions in R* (i.e., they
are bounded on each compact subset) with derivatives (0/0xx)ax € Lpoc for any p > 1 and
k=1,2,..., and for a suitable xy € R* it satisfies the following conditions:

(1) there exists a constant ¢; > 0 such that

iak(xo) >c, (3.1)

k=1

(2) let c¢q be the constant in condition (1), and there is ny belonging to N such that

1
_ < = 3.2
rlrcleaNszgak(x) ax(xg)| < 0 (3.2)
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Now, we define on L, (R*, dp(x)) an elliptic differential operator with infinitely many
variables

10 =3 g (g (Y ) )

= —ka(akau) (x), u€eW,(R),

(3.3)

where

1 0
(D) = s (\/pk<xk>u<x)). (3.4)

Theorem 3.1. Assume that (pi)g., satisfy the condition that

Ms

D2 1) (x) (3.5)

T
I\

converges in Ly(R®,dp(x)). Then the operator L in (3.3) is well defined and admits a closure in
Ly(R*,dp(x)).

Proof. The mapping
Lo(R', dxic) 3 U (xi) — u(xi) = p/*(x)U (xi) € Lo (R, dpe(xe)) (3.6)

is an isometry between the two spaces of square integrable functions. It carries (0U/0xx) (xi)
into the sandwiched (by means of pi) derivative

(D)) = Py x0) (k)0
(3.7)

_ (%) (x6) + (D) () (i),
and it carries

5o (a5 ) ©8)
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into the corresponding Dy derivative:
Die(ax(x) D) (xi)) = pic' % (x ui(pW(xk)ak(x)(Dku)(xk))
6xk k

= s P 20 o (2| + D) (a0 i )

)+ a“"( )f—;;mna—ka[aux)(Dkl)(xk)u(xk)]

=ak(x)2 2 Xk
+ (Dx1) (xx) ax (x) (Dyu) (xx)

— () e (1)) + 5[ 3) (i) ()]
+ (Dkl)(xk)ak(x)aa_;{(xk) + ag () (Di1)? (xx) e (oxx)
- (a0 (xk>)+ak<x>u<xk>a—ik<Dkl><xk>
# (D1)(x0) [ ) e () + S (o)

+ (Dkl)(xk)ﬂk(x)g—;(xk) + ax () (D) (i) u(xk)

— o (0022 (30 ) + (D) 1) [P0 0) () + () S ()

+ (D}1) (e an (o).
(3.9)

Denote by CZ(R*) the linear span of the set of all cylindrical infinitely differentiable finite
functions dense in W} > (R®), that is, all the functions u € W} »(R*) of the form

R” 3 x— u(x) = uc(x1,...,x5), (3.10)

where n depends on u and u. € C{°(R"), n=1,2,... . Condition (3.5) implies that Di1, Dil €
Ly (RY, dpi(xk)), (see [13, Lemma (3.2)]). We note that the action of L on the function u(x) =
e (x™) has the form

(Lu) () =—ka<akauc><x>—uc<x>[ S (aD)@+ 3 (Dk1><x>—< )] (3.11)
k

k=1 =n+1 k=n+1

then in view of condition (3.5), the operator CX(R*) > u(x) + (Lu)(x) =
- >121 Dr(akDyu)(x) € Lr(R*,dp(x)) is well defined i in Ly(R*,dp(x)) and admits a closure
which is again denoted by L. O
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4. A Garding Inequality

In our consideration, we have an operator of the form

(Lu) (x) = — 3" Di(ax Dy (x) (1)
k=1

with u € W} (R*).
Lemma 4.1. The operator L is Hermitian.

Proof. It is sufficient to verify the Hermitianness on functions of the form u(x) =
uc(x™),v(x) = ve(x™), where u, € CP(R"),v. € CF(R™); for example, we take it that
m < n.

Using (3.11), we obtain

(Lu, U)LZ(Rw,dp(x))

=— IRn [zn:(Dkakauc) (x)] D (X)p1(x1) -+ P () dxy - - dxc,

k=1

_ wa< i [ak(x) (D) () + (Dkl)(x)g—zllz(x)]uc(x)>vc(x)dp(x)

k=n+1
. (4.2)
= —Z (DraxDruc) (x)ve(x)p1(x1) - - - pu(x,)dxy - - - dxy
k=17 R"

_ i fm([ak(x)<Di1>(x)+(Dkl)(x)g—;’z(x)]uc(x)>mdp(x)

k=n+1

n [ee]
=-> Ax- > By

k=1 k=n+1

where

Ag = IR (DyaxDiue) (x)vc(x)pr(x1) -+ pn () dxy - - - dxy

= f (J (Dkakauc)(x)vc(x)pk(Xk)ka> p1(x1) - - pr-1(xk-1)
Rnfl Rl
X Pt (Xies1) * - Pr(Xn)dxy - - - AXp1dXpen -+ - dxy

X U (X)pic (X)) dxrpr (x1) - - - Pre-1(Xk-1)
X Pt (Xies1) -+ Pr(Xn)dxy - - - dxe1d X -+ - dxy,
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o L)) (o ()

x dxip1(x1) - Pre1 (Xk=1)Pra1 (Xks1) =+ Pu(Xn)dx1 - - - dxe1d X -+ - doxy,

X pr(xr)dxipr(x1) - pr-1(Xk-1)
X Pk+1 (Xk41) - Pn (xp)dxy -+ dxg1dxp -+ - dxy

= fRn ue(x)(DxaxDyve) (x)p1(x1) - pu(xn)dxy - - - dxy,

Be= [ e a0 (D31) @) + (D10 32 0 [ idp o).

(4.3)
Hence, we have
(Lu, U)Lz(Rw,dp(x))
- —Zj 1e(x) (Drax Do) (1) (x1) -+ puGn) s -+ Ay
_ R"
(4.4)
- k% [ ([ (D)@ + O @52 0|20 ) dp)
= (U, LY) 1, (R dp(x)) -
O
Now, we can define on Wz1 (R*) the bilinear form

B(u, U) = (Lu, U)Lz(Rm,dp(x))’ (45)

where L € (W, (R*), W, (R®))

B ==X f T e (g (Vo)) oo

- _kz_; f \/pk—(Tk) a—)q((ak(x)aixk(Wu(x)))@pk(xk)dxkp(f)
S5 (g (o) o petensaand
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fwak(x)—(\/;mnm) - (00 prl) ) dxedp ()

J‘ ak(x)pk(xk)\/iax (Wu(x)>ﬁ
. aixk W@ m>dxkdp(55),

(4.6)

then

B(u,v) = if ax (x)Diu(x)Dro(x)dp(x). (4.7)
k=17 R

Lemma 4.2. The bilinear form (4.7) is continuous on Wzl (R*).

Proof. For u,v € C(R®),

Bl <3 [ aDalIDw)lde ()
k=17 R*

< maxsup ag( x)Z'[ |Diu(x)||Drv(x)|dp(x)

XER*®

i 172 1/2
<maxsupar(0) ([ IDwPdp)) ([ Dwidpe) 4

€N yeRw k=1

[ee]
< e IDktl 1 (e o DO 1y (R dipay
k=1

< cllullw: (g 101wz (o)

Thus B has a continuous extension onto W, (R®) which is again denoted by B. O

Theorem 4.3. Suppose that L is given as in (4.1). In particular assume that (3.5) holds. Then there
exist positive constants c¢o > 0 and ¢1 > 0 such that

B(u/ ’Ll) 2 CO”u”ivzl(Rw) c1||u||L2(Roo dp(x)) (49)

holds for all u € W, (R®).
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Proof. For u € CZ(R®),

B(u,u) f ay(x) |Dku(x)| dp(x)

0

-3 k(x())f IDiue(x) Pp(x) - . fR (ax(x0) - ax (x))| Dyu(x) Pdp(x)  (4.10)
)

0

zak(mf |Dku<x)|2dp<x>—zf |k (x0) — ax(x) || Dyu(x) Pdp (x),
k=1 k=1 R*®

and using conditions (1) and (2),
B(u,u) > ¢y, f |Dicu(x)Pdp (x) ~ maxsup|ax(xo) — ax(x)[ Y f |Dicta(x) Pdp(x)
k=1 R*» keN XER*® k=1 R»®

2 2 a1 < 2
2 118 = 10 |~ 25 | 1P )

(4.11)
2
> e 18 ey = 102, | = s 8 ey
1
= 1- ”u”Wl(Roc) Clllu”LZ(Roo dp(x))
and with ¢y = ¢1(1 — 1/2n0), we finally obtain (4.9). O

5. Conclusions

In view of our recent achievement, we recommend to extend this approach to include
the linear partial differential operators in generalized divergence form 3, ser D*(aqp(-)DP),
where I'is finite, and nonempty collectionof a = (ay,...,a,),a; =1,2,...,and a,p (a, p € T'xI)
are real locally bounded functions on R*.
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