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We study the following quasilinear problem with nonlinear boundary condition −Δpu −
λa(x)u|u|p−2 = b(x)u|u|γ−2, in Ω and (1 − α)|∇u|p−2(∂u/∂n) + αu|u|p−2 = 0, on ∂Ω, where Ω ⊆ RN

is a connected bounded domain with smooth boundary ∂Ω, the outward unit normal to which is
denoted by n.Δp is the p-Laplcian operator defined byΔpu = div(|∇u|p−2∇u), the functions a and b
are sign changing continuous functions inΩ, 1 < p < γ < p∗, where p∗ = Np/(N−p) ifN > p and∞
otherwise. The properties of the first eigenvalue λ+1 (α) and the associated eigenvector of the related
eigenvalue problem have been studied in (Khademloo, In press). In this paper, it is shown that if
λ ≤ λ+1 (α), the original problem admits at least one positive solution, while if λ+1 (α) < λ < λ∗, for a
positive constant λ∗, it admits at least two distinct positive solutions. Our approach is variational
in character and our results extend those of Afrouzi and Khademloo (2007) in two aspects: the
main part of our differential equation is the p-Laplacian, and the boundary condition in this paper
also is nonlinear.

1. Introduction and Results

In this paper, we consider the problem

−Δpu − λa(x)u|u|p−2 = b(x)u|u|γ−2, x ∈ Ω,

(1 − α)|∇u|p−2 ∂u
∂n

+ αu|u|p−2 = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊆ RN is a connected bounded domain with a smooth boundary ∂Ω, the outward
unit normal to which is denoted by n. Δp is the p-Laplcianian operator defined by Δpu =
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div(|∇u|p−2∇u). The functions a and b are assumed to be sign changing in Ω. Here, we say a
function a(x) changes sign if the measure of the sets {x ∈ Ω;a(x) > 0} and {x ∈ Ω;a(x) < 0}
are both positive. λ ≥ 0 is a real parameter and exponent γ is assumed to satisfy the condition
1 < p < γ < p∗, where p∗ = Np/(N − p) if N > p and ∞ otherwise.

A host of literature exists for this type of problem when p = 2. For the works
concerning with problems similar to (1.1) in the case p = 2, we refer to [1–3] and references
therein.

The growing attention in the study of the p-Laplace operator is motivated by the fact
that it arises in various applications, for example, non-Newtonian fluids, reaction diffusion
problems, flow through porus media, glacial sliding, theory of superconductors, biology, and
so forth (see [4, 5] and the references therein).

In this paper, we obtain new existence results by using a variational method based
on the properties of eigencurves, that is, properties of the map λ → μ(α, λ), where μ(α, λ)
denotes the principal eigenvalue of the problem

−Δpu − λa(x)u|u|p−2 = μu|u|p−2, x ∈ Ω,

(1 − α)|∇u|p−2 ∂u
∂n

+ αu|u|p−2 = 0, x ∈ ∂Ω.
(1.2)

Similar to [6] our method works provided that the eigenvalue problem

−Δpu = λa(x)u|u|p−2, x ∈ Ω,

(1 − α)|∇u|p−2 ∂u
∂n

+ αu|u|p−2 = 0, x ∈ ∂Ω,
(1.3)

has principal eigenvalues and it can be shown that this occurs on an interval [α0, 1]where α0 ≤
0. Thus, we are able to obtain existence results for problem (1.2) even in the case of nonlinear
Neumann boundary conditions where α is small and negative. Ourmethod depends on using
eigencurves to produce an equivalent norm on W1,p(Ω); such an equivalent norm is also
introduced in [2]. The results that we obtain in this paper are generalization of the previous
results obtained by Pohozaev and Veron [7].

It can be shown that μ(α, λ) has the variational characterization:

μ(α, λ) = inf
{∫

Ω
|∇u|pdx +

α

1 − α

∫
∂Ω

|u|pdσ − λ

∫
Ω
a|u|pdx; u ∈ W1,p(Ω),

∫
Ω
|u|pdx = 1

}

(1.4)

from whence it follows that

(i) λ is a principal eigenvalue of (1.2) if and only if μ(α, λ) = 0,

(ii) α → μ(α, λ) is an increasing function,

(iii) λ → μ(α, λ) is a concave function with a unique maximum such that μ(α, λ) → −∞
as λ → ±∞ [6].

If α ∈ (0, 1], then μ(α, λ) > 0, and so λ → μ(α, λ) has exactly one negative zero λ−1 (α)
and one positive zero λ+1 (α). Thus, λ

−
1 (α) and λ+1 (α) are principal eigenvalues for (1.2).
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If α = 0, then μ(0, 0) = 0. If a(x) > 0, then μ(0, λ) is decreasing, and if a(x) < 0, then
μ(0, λ) is increasing. Assume now that a(x) changes sign in Ω: if

∫
Ω a(x)dx < 0, there exists a

unique λ+1 (0) > 0 such that μ(0, λ+(0)) = 0 and μ(0, λ) > 0 for λ ∈ (0, λ+1 (0)). If
∫
Ω a(x)dx = 0,

then μ(0, 0) = 0 and μ(0, λ) < 0 for λ/= 0. If
∫
Ω a(x)dx > 0, then there exists a unique λ−1 (0) < 0

such that μ(0, λ−1 (0)) = 0 and μ(0, λ) > 0 for λ ∈ (λ−1 (0), 0).
Suppose now that

∫
Ω a(x)dx < 0 and that α is small and negative. Then, since α →

μ(α, λ) is increasing, it follows that there still exist principal eigenvalues λ−1 (α) < λ+1 (α) of
(2.5), but now both of them are positive.

It can be shown that there exists α0 < 0 such that the above is true for all α ∈ (α0, 0),
but for α < α0, μ(α, λ) < 0 for all λ so that principal eigenvalues no longer exist.

Similar considerations show that when
∫
Ω a(x)dx > 0, there exists α0 < 0 such that

there are principal eigenvalues λ−1 (α) < λ+1 (α) < 0 for α0 < α < 0 but when
∫
Ω a(x)dx = 0, there

are no principal eigenvalues for α < 0 (see [6]).
It is easy to see that if λ−1 (α) and λ+1 (α) exist, μ(α, λ) > 0 for all λ ∈ (λ−1 (α), λ

+
1 (α)).

Thus, we assume that the following conditions hold:

(A1) α ∈ (0, 1) or that
∫
Ω a(x)dx /= 0 and α ∈ (α0, 1],

(A2) a(x) ∈ L∞(Ω),

(B1) b(x) ∈ L∞(Ω),

(B2) b+ /≡ 0,

(B3)
∫
Ω b(x)(u+

1 )
γdx < 0,

where u+
1 is the positive principal eigenfunction corresponding to λ+1 (α).

With these constructions we have the following.

Proposition 1.1. Assume (A1), then for every λ ∈ (0, λ+1 (α)),

‖u‖α,λ :=
(∫

Ω

(|∇u|p − λa(x)|u|p)dx +
α

1 − α

∫
∂Ω

|u|pdσ
)1/p

(1.5)

defines a norm inW1,p(Ω) which is equivalent to the usual norm of W1,p(Ω), that is,

‖u‖ =
(∫

Ω
|∇u|pdx +

∫
Ω
|u|pdx

)1/p

. (1.6)

Proof. See [2].

Now we can state our main results.

Theorem 1.2. Assume (A1), (A2), (B1), and (B2). Then, for every λ ∈ (0, λ+1 (α)), problem (1.2)
admits at least one positive solution u ∈ W1,p(Ω) ∩ L∞(Ω).

Theorem 1.3. Assume (A1), (A2), (B1), (B2), and (B3). Then, problem (1.2) has at least one positive
solution u ∈ W1,p(Ω) ∩ L∞(Ω) for λ = λ+1 (α).

Theorem 1.4. Assume (A1), (A2), (B1), (B2), and (B3). Then, there exists λ∗ > λ+1 (α) such that
problem (1.2) admits at least two distinct positive weak solutions in W1,p(Ω) ∩ L∞(Ω), whenever
λ+1 (α) < λ < λ∗.
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When λ = 0 and α = 0, we have the following.

Corollary 1.5. Assume
∫
Ω b(x)dx < 0. Then, the problem

−Δpu = b(x)u|u|γ−2, x ∈ Ω,

|∇u|p−2 ∂u
∂n

= 0, x ∈ ∂Ω,
(1.7)

has a positive solution.

Throughout this paper, c denotes a positive constant. We will use fibrering method in a
similar way to those in [8]. A brief description of the method and the proof of Theorem 1.2 are
presented in Section 2. We then study the cases λ = λ+1 (α) and λ > λ+1 (α) in Sections 3 and 4.

2. The Case When λ < λ+
1(α)

In this section, motivated by Pohozaev [8], we will introduce the fibrering map as our
framework for the study of problem (1.2).

For a (weak) solution of problem (1.2), we mean a function u ∈ X = W1,p(Ω) such that
for every v ∈ W1,p(Ω), there holds

∫
Ω

(
|∇u|p−2∇u∇v − λa(x)|u|p−2uv

)
dx +

α

1 − α

∫
∂Ω

|u|p−2uv dσ =
∫
Ω
b(x)|u|γ−2uv dx. (2.1)

Now let us define the variational functional corresponding to problem (1.2). We set
Iλ : X → R as

Iλ(u) =
1
p

∫
Ω

(|∇u|p − λa(x)|u|p)dx +
α

p(1 − α)

∫
∂Ω

|u|pdσ − 1
γ

∫
Ω
b(x)|u|γdx. (2.2)

It is easy to see that Iλ ∈ C1(X,R), and for v ∈ X, there holds

(
I ′λ(u), v

)
=
∫
Ω

(
|∇u|p−2∇u∇v − λa(x)|u|p−2uv

)
dx +

α

1 − α

∫
∂Ω

|u|p−2uv dσ

=
∫
Ω
b(x)|u|γ−2uv dx.

(2.3)

Since C∞
0 (Ω) ⊂ X, we know that critical points of Iλ are weak solutions of the problem

(1.2). Thus, to prove our main theorems, it suffices to show that Iλ admits critical point. We
will do this in this paper. Our main tool is the theory of the fibrering maps. First, we will
introduce this map for Iλ : X → R.

Let φu(t) = Iλ(tu) (t > 0). We refer to such maps as fibrering maps. It is clear that if u
is a local minimizer of Iλ, then φu has a local minimum at t = 1.

Lemma 2.1. Let u ∈ X − {0} and t > 0. Then, (I ′
λ
(tu), tu) = 0 if and only if φ′

u(t) = 0.
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Proof. The result is an immediate consequence of the fact that

φ′
u(t) =

(
I ′λ(tu), u

)
=

1
t

(
I ′λ(tu), tu

)
. (2.4)

Thus critical points of Iλ correspond to stationary points of the maps φu that can be
given by

φu(t) = Iλ(tu) =
tp

p
Aλ(u) − tγ

γ
B(u), (2.5)

where

Aλ(u) =
∫
Ω

(|∇u|p − λa(x)|u|p)dx +
α

1 − α

∫
∂Ω

|u|pdσ,

B(u) =
∫
Ω
b(x)|u|γdx.

(2.6)

Hence,

φ′
u(t) = tp−1Aλ(u) − tγ−1B(u). (2.7)

Thus, if Aλ(u) and B(u) have the same sign, φu has exactly one turning point at

t(u) =
(
Aλ(u)
B(u)

)1/(γ−p)
, (2.8)

provided that B(u)/= 0, and if Aλ(u) and B(u) have opposite signs, φu has no turning points.
Now substituting (2.8) into (2.5), we get

Iλ(t(u)u) =
1
p

(
Aλ(u)
B(u)

)p/(γ−p)
Aλ(u) − 1

γ

(
Aλ(u)
B(u)

)γ/(γ−p)
B(u)

=
1
p

Aλ(u)γ/(γ−p)

B(u)p/(γ−p)
− 1
γ

Aλ(u)γ/(γ−p)

B(u)p/(γ−p)
=
(
1
p
− 1
γ

)
Aλ(u)γ/(γ−p)

B(u)p/(γ−p)
:= Jλ(u).

(2.9)

Lemma 2.2. Suppose that u0 is a critical point of Jλ, where Aλ(u0) and B(u0) have the same sign.
Then, I ′

λ
(t(u0)u0) = 0.
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Proof. Let u0 ∈ X, B(u0)/= 0, then

(
I ′λ(t(u0)u0), v

)
=
∫
Ω

(
|∇(t(u0)u0)|p−2∇(t(u0)u0)∇v − λa(x)|t(u0)u0|p−2t(u0)u0v

)
dx

−
∫
Ω
b(x)|t(u0)u0|γ−2t(u0)u0v dx +

α

1 − α

∫
∂Ω

|t(u0)u0|p−2t(u0)u0v dσ

= t(u0)p−1
(
A′

λ(u0), v
) − t(u0)γ−1

(
B′(u0), v

)
=

1
t(u0)

(
J ′λ(u0), v

)
= 0

(2.10)

for all v ∈ X. This completes the proof.

The following lemma shows that the critical points of the functional Iλ can be found
by using the conditional variational problem associated with Iλ.

Lemma 2.3. Suppose that H is a well-defined functional on X and u0 is a minimizer of Jλ on

S :=
{
u ∈ X, H(u) = c,

(
H ′(u), u

)
/= 0

}
(2.11)

for some c /= 0. Then, J ′λ(u0) = 0.

Proof. If u0 is a local minimizer of Jλ on S, then u0 is a solution of the optimization problem:

minimize Jλ(u) subject to γ(u) = 0, (2.12)

where γ(u) = H(u) − c. Hence, by the theory of the Lagrange multipliers, there exists μ ∈ R
such that J ′

λ
(u0) = μγ ′(u0). Thus,

(
J ′λ(u0), u0

)
= μ

(
γ ′(u0), u0

)
. (2.13)

Note that the functional Jλ is 0-homogeneous and the Gateaux derivative of Jλ at the point
v ∈ X, B(v)/= 0, in direction v, is zero, that is, (J ′λ(u0), u0) = 0. It then follows that μ = 0 due
to u0 ∈ S. Hence, the proof is complete.

The following scheme for the investigation of the solvability of (1.2) is based on
previous lemmas. First, we will prove the existence of nonzero critical points of Jλ under
the constraint given by suitable functional H. This will be an actual critical point of Jλ and
it will generate critical point of the Euler functional Iλ which will coincide with the weak
solution of problem (1.2).

Proof of Theorem 1.2. Suppose that (A1), (A2), (B1), (B2) satisfy. It follows from variational
characterization of μ(α, λ) that Aλ(u) ≥ 0 for all u ∈ X and 0 ≤ λ < λ+1 (α). Moreover, we have

(
A′

λ(u), u
)
= pAλ(u), u ∈ X. (2.14)
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Hence, for using Lemma 2.3, it is sufficient to consider the case Aλ(u) = c /= 0, for example
c = 1. In this case, we have

Jλ(u) =
(
1
p
− 1
γ

)
1

B(u)p/(γ−p)
. (2.15)

From the necessary condition for the existence of t(u), we have B(u) > 0. It follows that we
must consider a critical point with B(u) > 0.

The functional Jλ(u) is nonnegative and so bounded below, hence we can look for
positive local minimizer for Jλ(u) on X.

Let us consider variational problem:

Mλ = sup{B(u);Aλ(u) = 1, B(u) > 0}. (2.16)

Note that for 0 ≤ λ < λ+1 (α), this set is not empty, and from Lemma 2.3, the solution of this
problem is a minimizer of Jλ(u) on X.

Suppose {un} is the maximizing sequence of this problem. It follows from the
equivalent property in Proposition 1.1, {un} is bounded and so we may assume that un ⇀ u0

in X. Since X may be compactly embedded in Lp(Ω), Lγ(Ω), and Lp(∂Ω), we have un → u0

in Lp(Ω), Lγ(Ω) and Lp(∂Ω). Hence,

B(un) −→ B(u0) = Mλ > 0. (2.17)

Moreover, we have

Aλ(u0) ≤ lim infAλ(un) = 1. (2.18)

Here, the weak lower semicontinuity of the equivalent norm was used.
Assume that Aλ(u0) < 1. By using the map:

L(t) = Aλ(tu0), (2.19)

we have L(1) < 1 and limt→∞L(t) = ∞ and so L(t0) = 1 for some t0 > 1, that is, Aλ(t0u0) = 1.
So we derive

B(t0u0) = t
γ

0B(u0) > Mλ, (2.20)

which is a contradiction. Hence, Aλ(u0) = 1 and so u0 is a maximizer. As Lemma 2.2,
the result would follow by considering u1 = t(u0)u0 ∈ X. Then, u1 is a weak solution of
(1.2) and u1 ≥ 0 in Ω. Now, following the bootstrap argument (used, e.g., in [9]), we prove
u1 ∈ L∞(Ω). Then, we can apply the Harnack inequality due to Trudinger [5] in order to get
u1 > 0 in Ω (cf. [9]).
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3. The Case When λ = λ+
1(α)

Proof of Theorem 1.3. If λ = λ+1 (α), It is easy to see that the set {u ∈ X;Aλ(u) = 1} is unbounded
and we are forced to require an additional assumption (B3). In this case, again we are looking
for a maximizing of the problem:

Mλ+1 (α) = sup
{
B(u);Aλ+1 (α)(u) = 1, B(u) > 0

}
. (3.1)

Suppose {un} is a maximizing sequence of this problem. First, we investigate the case when
{un} is unbounded. Then, we may assume without loss of generality that ‖un‖ → ∞. So, we
obtain

1 = Aλ+1 (α)(un) = ‖un‖pAλ+1 (α)(vn), (3.2)

where vn = un/‖un‖. Thus, we have

Aλ+1 (α)(vn) =
Aλ+1 (α)(un)

‖un‖p
=

1
‖un‖p

−→ 0 as n −→ ∞. (3.3)

Since ‖vn‖ = 1, we may assume that vn ⇀ v0 in X. Again, since X may be compactly
embedded in Lp(Ω), Lγ(Ω) and Lp(∂Ω), we have

lim
n→∞

∫
Ω
a(x)|vn|pdx =

∫
Ω
a(x)|v0|pdx,

lim
n→∞

∫
Ω
b(x)|vn|γdx =

∫
Ω
a(x)|v0|γdx,

lim
n→∞

∫
∂Ω

|vn|pdσ =
∫
∂Ω

|v0|pdσ.

(3.4)

So,

∫
Ω
a(x)|v0|pdx ≥ 1

λ+1 (α)
, (3.5)

And, therefore, v0 /≡ 0. Returning to Aλ+1 (α)(vn), we have also

0 ≤ Aλ+1 (α)(v0) ≤ lim inf
n→∞

Aλ+1 (α)(vn) = 0. (3.6)

Due to simplicity of λ+1 (α), there exists c /= 0 such that v0(x) = cu+
1 (x). Therefore, we have

0 < Mλ+1 (α) = lim
n→∞

B(un) = lim
n→∞

‖un‖γB(vn), (3.7)

that implies |c|γB(u+
1 ) ≥ 0, which contradicts (B3). Therefore, {un} is bounded and so un ⇀ u0

in X and un → u0 in Lp(Ω), Lγ(Ω) and Lp(∂Ω). Hence, B(un) → B(u0) = Mλ+1 (α) > 0, and so
u0 /= 0.
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Moreover, we obtain 0 ≤ Aλ+1 (α)(u0) ≤ 1. Here, the variational characteristic of λ+1 (α)
and the weak lower semicontinuity of the norm were used. Let us now consider the case
Aλ+1 (α)(u0) = 0. Again, we obtain u0 = cu+

1 for some c /= 0, and so B(u0) = |c|γB(u+
1 ) = Mλ+1 (α) > 0

which contradicts (B3).
Now we prove thatAλ+1 (α)(u0) = 1. Suppose otherwise, then by using L(t) in (2.20), we

obtain some t0 > 1 such thatAλ+1 (α)(t0u0) = 1. By direct calculation, we get a contradiction like
(4.1). This yields that u0 is a nonnegative solution of problem (1.2). Using the same ideas as
the proof of Theorem 1.2, we have proved Theorem 1.3.

4. The Case When λ > λ+
1(α)

As it is proved in [10], we will show that for λ > λ+1 (α) but close enough to λ+1 (α), we have
two distinct positive solutions for problem (1.2). The existence of one of them is obtained by
using the following lemma.

Lemma 4.1. Under the assumption of Theorem 1.4, there exists a maximizer u1 of the problem:

sup{B(u);Aλ(u) = 1, B(u) > 0}, (4.1)

whenever λ ∈ (λ+1 , λ
+
1 (α) + δ), for some δ > 0. Moreover, u1 ∈ X ∩ L∞(Ω) is a positive weak solution

of problem (1.2).

Proof. First note that using L(t) in (2.20), it is easy to see that u1 is a maximizer of problem
(4.2) if and only if u1 is a maximizer of the problem:

Mλ = sup{B(u);Aλ(u) ≤ 1, B(u) > 0}. (4.2)

Now suppose that the result is false. Then, there exists a sequence {δk} such that δk → 0 and
problem (4.1) has no solution for λ+1 (α) + δk. For simplicity, we use λk = λ+1 (α) + δk. Let {uk

n}
be a maximizing sequence of this problem, that is,

Aλk

(
uk
n

)
≤ 1, B

(
uk
n

)
−→ Mλk > 0. (4.3)

We prove that if {uk
n} be bounded or unbounded, we arrive at a contradiction and so the

lemma is proved.
The first case: {uk

n} is bounded. Thus, uk
n ⇀ uk

0 in X for some uk
0 ∈ X and uk

n → uk
0 in

Lp(Ω), Lγ(Ω), and Lp(∂Ω). Hence, B(uk
0) = Mλk > 0 and the weak lower semicontinuity of the

norm givesAλk(u
k
0) ≤ 1. Therefore, uk

0 is a solution of problem (4.5), which is a contradiction.
The case {uk

n} is unbounded. Then we may assume that ‖uk
n‖ → ∞. Let vk

n = uk
n/‖uk

n‖.
Then, vk

n ⇀ vk
0 in X for some vk

0 ∈ X and vk
n → vk

0 in Lp(Ω), Lγ(Ω) and Lp(∂Ω). This implies
that

B
(
uk
n

)
=
∥∥∥uk

n

∥∥∥γ
B
(
vk
n

)
−→ Mλk > 0. (4.4)
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Therefore, B(vk
0 ) ≥ 0. Furthermore, ‖uk

n‖pAλk(v
k
n) ≤ 1 and so Aλk(v

k
n) ≤ 1/‖vk

n‖p. Thus, we
arrive at

Aλk

(
vk
0

)
≤ lim inf

n→∞
Aλk

(
vk
n

)
−→ 0, as n −→ ∞, (4.5)

which implies

∫
Ω

∣∣∣∇vk
0

∣∣∣pdx ≤ 1, (4.6)

λk

∫
Ω
a(x)

∣∣∣vk
0

∣∣∣pdx ≥ 1. (4.7)

It is a direct consequent of the comactly embedding of X in Lp(Ω), Lγ(Ω) and Lp(∂Ω). Now,
we pass to the limit for k → ∞. Then, λk → λ+1 (α) and since {vk

0} is a bounded sequence, we
may assume that vk

0 ⇀ v0 in X for some v0 ∈ X and vk
0 → v0 in Lp(Ω), Lγ(Ω), and Lp(∂Ω).

It follows from (4.10) that

λ+1 (α)
∫
Ω
a(x)|v0|pdx ≥ 1, (4.8)

and from the variational characteristic of λ+1 (α) and (4.6) that

0 ≤ Aλ+1 (α)(v0) ≤ 0, (4.9)

which contradicts (B3).
Hence, for some δ > 0, problem (4.5) has at least one nonnegative solution u1 for any

λ ∈ (λ+1 (α), λ
+
1 (α) + δ).

In order to find the second positive solution, we consider the minimizing problem:

Nλ = inf{Aλ(u);B(u) = −1}. (4.10)

Note that this set is empty for λ < λ+1 (α) (because of the variational characterization of
λ+1 (α)). Hence, this second problem does not have a solution for λ < λ+1 (α).

Lemma 4.2. Under the assumption of Theorem 1.4, there exists ε > 0 such that for λ ∈ (λ+1 , λ
+
1 (α)+ε),

problem (1.1) has a nonnegative solution u2 satisfying Aλ(u2) < 0.

Proof. First note that using the auxiliary function L(t) = |t|γB(u) and the assumption (B3), it
is easy to see that B(t1u+

1 ) = −1 for some t1 < 1. Thus, the set {u ∈ X;B(u) = −1} is nonempty.
Also, for this t1, we have

Aλ

(
t1u

+
1

)
= |t1|p

(
λ+1 (α) − λ

) ∫
Ω
a(x)

∣∣u+
1

∣∣pdx < 0, (4.11)

for λ > λ+1 (α).
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Again, we assume that the result is not true. Then, there exists εk → 0 such that for
λk = λ+1 (α) + εk, problem (1.1) has no solution.

Let {uk
n} be a minimizing sequence of this problem, that is, B(uk

n)=−1, Aλk
(uk

n)−→Nλk<0.

Assume that {uk
n} is bounded. Using similar argument as in the proof of Lemma 4.1,

we find a solution of problem (1.1) which is a contradiction. Let us assume {uk
n} is bounded.

Again, we consider

vk
n =

uk
n∥∥∥uk
n

∥∥∥ , with
∥∥∥uk

n

∥∥∥ −→ ∞, (4.12)

{vk
n} is bounded, and so vk

n ⇀ vk
0 in X for some vk

0 ∈ X. Thus, B(vk
n)=

uk
n

‖uk
n‖γ

=
−1

‖uk
n‖γ

−→0 .

Letting n → ∞, we arrive at B(vk
0 ) = 0. It follows easily thatAλk(u

k
n) = ‖uk

n‖pAλk(v
k
n) ≤

0, and so Aλk(v
k
n) ≤ 0. As might be expected, we arrive at a contradiction with assumption

(B3), by using similar steps as in the proof of Theorem 1.3. This completes the proof.

Proof of Theorem 1.4. Let η = min{ε, δ}, λ∗ = λ+1 (α) + η and w1 = t(u1)u1 and w2 = t(u2)u2,
where t(ui) is defined by (2.16).

It easy to see that Aλ(w1) > 0 and Aλ(w2) ≤ 0, and so w1 /≡w2. Thus, w1 and w2 are
two distinct non negative weak solutions to (1.2). Other properties ofw1 andw2 follow in the
same way as in Section 2.
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[4] F. Cı̂rstea, D. Motreanu, and V. Rădulescu, “Weak solutions of quasilinear problems with nonlinear
boundary condition,” Nonlinear Analysis, vol. 43, pp. 623–636, 2001.

[5] N. S. Trudinger, “OnHarnack type inequalities and their application to quasilinear elliptic equations,”
Communications on Pure and Applied Mathematics, vol. 20, pp. 721–747, 1967.

[6] S. Khademloo, “Eigenvalue problems for the p-Laplace operator with nonlinear boundary condition,”
Australian Journal of Basic and Applied Sciences. In press.

[7] S. I. Pohozaev and L. Veron, “Multiple positive solutions of some quasilinear Neumann problems,”
Applicable Analysis, vol. 74, no. 3-4, pp. 363–391, 2000.

[8] S. I. Pohozhaev, “On the global fibration method in nonlinear variational problems,” in Proceedings of
the Steklov Institute of Mathematics, vol. 219, pp. 286–334, 1997.

[9] P. Drabek, “Strongly nonlinear degenerated and singular elliptic problems,” Pitman Research Notes in
Mathematics Series, vol. 343, pp. 112–146, 1996.

[10] K. J. Brown and Y. Zhang, “The Nehari manifold for a semilinear elliptic equation with a sign-
changing weight function,” Journal of Differential Equations, vol. 193, no. 2, pp. 481–499, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


