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Let £ be the space of complex-valued functions f on the set of vertices T of an infinite tree
rooted at o such that the difference of the values of f at neighboring vertices remains bounded
throughout the tree, and let £, be the set of functions f € £ such that |f(v) - f(v7)| = O(jv| ™),
where 7] is the distance between o and v and v~ is the neighbor of v closest to o. In this paper,
we characterize the bounded and the compact multiplication operators between £ and £, and
provide operator norm and essential norm estimates. Furthermore, we characterize the bounded
and compact multiplication operators between £, and the space L* of bounded functions on
T and determine their operator norm and their essential norm. We establish that there are no
isometries among the multiplication operators between these spaces.

1. Introduction

Let X and Y be complex Banach spaces of functions defined on a set Q. For a complex-valued
function ¢ defined on Q, the multiplication operator with symbol ¢ from X to Y is defined as

M,f=g¢f, VfeX. (1.1)

A fundamental objective in the study of the operators with symbol is to tie the properties of
the operator to the function theoretic properties of the symbol.
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When Q is taken to be the open unit disk D in the complex plane, an important space
of functions to study is the Bloch space, defined as the set B of analytic functions f : D — C
for which

Br = sup<1 - |z|2>|f'(z)| < 0. (1.2)
zeD

The Bloch space can also be described as the set consisting of the Lipschitz functions
between metric spaces from D) endowed with the Poincaré distance p to C endowed with the
Euclidean distance, a fact that was proved by the second author in [1] (see also [2]). In fact,
f € Bif and only if there exist § > 0 such that for all z,v € D

|f(z) - f(w)] < Pp(z,w),
_ 1.3
O @) a3

z#w P(le)

By

More recently, considerable research has been carried out in the field of operator theory
when the set Q is taken to be a discrete structure, such as a discrete group or a graph. In this
paper, we consider the case when Q is taken to be an infinite tree.

By a tree T we mean a locally finite, connected, and simplyconnected graph, which, as
a set, we identify with the collection of its vertices. Two vertices u and v are called neighbors
if there is an edge connecting them, and we use the notation u ~ v. A vertex is called terminal
if it has a unique neighbor. A path is a finite or infinite sequence of vertices [vy, vy, ...] such
that vx ~ vks1 and vg_1 # Uk, for all k.

Given a tree T rooted at o and a vertex u € T, a vertex v is called a descendant of u if u
lies in the unique path from o to v. The vertex u is then called an ancestor of v. Given a vertex
v #0, we denote by v~ the unique neighbor which is an ancestor of v. For v € T, the set S,
consisting of v and all its descendants is called the sector determined by v.

Define the length of a finite path [u = ug, uy, ..., v = u,] (With ux ~ w1 fork =0,...,n)
to be the number n of edges connecting u to v. The distance, d(u, v), between vertices u and v
is the length of the path connecting u to v. The tree T is a metric space under the distance d.
Fixing o as the root of the tree, we define the length of a vertex v by |v| = d(o,v). By a function
on a tree we mean a complex-valued function on the set of its vertices.

In this paper, the tree will be assumed to be rooted at a vertex o and without terminal
vertices (and hence infinite).

Infinite trees are discrete structures which exhibit significant geometric and potential
theoretic characteristics that are present in the Poincaré disk D). For instance, they have
a boundary, which is defined as the set of equivalence classes of paths which differ by finitely
many vertices. The union of the boundary with the tree yields a compact space. A useful
resource for the potential theory on trees illustrating the commonalities with the disk is [3].
In [4] it was shown that, if the tree has the property that all its vertices have the same number
of neighbors, then there is a natural embedding of the tree in the unit disk such that the edges
of the tree are arcs of geodesics in D with the same hyperbolic length and the set of cluster
points of the vertices is the entire unit circle.

In [5], the last two authors defined the Lipschitz space £ on a tree T as the set consisting
of the functions f : T — C which are Lipschitz with respect to the distance d on T and the
Euclidean distance on C. For this reason, the Lipschitz space .£ can be viewed as a discrete
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analogue of the Bloch space B. It was also shown that the Lipschitz functions on T are pre-
cisely the functions for which

IDfIl,, =sup Df (v) < oo, (1.4)
veT*

where Df(v) = |f(v) — f(v™)|and T* =T \ {o}. Under the norm

£, =1f©]+[Df]| (1.5)

0’

£ is a Banach space containing the space L* of the bounded functions on T. Furthermore, for

feL® Iflle <20 fllo-
The little Lipschitz space is defined as

l!oz{felizlllim Df(v)zO} (1.6)
and was proven to be a separable closed subspace of .£. We state the following results that will

be useful in the present paper.

Lemma 1.1 (see [5, Lemma 3.4]). (a) If f € Land v € T, then
|f(@)| <|f(0)] + ol Df]|..- (1.7)

In particular, if || f|| 2 < 1, then | f (v)| < |v| for each v € T*.
(b) If f € Ly, then

lim £ _ (1.8)

[o]—o |7

Lemma 1.2 (see [5, Proposition 2.4]). Let {f,} be a sequence of functions in Ly converging to 0
pointwise in T such that {|| fu|| 2} is bounded. Then f, — 0 weakly in L.

In [6], we introduced the weighted Lipschitz space on a tree T as the set £, of the func-
tions f : T — C such that

sup|v|Df (v) < co. (1.9)

veT*

The interest in this space is due to its connection to the bounded multiplication operators
on £. Specifically, it was shown in [5] that the bounded multiplication operators on £ are
precisely those operators M, whose symbol ¢ is a bounded function in £,,. The space £,
was shown to be a Banach space under the norm

11l = £ ()] +suple|Df (v). (1.10)
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The little weighted Lipschitz space was defined as
Lyo = {f €Ly : |l‘im [v|Df (v) = 0} (1.11)

and was shown to be a closed separable subspace of Z,,.
In this paper, we will make repeated use of the following results proved in [6].

Lemma 1.3 (see [6, Propositions 2.1 and 2.6]). (a) If f € Lw, and v € T, then

|f(@)] < (1 +loglo))|| f |- (1.12)
(b) If f € Ly, then
_ fo)
\v1|~oo10g|v| =0 (1.13)

Lemma 1.4 (see [6, Proposition 2.7]). Let { f,} be a sequence of functions in L converging to 0
pointwise in T such that {|| fu|lw} is bounded. Then f, — 0 weakly in L.

In this paper, we consider the multiplication operators between £ and £, as well as
between £,, and L*. The multiplication operators between .£ and L* were studied by the
last two authors in [7].

1.1. Organization of the Paper

In Sections 2 and 3, we study the multiplication operators between .£,, and .£. We characterize
the bounded and the compact operators and give estimates on their operator norm and their
essential norm. We also prove that no isometric multiplication operators exist between the
respective spaces.

In Section 4, we characterize the bounded operators and the compact operators from
L, to L* and determine their operator norm and their essential norm. As was the case in
Sections 2 and 3, we show that no isometries exist amongst such operators. In addition, we
characterize the multiplication operators that are bounded from below.

Finally, in Section 5, we characterize the bounded and the compact multiplication
operators from L* to £,. We also determine their operator norm and their essential norm.
As with all the other cases, we show that there are no isometries amongst such operators.

2. Multiplication Operators from Z,, to 2

We begin the section with the study of the bounded multiplication operators M, : £y — £
and M(/, : ‘BW,O — ,-20.
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2.1. Boundedness and Operator Norm Estimates

Let ¢ be a function on the tree T. Define

7y = sup Dy (v) log(1 + |v]),
veT*
. ()] _

veT |U| +1 .

Oy

In the following theorem, we give a boundedness criterion in terms of the quantities 7, and
Oy-
¢

Theorem 2.1. For a function ¢ on T, the following statements are equivalent:
(a) My : Ly, — Lis bounded.
(b) My : Ly — Ly is bounded.
(c) Ty and oy are finite.

Furthermore, under these conditions, we have

max{Ty, 0y} < [[Myll < 7y + 0y (2.2)

Proof. (a)=(c) Assume M, : £, — ZLisbounded. Applying M, to the constant function 1,
we have ¢ € £, so that, by Lemma 1.1, we have o, < oo. Next, consider the function f on T
defined by f(v) = log(1 + [v]). Then f(0) = 0; for v # o, a straightforward calculation shows
that

[0IDf (0) = [o] (log(1 + [o]) ~ logJo]) < 1 (2.3)

and limp| . [v|Df(v) = 1. Thus, ||fllw = 1 and so [[Mf|2 < |[My]|. Therefore, for v € T*,
noting that

D(¢f)(v) = Dg(v)f(v) + ¢(v")Df (0v), (2.4)

one has

Dy (v)|f(v)| < D(¢f) () + |¢(v7)|Df(v)

(2.5)
<||Myfll, + oyloIDf () < ||[My]| + 0.

Hence Ty < 0.
(c)=(a) Assume 7, and oy, are finite. Then, by Lemma 1.3, for f € £, and v € T*, we
have

D(¢f)(v) < Dg(0)|f ()| + |¢(v7)|Df (v)
< Dy (v) (1 +1oglol) || ]|, + lvlogDf (v) (2.6)
<7l flly + o (I FIl = 1£ D)
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Since |¢(0)| < oy, we obtain

My fll, < lw©@)[[f©@)] + 7yl fll + o0 (Il fll = 1 £ (0)])
= (rp + o) | fll, + (¥ (0) | = o) | f(0)] (2.7)
< (7g +0y) || f]

w’

proving the boundedness of My, : £y — £ and the upper estimate.

(b)=(c) Suppose M, : Ly o — £y is bounded. The finiteness of o, follows again from
the fact that ¢ = M1 € £y and from Lemma 1.1. To prove that 7, < oo, let 0 < a < 1 and,
for v € T, define f,(v) = (log(1 + |v]))*. Then fa(0) = 0 and |[v|Df,(v) — 0as |v| — oo; so
fa € Lyyp. Since for 0 < a < 1, the function x — x — x% is increasing for x > 1, the function
Df4(v) isincreasing in &, and D f,(v) < Df(v) for v € T*, where f(v) = log(1+|v|), forv € T.
Thus, || fallw < |Ifllw = 1. Therefore, for v € T*, we have

Dy (0)|fa(0)| < D(¢fa) (@) + |¢(v7) | Dfu(®)

(2.8)
< ||My fal + oy l0ID fa(@) < || My || + 04

Letting « — 1, we obtain
Dy (v)log(1 +|v|) < ||M4,|| + 0y (2.9)

Hence 74 < 0.
)= ssume o, and 7, are finite, and let f € £y . Then, emma 1.3, forv € T*,
(c)=(b) A » and 7 fini dl Ly . Then, by L 1.3, f T*
we have

D(¢f)(v) < Dy(0)|f ()| + |¢(v7)|Df (v)

< Dy log(1 + o) o 2+ o

(2.10)

|f(@)]

< T"’log(l 7o) +0y|v|Df(v) — 0

as |[v| — oo. Thus, ¢ f € £y. The boundedness of M, and the estimate | My, f|| 2 < 7, + 0, can
be shown as in the proof of (c)=(a).

Finally we show that, under boundedness assumptions on M, || M| > max{7y, oy }.
For v € T*, let f, = 1/(|v| + 1) yo, where y, denotes the characteristic function of {v}. Then
| follw = 1 and

fosolle= (52 @)

Furthermore, letting f, = (1/2) o, we see that || fo|,, = 1 and ||¢ foll 2 = |¢(0)|. Therefore, we
deduce that ||[My|| > 0.
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Next, fix v € T* and for w € T, define

log(1 +Jwl) if [w] < o],
So(w) = (2.12)
log(1+|v]) if |w| > o).
Then, g, € £, and
Jim lgoll,, = lim fol[log(1 + fo]) ~ loglol] = 1. 213)
Observe that, for w € T*, we have
l¢(w) log(1 + |wl) - ¢s(w™) loglw]| if ] < [v],
D(¢gv)(w) = (2.14)
Dy (w) log(1 + |v]) if |w| > |v|.
Hence
supD (g0 (w) > sup Dys(w) log(1 + [ol) 2 Dys(v) log(1 + [o]). 2.15)
weT* |w|>|v]
Define f, = gu/||gollw- Then || follw = 1 and
ID(¢go)lle . Dys(w)log(1 + o))
Myl 2 |My foll , = > : (2.16)
[F:2( 8ol
Taking the limit as [v] — oo, we obtain || M| > 7. Therefore, || M| > max{Ty, 0 }. O

2.2. Isometries

In this section, we show there are no isometric multiplication operators M, from the spaces
Ly, or Ly, to the spaces £ or £y, respectively.

Assume My, : £y, — ZLis anisometry. Then ||¢s|lz = ||[My1]|2 = 1. On the other hand,
g0 = (1/2)[Myxoll, = (1/2)llxoll,, = 1. Thus supy,r.Dys(0) = lgllz — [gs(0)| = 0, which
implies that ¢ is a constant of modulus 1. Yet, for v € T*, letting f, = (1/(|7| + 1)) xo, we see
that

1
L=|folly = IMyfoll, = Sk (2.17)

which yields a contradiction. Therefore, we obtain the following result.

Theorem 2.2. There are no isometries My, from Ly, to £ or Ly to Lo, respectively.
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2.3. Compactness and Essential Norm Estimates

In this section, we characterize the compact multiplication operators. As with many classical
spaces, the characterization of the compact operators is a “little-oh” condition corresponding
the the “big-oh” condition for boundedness. We first collect some useful results about com-
pact operators from £, or £y to £.

Lemma 2.3. A bounded multiplication operator My, from Ly, to £ is compact if and only if for every
bounded sequence { f,} in L, converging to 0 pointwise, the sequence {||¢ full2} — 0asn — oo.

Proof. Assume M, is compact, and let { f,} be a bounded sequence in £, converging to 0
pointwise. Without loss of generality, we may assume || f,|lw < 1 for all n € N. Then the
sequence { My f,} = {¢ f,} has a subsequence {¢ f,, } which converges in the £-norm to some
function f € £. Clearly ¢(0) fn.(0) — ¢(0) f(0), and by part (a) of Lemma 1.1, for v € T*, we
have

|9 (@) fu (@) = f(@)| < [¢s(0) fu(0) = f(O)] + I D (¢ f = )l

(2.18)
<A+ D¢ fu = fl .-

Thus, ¢ f,, — f pointwise on T. Since f, — 0 pointwise, it follows that f must be identically
0, which implies that ||¢s f,,, || , — 0. With 0 being the only limit point of {¢s f,,} in £, it follows
that ||¢fu|l , — Oasn — oo.

Conversely, assume every bounded sequence {f,} in £, converging to 0 pointwise
has the property that [|¢f,|| , — 0Oasn — oo. Let {g,} be a sequence in £, with ||g,ll,, <1
for all n € N. Then |g,(0)| < 1 for all n € N, and by part (a) of Lemma 1.2, for v € T*, we
obtain

|gn(0)| < (1 +1loglv])||gnll,, < 1+1loglol. (2.19)

Thus, {g,} is uniformly bounded on finite subsets of T. So some subsequence { g, } converges
pointwise to some function g. Fix v € T* and € > 0. Then for k sufficiently large, we have

|3(©) = gu.(v)| < ﬁ g (07) - g(v7)] < ﬁ (2.20)

We deduce

[0IDg(v) < [0]|g(v) = gn (V) + &n, (v7) = g(v7) | + [0|Dgu, (v)
<[ol|g(®) = gn ()| +[0l[gn (v7) = g(v7)| + [vIDgun, (v) (2.21)

<e+|v|Dgn (v) <e+1,

for all k sufficiently large. So g € £,,. The sequence defined by fr = gu, — g is bounded in
£, and converges to 0 pointwise. Thus by hypothesis, we obtain ||¢ fx|| , — 0as k — oo. It
follows that My gy, = ¢ gy, — @g in the £-norm, thus proving the compactness of M. O
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By an analogous argument, we obtain the corresponding compactness criterion for M,
from £, o to L.

Lemma 2.4. A bounded multiplication operator My, from Ly to Lo is compact if and only if for
every bounded sequence {f,} in Ly converging to 0 pointwise, the sequence {||¢ full2} — 0 as
n — .

The following result is a variant of Lemma 1.3(a), which will be needed to prove a
char-
acterization of the compact multiplication operators from £, to £ and from Z, to £
(Theorem 2.6).

Lemma 2.5. For f € Lyand v e T

|f(@)| < |f(0)] +21log(1 + [v])sw(f), (2.22)

where s (f) = sup,,cr.|w|Df(w).

Proof. Fix v € T and argue by induction on n = |v|. For n = 0, inequality (2.22) is obvious. So
assume |v| = n > 0and |f(u)| < |f(0)| +21og(1 + |u|)sw(f) for all vertices u such that |u| < n.
Then

|f@] <|f@) = f@)]+]|f(@)]

1
< asw(f) +|f(0)] +2loglvlsw(f) (2.23)

= £ + ( ; + 21080l )sw(f):

|0

Next, observe that 1/(|v| + 1)< log((|v| + 1) /|v]), so

1 2 o] +1 >
— < <2lo ( . (2.24)
ol = el +1 = 7%\ ol
Hence
1
ol +2log|v| < 2log(|v| +1). (2.25)
Inequality (2.22) now follows immediately from (2.23) and (2.25). O

Theorem 2.6. Let M, be a bounded multiplication operator from Ly, to £ (or equivalently from Ly o
to £y). Then the following statements are equivalent:

(a) My : Ly — Lis compact.

(b) My : Ly — Lo is compact.

(€) limpy— ool ()| /(o] + 1) = 0 and limpy|— Dy (v) log |v| = 0.
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Proof. We first prove (a)=(c). Assume M, : £y — £ is compact. It suffices to show that,
for any sequence {v,} in T such that 2 < |v,| — oo, we have lim,,_. |¢(v,)|/(|vn] + 1) = 0
and lim, Dy (v,) log|v,| = 0. Let {v,} be such a sequence, and for each n € N, define
fn = (1/(|on| + 1)) X0, Then fr(0) = 0, f, — 0 pointwise as n — oo, and || f,|lw = 1. By
Lemma 2.3, it follows that ||¢ f4]| 2 — 0asn — oo. Furthermore

_ _ (vn)
fa L = 5014 ) @) — ) o o) = (o foom)| = 1222 226)
veT™ |va] +1
Thus limy— ool ()| / ([0a] + 1) = 0.
Next, for eachn € Nand v € T, define
0 if 0] < \/[val,
8gn(v) = § 2log|v| —logl|v,| if \/|va| < |v| < |va] -1, (2.27)

log|vy| if |v| > |v,| - 1.

Then Dg,(v) = 0 if |[v| < /|va| or |v| > |v,| — 1. In addition, if \/|v,| < |v| < |v,] -1, then
|v|Dgn(v) < 4. Indeed, there are two possibilities. Either v/|v,| < |v] — 1, in which case

2ol 4 (2.28)

|v|Dgn(v) = 2|v|(loglv| - log(jv| — 1)) < EE

or [v| — 1 < v/|v,| < |v], in which case

[v|Dgn(v) = [v](21og|v| - log|a|)

Vo] + 1 ?
< <\/|UT| + 1> log <|U—n|> (2.29)

2(Vioal+1) 1
SWS2<1+E)<4'

Thus {||gn|lw} is bounded, and {g,} converges to 0 pointwise. By Lemma 2.3, it follows that
lggnllz — 0asn — oo. Moreover

”(an”_ﬂ 2 |‘P(vn)gn(vn) - ‘F(U;)gn(v;” = Dy (vy,) logloy|. (2.30)

Therefore lim,, _, . D¢ (vy,) log |v,| = 0.

To prove the implication (c)=(a), suppose limp|_Dg(v)loglv] = 0 and
limpy) o |¢g(0)|/(Jv| + 1) = 0. Clearly, if ¢ is identically 0, then M, is compact. So assume
My : £, — Lisbounded with ¢ not identically 0. By Lemma 2.3, it suffices to show that if
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{ fu} is bounded in .£,, converging to 0 pointwise, then || f,||2 — 0asn — oo. Let { f,} be
such a sequence, s = sup, || fx|l,,, and fix € > 0. Note that

log(1+[v])

lim D log(1 + = lim D 1 ==~ =0. 2.31
Jim Dy (o) log(1 +[ol) = lim Dy () loglel =5 (231)
Thus there exists an M € N such that
fa@] < =5 Dylogafph < S, Ol e 5
3s||¢ |, 6s l[o|+1 ~ 3s
for |[v| > M. Using Lemma 2.5, for |v| > M, we have
D(¢fn)(v) < Dy ()| fu(v)| + Dfu(v")|¢(v7)]
(@)
< Dy(o) [ ute)| + 21l + ) ol + 5l L
(2.33)

- <||<1f||£|fn(0)| +2Dg(v) log(|o] +1) + |(p(v_)|>||fn||w

9]

<E.

On the other hand, on the set By = {v € T : |[v| < M}, { f,} converges to 0 uniformly,
and thus D f,, does as well. Moreover

D(¢fn)(0) < Dy(0)| fu(0)| + |¢:(v7) |Dfu(0)

2.34
< lglLol 2@ + max|g@)| Dy 2) — 0, .

uniformly on Bjy. Therefore D(¢f,) — 0 uniformly on T. Furthermore, the sequence
{(¢fn)(0)} converges to 0 as n — oo. Hence ||¢ fu|lz — 0asn — oo, proving that M, is
compact.

Finally, note that the functions f, and g, defined in the proof of (a)=(c) are in £y, . So
the equivalence of (b) and (c) is proved analogously. O

Recall the essential norm of a bounded operator S between Banach spaces X and Y is
defined as

IS]l, = inf{||S - K|| : K is compact from X to Y}. (2.35)
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For ¢ a function on T, define the quantities

A(p) = lim supl('u(v)|,
nHOOl‘U‘ZTl |U| + ].
(2.36)
B(y) = lim sup Dygs(v) log|o].
Flofzn
Theorem 2.7. Let My, be a bounded multiplication operator from Ly, to L. Then
1My ], > max{A(y), B(y)}. (237)

Proof. For each n € N, define f, = (1/(n + 1)) y», where y, denotes the characteristic function
of the set {v € T : |v| = n}. Then f, € Luwyo, ||fullw = 1, and f, — 0 pointwise. Thus, by
Lemma 1.4, { f,} converges to 0 weakly in £, . Let X be the set of compact operators from
Ly to £y, and let K € K. Then K is completely continuous [8], and so ||[K fu|l2 — 0 as
n — oo. Thus

1My = K| 2 lim supl| (M = K) ful| , 2 lim supl| My fu| (2.38)
Now note that
I, = sup 2 259)
Hence

My, 2 inf{[| My - K| : K € &)

> limsup|| My | ,
n— oo

()] (2.40)

o] +1

= lim sup
n%oolv‘Zn

= Ayp)-

We will now show that | M|, > B(y). This estimate is clearly true if B(¢) = 0. So assume
{vn} is a sequence in T such that 2 < |v,| — cwasn — oo and

nhlr;qu’(Un) log|va| = B(g)- (2.41)
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Forn e Nand v € T, define

1 +1)]?

hy(v) = log|vy| (2.42)
log|v,| if o] > |vy).
Then h,(0) =0, hy,(v,) = hy(v;;) = log|v,|, and
ol 1 ('Ul i 1> log[lo|(lo] + 1)] if 1< [0] < [vn]
[0|Dhy(v) = { logloal O\ ol /8 - " W)

0 if [v| > |vy]-

The supremum of |v|Dh, (v) is attained at the vertices of length |v,| -1 and is given by

|On] >10g[(|vn|—1)lvnl]
s = sup|v|Dhy,(v) = (|v,| - 1) lo . 2.44
suplo|Diy(v) = (on] - 1) log (71 ) B (2.44)
Since (|vn| — 1) log(|va|/ (|vn] = 1)) <1, we have
2
(10g2) < Hnlly = 80 < log[(|vn| — 1)|val] <2 (2.45)
log|vy| log|vy,|

By letting g, = hy/||hully, we have g, € Luwy, ||gnllw = 1, and g, — 0 pointwise. By
Lemma 1.4, the sequence {g,} converges to 0 weakly in £y . Thus ||[Kgullz — 0asn — oo.
Therefore,

1My = K| > Timsup [|(My — K) gl , > Tim sup [[gsgu] (2.46)
For each n € N, we have g,,(v,,) = gx.(v},,) = log|v,|/ss. SO
1
D(¢gn)(vn) = 5 Dy (vn) loglonl. (2.47)
n

Since lim,, _, s, = 1, we have

My, 2 inf{[| My - K| : K € &)

> lim sup sup D(¢gy) (v)
n—oo ovel*

(2.48)

v

1
lim — D¢ (v,,) log|v,|
Sn

n— oo

B(y).

Therefore, || M|l > max{A(g), B(¢)}. O
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We now derive an upper estimate on the essential norm.

Theorem 2.8. Let My, be a bounded multiplication operator from Ly, to £. Then
1Myl < Ay) +B(w). (249)
Proof. For n € N, define the operator K, on £, by

f() iffof<mn,

(Kuf)(v) = { , (2.50)
f(vy) if |v|>mn,

where f € £, and v, is the ancestor of v of length n. For f € £, (K, f)(0o) = f(0), and
K.f € Lyo. Let B, = {v € T : |v| £ n}, and note that K,,f attains finitely many values,
whose number does not exceed the cardinality of B,. Let {gx} be a sequence in £, such that
llgk[lw < 1 for each k € N. Then a = sup, |gx(0)| £ 1,and |K,, gk (0)| < a. Furthermore, by part
(a) of Lemma 1.3, for each v € T* and for each k € N, we have |K,,gx(v)| < 1+log n. Thus, some
subsequence of { K, g} ey must converge to a function g on T attaining constant values on
the sectors determined by the vertices of length n. It follows that this subsequence converges
to g in £y, as well, proving that K, is a compact operator on £,,. Since M, is bounded as an
operator from £y, to £, it follows that M, K, : £, — £Lis compact foralln € N.

Define the operator J, = I — K,, where I denotes the identity operator on .£,,. Then
Jnf(0) =0, and for v € T*, we have

21D (Juf) (@) = | (Juf) (@) = (Juf) (©7)| < RIDf (0) < [|f]]- (251)
By part (a) of Lemma 1.3, we see that

|(Jnf)@)] < (1 +1oglo]) || f]l.,- (2.52)
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Using (2.51) and (2.52), we obtain

[ (My = MyKa) fll o = | @] ) .
= sup|g(v) (Juf) (©) = ¢ (") (Juf) (v7)]

|v|>n

< sup[|(Juf) (@) [ Dy (v) + | () [D(Jnf) (0)]

|v|>n

= sup || (Juf) ()| Dy (v) + |"’(Z|_)|

[o|>n | |

[0ID(Jxf) (v)]

<sup 1+ ooy + 5L 51,

[o|>n |

< sup [log|v|Dys(v)

[v|>n |

1+ loglvl |qj(U)| ”f”
log|o| |v| +1

< [sprogpyo) o8 £

folzn o 101+ 1

Since

M

—© |flw=1

taking the limit as n — oo, we obtain
1Myl < B(y) + Aly),

as desired.

3. Multiplication Operators from 2 to 2,

15

(2.53)

(2.54)

(2.55)

We begin this section with a boundedness criterion for the multiplication operators from M, :

L — Lyand My : Ly — Lyp.

3.1. Boundedness and Operator Norm Estimates

Let ¢s be a function on the tree T. Define the quantities

6, = sup|o|’ Dy (v),

veT*

wy = sup([v| + 1) | (v)|.
veT

(3.1)
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Theorem 3.1. For a function ¢ on T, the following statements are equivalent:
(@) My : £ — Ly is bounded.
(b) My : Ly — Ly is bounded.
(c) Oy and wy, are finite.

Furthermore, under the above conditions, one has

max{0y, wy} < ||[My|| < 0y + wy. (3.2)

Proof. (a)=(c) Assume M, is bounded from £ to £,. The function f, = (1/2)x, € £ and
I foll , = 1. Thus

lp ()] = llgfollw < [IMy]l. (3.3)

Next, fix v € T*. Then y, € £and || xo|l2 = 1; so

(ol + Dlg@)] = llgxolly < 1M ]- (3.4)

Taking the supremum over all v € T, from (3.3) and (3.4) we see that wj, is finite and

wy < [[My]|- (3.5)
With v € T*, we now define
[w| if |w| < o],
[o| if |w| > |v].

Then f, € £, f,(0) =0and || f| , = 1. By the boundedness of M, we obtain

Myl > | My fol,

S _ - -1
> sup ful|g(ao)fwl = g (07 (]~ D) (3.7)

> sup [wfDy(w)- sup fwl|p(w)].

1<|w|<|v| 1<|w|<|o|
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Therefore,

0Dy (v) < sup [wl’Dy(w) < ||My || +w,. (3.8)

1<|wl<|o)|

Taking the supremum over all v € T*, we obtain 6, < co. From this and (3.5), we deduce the
lower estimate

|| My || > max{6,, w,}. (3.9)

(c)=(a) Assume 60, and wy, are finite. Then, ¢ € £y, and by Lemma 1.1, for f € £ with
lfllz=1and v € T*, we have

[oID(pf)(v) < [o|Dy ()| f ()| +|v||¢(v7)|Df (v)
<[o|Dg (0) | f(0)| + [0’ Dgs () | Df ||, + wy [IDS ], (3.10)
< [0|Dg(v)| f(0)| + (B + wy ) |[DS ||,

Thus, ¢ f € Ly. Note that [f(0)| + ||Df|lc =1 and

ol = le@)] + su]plleqf(v) < wy + SuTPIUIZqu(U) = Wy + 0y (3.11)
veT™ veT™

From this, we have

lgfllw < llwllulf )] + By +wy) [ DF [l < Oy + wys, (3.12)

proving the boundedness of M, : £ — £, and the upper estimate

1M, || < 6, +w,. (3.13)

(b)=(c) The proof is the same as for (a)=(c); since for v € T*, the functions y, and f
used there belong to Zj.

(c)=(b) Assume 60, and wy, are finite, and let f € £y. Then, by Lemma 1.1, for v € T*,
we have

0D (¢f) (@) < [0|Dy ()| f(v)| + [ol|¢(07) |Df (v)

o SO
‘I’ U|

+|o ||‘P(U >|Df(v) (3.14)

+wyDf(v) — 0

as [v| — oo. Thus, ¢f € Lyg. The proof of the boundedness of M, is similar to that in
(©)=(a). O
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3.2. Isometries

In this section, we show there are no isometric multiplication operators M, from the space £
to Ly, or from £y to Ly .
Suppose My, : £ — £, is an isometry. Then ||¢||,, = [M,1]| = 1. On the other hand,

1 1
191 = 3llpxoll = 3lxelle = 1. (.15)

Thus sup, 1. [v|Dyg(v) = |lgll,, — l¢(0)| = 0, which implies that ¢ is a constant of modulus 1.
Now observe that, for v € T*, we have

1= |xoll, = [Myxll,, = (ol + D]g@)| = 0| + 1, (3.16)

which is a contradiction. Since y, € £o forallv € T, if My, : £y — Ly is an isometry, then
the above argument yields again a contradiction. Thus, we proved the following result.

Theorem 3.2. There are no isometries My from L to Ly or from Ly to Ly .

3.3. Compactness and Essential Norm

We now characterize the compact multiplication operators, but first we give a useful com-
pactness criterion for multiplication operators from £ to £y, or from £y to Ly .

Lemma 3.3. A bounded multiplication operator My, from £ to Ly (£y to Ly) is compact if and
only if for every bounded sequence { f,} in L (£y) converging to 0 pointwise, the sequence ||¢ full,,
converges to 0 asn — oo.

Proof. Suppose My, is compact from £ to £y, and { f,} is a bounded sequence in £ converging
to 0 pointwise. Without loss of generality, we may assume || f,|| , < 1 for all n € N. Since M,
is compact, the sequence {¢ f,,} has a subsequence {¢ f,, } that converges in the £,-norm to
some function f € £,,.

By Lemma 1.3, for v € T* we have

l¢r(@) fue (@) = f(©)| < (1 +loglv]) [|¢p fr = flI - (3.17)

Thus, ¢ f,, — f pointwise on T*. Furthermore, since |¢(0) fn, (0) — f(0)| < ll¢gfue = fll oy
¢(0) fn, (0) — f(0) as k — oo. Thus ¢ f,, — f pointwise on T. Since by assumption, f, — 0
pointwise, it follows that f is identically 0, and thus ||¢ fy,, ||, — 0. Since 0 is the only limit
point in £y, of the sequence {¢ f,,}, we deduce that ¢ f,|, — Oasn — oo.

Conversely, suppose that every bounded sequence {f,} in £ that converges to 0
pointwise has the property that ||¢ f,, |, — 0Oasn — oo. Let {g,} be a sequence in £ such that
lgnll , <1 forall n € N. Then |g,(0)| < 1, and by part (a) of Lemma 1.1, for v € T* we have
|gn(v)| < |v]. So {g,} is uniformly bounded on finite subsets of T. Thus there is a subsequence
{gn. }, which converges pointwise to some function g.
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Fix e > 0and v € T*. Then | gy, (v) — g(v)| < €/2 as well as |g,, (v7) — g(v7)| < /2 for k
sufficiently large. Therefore, for all k sufficiently large, we have

Dg(v) < |g(v) = g (©)| + |gn (v7) — g(v7)| + Dgn, (v) < & + Dgy, (). (3.18)

Thus g € £. The sequence f, = gu, — g is bounded in £ and converges to 0 pointwise. So
llg fucll, — O0ask — oco. Thus ¢g,, — ¢g in the £Ly-norm. Therefore, M, is compact.
The proof for the case of M, : £y — Ly is similar. O

Theorem 3.4. Let My, be a bounded multiplication operator from L to Ly, (or equivalently from £y
to Luw ). Then the following are equivalent:

(@) My : £ — L is compact.

(b) My : Ly — Ly is compact.

(¢) limpy|— o |v[*Dyg(v) = 0 and limpy| o (|| + 1)|¢s(v)| = 0.

Proof. (a)=(c) Suppose M, : £ — L, is compact. We need to show that if {v,} is
a sequence in T such that 2 < |v,| increasing unboundedly, then limnéwlvnlzD(p(vn) =0
and lim, o (|vn| + 1)|g(v,)] = 0. Let {v,} be such a sequence, and for n € N define
fn = ((|vn] + 1)/|val) X0, Clearly f, — 0 pointwise, and ||f,||, < 3/2. Using Lemma 3.3,
we see that

lefull, — 0 asn— co. (3.19)

On the other hand, since f,(0) = 0 for all n € N, we have

vy +1
liefoll = suplolD(f) ) 2 ool (P02 Y o] = (onl + Do) @20)
veT* n
Hence lim, —. oo (|vx| + 1) | (v,)| = 0.
Next, for n € N, define
o< |2
0 if |v| < l > |
80 = 2ol -fo,l+2 if |12 <fol < o, (3:21)
|l if o] 2 |vnl,

where |x| denotes the largest integer less than or equal to x. Then g, — 0 pointwise, and
lgnll , = 2. Since g (vy) = gu(v},) = |va|, we have

”‘I’gn"w 2 |vn||‘l’(vn)gn(vn) - ‘F(v;)gn(U;)l = |vn|2D(l’(vn)' (3.22)
By Lemma 3.3 we obtain lim,_, o, |04 |* D (v,,) < limy,— o5 || Qnllw = 0.

(c)=(a) Suppose lim|v\ﬁw|v|2qu(v) = 0 and limjy|— o (7| + 1)|¢r(v)| = 0. Assume ¢ is
not identically zero, otherwise My, is trivially compact. By Lemma 3.3, to prove that My, is
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compact, it suffices to show that if { f,;} is a bounded sequence in .£ converging to 0 pointwise,
then |lgsfyll,, — Oasn — oo. Let { f,} be such a bounded sequence, s = sup, .|| full ,, and fix
€ > 0. There exists M € N such that (o] + 1)|¢(v)| < €/2s and |U|2qu(v) < g/2s for |v| > M.
For v € T* and by Lemma 1.1, we have
[oID(¢ fn) (v) < [0l|¢(©) | Dfu() + [0|Dgs(0) | fu(v7)]

< Iol|¢(@) | Dfu(0) + [01Dgr(0) (| fu(0)] + 01| Df]..)

< ([l + D¢ (@)|Dfu(o) + [0 Dy (@) (| f(0) | + [IDfull.,)

= ([o] + 1)|¢ () D fu(v) + [0 Dy (0) || fu | -

Since f, — 0 uniformlyon {v €T : |[v| < M} asn — oo, s0o does Df,. So, on the set {v € T :
|v| < M}, |v|D(¢ fn)(v) — 0asn — oo. On the other hand, on {v € T : |[v| > M}, we have

10D (¢ ) (@) < (o] + 1)|¢:(0) | Df(0) + [0 Dyp(0) || full, < e. (3.24)

So |v|D(¢ f,)(v) — O0asn — oo. Since f, — 0 pointwise, ¢(0) fn(0) — O0asn — oo. Thus
llgs full,, — Oasn — oo. The compactness of My follows at once from Lemma 3.3.
The proof of the equivalence of (b) and (c) is analogous. O

For ¢ a function on T, define

A(y) = lim sup|o]|¢:(v)

7

[v]>n
(3.25)
B(g) = lim sup|v|* Dy (v).
n—>oo‘v‘2n
Theorem 3.5. Let My, be a bounded multiplication operator from £ to L. Then
1
My |, 2 maxy 4 (), 5B(¢) - (3.26)
Proof. Fix k € N, and for each n € N, consider the sets
E,x={veT:n<|v|<kn, |v| even},
(3.27)

Ouk={veT:n<|v|<kn, |v| odd}.

Define the functions fu,x = xE,, and gnk = X0, Then fui, gnk € Lo, | frkll, = lIgnkll, = 1,
and f, x and g,k approach 0 pointwise as n — oo. By Lemma 1.2, the sequences { f,x} and
{gnk} approach 0 weakly in £y as n — oo. Let X be the set of compact operators from £
to Ly, and note that every operator in X is completely continuous. Thus, if K € X, then
IKfuxll, — Oand [|[Kgukll, — 0,asn — oo.
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Therefore, if K € X, then
|My, - K| > limsup | (My - K) fuk[,,
n— oo

> lim sup|[ My fuil,, (3.28)

> limsup sup (o] + 1)|¢(v)].

n—oo veE,\
Similarly,

| My, — K|| > limsup sup ([o| + 1) |g(0) . (3.29)

n—oo veO,K
Therefore, combining (3.28) and (3.29), we obtain

My, = inf{[| My — K| : K € Ko}

> limsup sup (|v|+1)|w(v)
nﬂoopknzlvl\-;n | | |(P | (3~30)

>limsup sup [v||g(v)].

n—oo  kn>v|>n

Letting k — oo, we obtain || M|, > <4 (¢).
Next, we wish to show that [[ M|, > (1/2)B(¢). The result is clearly true if B(¢) = 0.
So assume there exists a sequence {v,} in T such that2 < |v,| — casn — oo and

Jim [0, "Dy (o) = B(y)- (3:31)
For n € N, define
0 ifv=o0,
2
hn(’()) = (|U||v%l) lf 1 S |U| < |Un|/ (332)
[D] if || > |vy].

Clearly, h,(0) =0, hy(vy) = hy(v;,) = |vs], and

% if [o] =1,
n
=22 1 .
Dha(v) szL+I if 1< o] <[], (3:33)
n

0 if || > |y
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The supremum of Dh,(v) is attained on the set {v € T : |v| = |v,| — 1}. Thus ||hx|| , = (2|v,] -

1)/|va| < 2. Define g, = hy,/||hy|| ,, and observe that g, € £y, ||gnll2 =1,and g, — 0 pointwise

onT.By Lemma 1.2, g, — 0 weakly in £y. Thus ||[Kg,||, — 0asn — oo for any K € K.
Foreachn eN, g,(v,) = gu(v;) = |vn|2/(2|vn| —1). Thus

10D (¢:gn) (V) = [Onl| ¢ (©n) §n(On) — ¢ (v;,) gn (v}, |
(3.34)

[Un|

_ 2
- 2|Un| _ 1|U7’l| D()U(Un)

We deduce that
My =inf([|My - K] K € o)
> limsup || (M, = K)gul|,,
> limsup|| My gu||,
n—oo

> lim sup|o|D(¢g,)(©) (339
® veT*

v

Jim [o,|D(ggn) (0n)

[Un|

i
0o 2n] — 1

1
[oal Dyp () > 573((1’)~

Therefore,
1
M, ], > max{ o#(9), 550 } (336)

We next derive an upper estimate on the essential norm.

Theorem 3.6. Let M, be a bounded multiplication operator from £ to Ly,. Then
1Myl < <A () + B(y). (3:37)
Proof. For each n € N, consider the operator K,, defined by

f(v) if|v|<n,

(Knf)(v) = {f(vn) o> m, (3.38)

for f € £, where v, is the ancestor of v of length n. Then (K, f)(0) = f(0), and K,,f € Ly.
Arguing as in the proof of Theorem 2.8, by the boundedness of My, it follows that MK, is
a compact operator from £ to £,,.
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Define the operator J, = I — K,,, where I is the identity operator I on .£. Then,
D(Juf)(@) < Df(0) <||f]| - (3.39)
Since (J,.f)(v) = 0 for |v| < n, by Lemma 1.1, we obtain
|UnH) @) <RI (3.40)

From these two estimates, we arrive at

My Tuf |l = suplolly (@) (Juf) @) = ¢ (") Juf) (v7)]

[v|>n
< flllp[lle¢(U)|(]nf)(U)| + [vllg (@) |[DUnf) (@)]
3.41)
Juf) @) ) (
< supioDy(e) DO soppolp(0) D)
[o]>n |U| [v|>n
< sup[v|*Dy (@) | f|| o + suplollg (@) ||| £ .-
[o]>n [v|>n
Since
| My |, < limsup|| M, — MK, ||
= limsup su My, - MK
nHwP”f”lI:l”( ¢ oK) fll (3.42)
= limsup sup ||MyJ.f]l,.
n—oo ||fflz=1
from (3.41), taking the limit as n — oo, we obtain
My |, < B(w) + 4 (4), (3.43)
as desired. O

4. Multiplication Operators from 2, or 2, to L*

In this section, we study the multiplication operators M, from the weighted Lipschitz space
or the little weighted Lipschitz space into L*. We begin by characterizing the bounded
operators and determining their operator norm. In addition, we characterize the bounded
operators that are bounded from below and show that there are no isometries among them.
Finally, we characterize the compact multiplication operators and determine the essential
norm.
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4.1. Boundedness and Operator Norm

For a function ¢ on T, define

Yo = max{ lgs(0) ,suTIz(l +logl|v|) |q;(v)|}. 4.1)

Theorem 4.1. For a function ¢ on T, the following statements are equivalent:
(a) My : Ly — L% is bounded.
(b) My : Ly — L is bounded.

(c) sup,cr- log |v|lg(v)| is finite.
Furthermore, under the above conditions, one has || M| = .

Proof. The implication (a)=(b) is obvious.
(b)=(a) We begin by showing that, for each f € £, the function ¢ f is bounded. Since

M, is bounded on Ly, ¢ = M1 € L*. Thus, if f is constant, then ¢ f € L*. Fix f € Ly, f
nonconstant, v € T, and set n = |v|. For w € T, define

. ,
fu(w) = {f(w) el (4.2)

f(wy) if lw|>mn,

where w, is the ancestor of w of length n. Then f,, € Ly, and || full,, < I f|l,- Thus, ¢ f, € L®
and

o fullee < 1My 111 £l (4.3)

So |¢(v) f (v)| = l¢p(v) fu (V)| < [[My]lllfIl,- Therefore, ¢s f € L* and

g flloe < M1l (44)
proving the boundedness of M, as an operator from £,, to L*.
(a)=(c) Assume M, : £, — L* is bounded. Then ¢ = M, 1 € L*, and
Myl = llllo = [0 (0)]- (4.5)

For v € T, define f(v) = log(1 + |v|). Then f(0) = 0, and since for x > 1 the function x —
xlog((x +1)/x) is increasing and has limit 1 as x — oo, f € £, and ||f||,, = 1. Thus

1My 1> . = suplog(1 + oDl (o), we)

proving (c). Furthermore, from (4.5) and (4.6), we obtain

| My | > v (4.7)
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(c)=(a) Assume sup, ;. log|v||¢g(v)| < oo. Let f € Ly such that |[f|, = 1. Then
lgg(0) f(0)| < |¢r(0)], and by Lemma 1.3, for v € T*, we have

l9(@)f ()] < (1 +loglol) [¢(0)] < vy (48)
Thus, ¢ f € L* and

el < Ve (4.9)

proving the boundedness of M, as an operator from £, to L*. Taking the supremum over all
functions f € £, such that ||f[|,, = 1, from (4.9) we obtain || M| < y,. Therefore, from (4.7)
we conclude that || My || = . O

4.2. Boundedness from Below

Recall that an operator S from a Banach space X to a Banach space Y is bounded below if there
exists a constant C > 0 such that for all x € X

[ISx]| > Clx]|. (4.10)

Theorem 4.2. A bounded multiplication operator My, from Ly or Ly to L* is bounded below if
and only if

intl @1 o 4.11)
vel || + 1

Proof. Assume M, is bounded below, and, arguing by contradiction, assume there exists v €
T such that ¢s(v) = 0. Then M, x, is identically 0. Since operators that are bounded below
are necessarily injective [8], it follows that M, is not bounded below. Therefore, if M, is
bounded below, then ¢ is nonvanishing.

Next assume ¢ is nonvanishing and infyer|g(v)|/(Jv| + 1) = 0. Then, there exists
a sequence {v,} in T with 1 < |v,|] — oo, such that |¢(v,)|/(|vn| +1) — 0Oasn — oo. For
n €N, define f, = (1/(|vn| + 1)) xo,. Then || fullw = 1, but

|‘F(vn)|
= — 4.12
I ol = (0 0. @12)

Thus, M, is not bounded below.

Conversely, assume infyer|¢(v)|/ (o] + 1) = ¢ > 0 and that M, is not bounded below.
Then, for each n € N, there exists f, € £y such that ||f,|lw = 1 and ||¢ fullcc < 1/n. Then, for
each v € T, we have

c(lol + DIfu@)]| < lp(@)fu(@)] <, @.13)
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so that the sequence {g,} defined by g,.(v) = (|v| + 1) f4(v) converges to 0 uniformly.
On the other hand, for v € T*, we have

v

[9|D fn(v) = 8n(v) — 8n(v")

o +1 (4.14)
< [gn(@)| +|gu(v7)| —0

uniformly as n — oo. Since |¢(0) f»(0)| < 1/n, yet || fullw = 1, this yields a contradiction. O

4.3. Isometries

In this section, we show there are no isometries among the multiplication operators from the
spaces Ly, or Ly into L*=.

Suppose M, is an isometry from £y, or Ly to L*. Then, for v € T the function f, =
(1/(|v| + 1)) xo isin Ly, || foll,, =1, and

1
o]+ 1

lg@)] = IMyfoll, = Il follw =1 (4.15)

Thus, |¢(v)| = |v| + 1. On the other hand, since M, is bounded, by Theorem 4.1, we have
sup, .. log [v]|¢r(v)| < o0; s0 ¢(v) — 0 as |v| — oo, which yields a contradiction. Thus, we
proved the following result.

Theorem 4.3. There are no isometric multiplication operators My, from Ly or Ly to L=,

4.4. Compactness and Essential Norm

We begin by giving a useful compactness criterion for the bounded operators from £, or
Lyointo L.

Lemma 4.4. A bounded multiplication operator My, from L, to L* is compact if and only if for every
bounded sequence { f,} in L, converging to 0 pointwise, the sequence || f || approaches 0 as n —
(oo

Proof. Assume M, is compact on £y, and let { f,} be a bounded sequence in £,, converging
to 0 pointwise. By rescaling the sequence, if necessary, we may assume || f|lw < 1foralln € N.
By the compactness of My, {f,} has a subsequence {f,, } such that {¢ f, } converges in the
norm to some function f € L. In particular, ¢ f,, — f pointwise. Since by assumption, f, —
0 pointwise, it follows that f must be identically 0. Thus, the only limit point of sequence
{¢fn}in L= is 0. Hence ||¢ fullco — O.

Conversely, assume that for every bounded sequence {f,} in £, converging to 0
pointwise, the sequence ||¢ f,||, approaches 0 as n — co. Let {g,} be a sequence in £y
with ||gullw < 1. Fix w € T, and, by replacing g, with g, — gn(w), assume g,(w) = 0
for all n € N. Then, for each v € T, |g.(v)| = |gn(v) — gu(w)| < d(v,w). Therefore, g,
is uniformly bounded on finite subsets of T, and so some subsequence {gy, } ..y converges
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pointwise to some function g on T. Fix ¢ > 0 and v € T*. Then, |g(0) — gu(0)| < €/2,
|gn, (0) — g(©)| < €/(2|v]), and |gn, (v7) — g(v7)| < €/(2|v]) for all k sufficiently large. Thus,

[v|Dg(v) < [v][|g(v) — g(v7) ~ (8n (V) = gn, (V7)) | + [0|D g (v)

(4.16)
<&+ |v|Dgy, (v),
for k sufficiently large. Consequently, g € £, we have
Isll = I8()] +suplviDg (@)
<|g(0) — gn. (0)| + |gnc (0)| + €+ 1s}1€1Tp Dgy, (0) (4.17)

<2e+ || gnl, <2e+1.

Since ¢ was arbitrary, it follows that || g||,, < 1. Therefore, the sequence { fx} defined by fx =
8n.— g isbounded in £, and converges to 0 pointwise, hence, by the hypothesis, ||¢ fx||.,, — 0
asn — oo. We conclude that ¢g,, — ¢gin L®, proving the compactness of M. O

By an analogous argument, we obtain the corresponding compactness criterion for
Mtp : ‘Zw,O — L%,

Lemma 4.5. A bounded multiplication operator My, from Ly o to L* is compact if and only if for
every bounded sequence { f,} in Ly converging to 0 pointwise, the sequence ||¢ f4|lc approaches 0
asn — oo.

Theorem 4.6. For a bounded operator My, from Ly to L* (or equivalently from Ly to L*) the
following statements are equivalent:

(@) My : Ly — L% is compact.

(b) My : Lo — L* is compact.

(c) limp| - o log |v]|g(v)| = 0.

Proof. (a)=(b) is trivial.
(b)=(c): Let {v,,} be a sequence of vertices such that 1 < |v,| — cwasn — oo. We need
to show that

r}ijr;olog|vn||¢(vn)| =0. (4.18)

For n € N define

0 if v=o0,

fulo) = | (oglo)’
log[o]

if 1< o] < |oal, (4.19)

log|vy| if [o] > |vy).
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Then { f,} converges to 0 pointwise. Using the fact that (|| — 1) (log |v| — log(|v| = 1)) < 1 for
any choice of v in T* with |v| > 1, we have

o] (|v|—1)[(log|vl)2_(log(lvl—l))z] . 2(loglv| +log(|v| - 1)) <4 (420)

IR/ 0) = o7 Toglon] : Toglo.|

for 2 < |v| < |v,|. Moreover, |v|Df,(v) = 0 for |[v| = 1 and for |v| > |v,|. Thus, f, € Lwy,
and {||fxll,,} is bounded. By the compactness of My, as an operator from £y to L* and by
Lemma 4.5, we deduce

log|o||g ()| < |lgfu]l,, — O (4.21)

asmn — oo.
(c)=(a) Assume { f,} is a sequence in £,, converging to 0 pointwise and such that a =
sup,,nll fullw < oo. By Lemma 1.3, for all v € T* and all n € N, we have

| (©) fu(v)| < a(1+1og|v])|¢(v)]. (4.22)

Fix € > 0. There exists N € N such that N > 3, and for |v| > N, log|v||¢(v)| < £/2a. Thus, for
|| > N and for all n € N, |¢(v) f(v)| < 2alog|v||¢g(v)| < €. On the other hand, since f, — 0
pointwise, for each vertex v such that |v| < N and ¢(v) #0, we obtain | f,(v)| < ¢/|g(v)| for all
n sufficiently large. Hence |¢(v) f»(v)| < € for all v € T and all n sufficiently large. Therefore,
My full, — Oasn — oo, which, by Lemma 4.4, proves the compactness of M,,. O

Next, we determine the essential norm of the bounded multiplication operators M,
from £, or Ly to L.

Theorem 4.7. Let M, be a bounded multiplication operator from Ly, or Ly to L*. Then

My ]|, = lim sup log[v][g(2)]. (4.23)
vizn

Proof. Define A(y) = limnﬁwsuplvm log |v||gs(v)]. If A(g) = O, then by Theorem 4.6, M, is
compact, hence its essential norm is 0. So assume A(y) > 0. We first show that | M|, > A(g).
Let {v,} be a sequence in T such that 1 < |v,| = wwasn — oo and

A(y) = lim log|on||¢ ()] (4.24)
Fix p € (0,1), and for each n € N, define
0 if v=o0,

fup(o) = { (ogle)™ (4.25)

(10glvn|>p
log|vy| if |v| > |vy).

if 1< |v| < |y,
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Then { f,,} converges to 0 pointwise, f,, € Lwo, fup(vn) = log|v,|, and

ol = z<|SL|1<I‘) ﬁ [(108|U|)p+1 - (log(Jv| - 1)>P+1]
7 [ "| (4.26)
Un . )
= W[(logwnbp 1_ (log(lvn| — 1))P 1] < p+ 1

By Lemma 1.4, {f,,} converges to 0 weakly in £y,o. Let K be a compact operator from Ly o
(or equivalently, from £,) to L*. Since compact operators are completely continuous, it
follows that [|K fypl| , — O0asn — oco. Thus,

M, -K)f,
| My - K| > lim sup I€ "’”f ||>f o,
n—owo npllw

2

1
. 4.27
i 11Tﬂszp||qufn,p”oo 427

1 .
> i 11inﬁsip logl|vn| ¢ (va)].

Taking the infimum over all such compact operators K and passing to the limit as p ap-
proaches 0, we obtain

My, 2 lim logloul|gs(va)| = Ay). (4.28)

To prove the estimate || My ||, < A(y), for eachn € Nand for f € £,,, define

oien
Kof (o) = {f w0 e (429)
f(vn) 1f |v| > n,

where vy, is the ancestor of v of length 7. In the proof of Theorem 2.8, it is was shown that K,
is a compact operator on £y. Since My, : £, — L% is bounded, it follows that MK, is also
compact as an operator from £, to L*.

Let v € T, and let w be a vertex in the path from o to v of length k > 1. Label the
vertices from w tov by vj, j =k, ..., |v]. Then for f € £, with || f]|,, = 1, we have

] [7]
|f(@) = f@)| < D |f(v)) - f(vj1)] < * <loglol (4.30)
jok+1 j=k+1/
Thus
| (My = MyKa) f|,, = sup|g(@)||f (@) = f(vn)| < suploglol|y(v)]. (4.31)

|o|>n [o|>n
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We deduce
[ My]|, < l?ﬁllfln (My = MyK)f|,, < sup log|ol|¢ (v)]. (4.32)
Taking the limit as n — oo, we obtain [[ M|, < A(g). O

5. Multiplication Operators from L* to 2, or 2,

In this last section, we study the multiplication operators M, from L* into the weighted Lip-
schitz space or the little weighted Lipschitz space. We first characterize the bounded
operators and determine the operator norm. We also show there are no isometries among
such operators. Finally, we characterize the compact multiplication operators and determine
the essential norm.

5.1. Boundedness and Operator Norm

For a function ¢ on T, define

My = g (0)| + Slenglvl[Iw(v)l + e (@)|]- (5.1)

Theorem 5.1. For a function ¢ on T, the following statements are equivalent:
(@) My : L® — £y, is bounded.

(b) supv€T|U||(P(U)| < .
Furthermore, under these conditions, one has

| Myl = 14 (5.2)

Proof. (a)=(b) Assume M, : L* — £, isbounded. Fix v € T*. Since y, € L* and || x|, = 1,
the function ¢y, € Ly, so

[ol|lg ()| < (ol + D |w()| = sungID(wxv)(w) < || My |- (5.3)

Thus, sup, . |vllg(v)] is finite.
(b)=(a) Suppose sup,|v||g(v)| < oo. Let f € L* such that | ]|, = 1. Then

1My fll,, < (@] + suplol[lg )] + [ (@7)]] < oo (5.4)

Thus, M, is bounded and || M,]| < 7.
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We next show that || My || > 7. The inequality is obvious if ¢ is identically 0. For ¢ not
identically 0 and for v € T, define

0 if ¢(v) =0,
@ if ¢g(v) #0, |v| even

f) = 1 4 (0)] ¢(v)#0, |v| even, (5.5)
‘|g§—3| if ¢(v) #0, [v] odd.

Then ||f]|, =1,and for v € T*, D(¢ f)(v) = |¢(v)| + |¢r(v7)], so that

1M, A1, = @]+ suplelllg@)] + o) ] 56

Thus, || M| > 1, completing the proof. O

In the next result, we characterize the bounded multiplication operators from L* to
L.

Theorem 5.2. For a function ¢ on T, the following statements are equivalent:
(@) My : L® — Ly is bounded.
(b) limpy| slollgs(0)] = 0.

Furthermore, under these conditions, one has,

[ My | = 7 (5.7)
Proof. (a)=(b) Assume M, : L*® — Ly is bounded. Applying M, to the constant function
1, we obtain ¢ = M1 € Ly . On the other hand, if O = {v € T : |v] is odd}, then ¢ yo € Ly,

so for v € T*, we have

[0l|¢(v)| = [v]|¢s(v) | Dyo(v) < [0|D(pxo) (v) +[0|Dy(v) | yo (v7)|

(5.8)
< [ID(gxo) (v) + |v|Dy(v) — 0,
as |v| — oo, proving (b).
(b)=(a) Suppose |v||¢g(v)] — 0as |v| — oo. First observe that
01Dy (@) < o)) + = ol - 1) (2")|
o[ -1 (5.9)
< Pllg@)| +2(ol - D]y (v7)| —0,
as |v| — oo. Then for f € L* and v € T*, we have
[0ID(¢f) (@) < [vl|g ()| Df () + [0|Dyg (v) | f (v7) ]
(5.10)

< @pllg@)| + 101Dy (@) [|f]l, — 0,
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as |v| — oo.Thus, ¢ f € Ly . The proof of the boundedness of M, and of the formula || M| =
7]y is similar to the case when M, : L® — Z,. O

5.2. Isometries

As for all other multiplication operators in this paper, there are no isometries among the mul-
tiplication operators from L® into £, or Ly .

Assume My, is an isometry from L® to £y or £y . Then, for v € T the function f, =
(1/(|9]+1)) xo is in Ly, with [[ My xol, = [lxoll,, = 1. In particular, it follows that |¢s(0)| = 1/2,
and for v € T*,

(lol + D) |g(v)] = 1. (5.11)

Thus, |¢g(v)| = 1/(Jv| + 1). On the other hand, taking as a test function f the characteristic
function of the set {v € T : |v| <1}, we obtain

(5.12)

NI W

1= 1f1L = 1Myl = )] +max{sup|qr<v> (o) ,SUPZIw(v)I} >

[v|=1 lv]=1

which yields a contradiction. Therefore, we obtain the following result.

Theorem 5.3. There are no isometric multiplication operators My from L* to Ly or Ly .

5.3. Compactness and Essential Norm

The following two results are compactness criteria for multiplication operators from L* into
Ly or Ly similar to those given in the previous sections.

Lemma 5.4. A bounded multiplication operator My from L* to Ly, is compact if and only if for
every bounded sequence { f,} in L* converging to 0 pointwise, the sequence ||¢s f,||lw approaches 0 as
n — oo.

Proof. Assume M, is compact, and let {f,} be a bounded sequence in L* converging to 0
pointwise. By rescaling the sequence, if necessary, we may assume || f,||c <1 foralln € N.
By the compactness of My, {f,} has a subsequence {f,, } such that {¢ f, } converges in the
L-norm to some function f € 2. Since by Lemma 1.3, for v € T*,

|9 (@) fu () = f (@) < (1 +log[o]) [lg fui = £l (5.13)

and |¢(0) fr, (0) = f(O)| < g fur = fl,,» it follows that ¢ f,,, — f pointwise. Since by assump-
tion, f, — 0 pointwise, the function f must be identically 0. Thus, the only limit point of the
sequence {¢ f,} in £, is 0. Hence ||¢ fu|lw — Oasn — oo.

Conversely, suppose ||¢ f|lw approaches 0 as n — oo for every bounded sequence
{fn} in L*® converging to 0 pointwise. Let {g,} be a sequence in L* with ||g,|| , < 1. Then
some subsequence { g, } converges to a bounded function g. Thus, the sequence f,, = gu, — &
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converges to 0 uniformly, and || f,|| , is bounded. By the hypothesis, it follows that [|¢ f,,, [|,, —
0ask — oo. Thus, ¢gy,, — ¢gin £,. Therefore, M, is compact. O

By an analogous argument, we obtain the corresponding result for My, : L% — Ly .

Lemma 5.5. A bounded multiplication operator My, from L* to Ly is compact if and only if for
every bounded sequence { f,} in L* converging to 0 pointwise, the sequence ||¢ fy||,, approaches 0 as
n — oo.

Theorem 5.6. For a bounded operator My, from L to Ly, the following statements are equivalent:
(a) My is compact.
(b) limy| — o [0lgs ()] = 0.

Proof. (a)=(b) Assume M, is compact. Let {v,} be a sequence in T such that [v,| — oo as
n — oo. For n € N, let f,, denote the characteristic function of the set {w € T : |w| > |v,l|}.
Then || fu||, = 1and f, — 0 pointwise. By Lemma 5.4 and the compactness of M, it follows
that

[onl|¢(0n)| = [0n|D (¢ fu) (n) < || My ful,, — O (5.14)

asn — oo.

(b)=(a) Assume limjy| o |v]|¢r(v)| = 0 and that ¢ is not identically 0. In particular, ¢ is
bounded. Let { f,,} be a sequence in L* converging pointwise to 0 such that || f,|| , is bounded
above by some positive constant C. Then corresponding to € > 0, there exists N € N such that
|o|lg(v)| < e/4C for all vertices v such that |v| > N. Therefore, for |v| > N and n € N, we have

[2ID(¢ fn) (@) < [ol|¢ (@) |Dfu(©) + [0|Dy (0) | fu(v7)| < &. (5.15)

Furthermore, the sequence { f,} converges to 0 uniformly on the set {v € T : |[v| < N} so that
|fn(v)| < e/4N||g]|, for all n sufficiently large. Hence |v|D(¢ f,,)(v) < € for all v € T* and all
n sufficiently large. Consequently, ||¢ f,||,, — 0asn — oo. Using Lemma 5.4, we deduce that
M, is compact. O

Since the above proof is also valid when M, is a bounded operator from L* to £y,
through the application of Lemma 5.5, from Theorems 5.2 and 5.6 we obtain the following
result.

Corollary 5.7. For a function ¢ on T, the following statements are equivalent:
(@) My : L* — Ly is compact.
(b) My : L — Ly is bounded.
(c) My : L* — Ly is compact.
(d) Timp — o [ollgs(0) | = 0.

We now determine the essential norm of the bounded multiplication operators from
L* to L.
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Theorem 5.8. Let My, : L* — L be bounded. Then

[ My]], = Jim suplo] [le@)|+ g @] (5.16)

Proof. Set B(g) = limy—ocsup,,,[vlllg(@)] + [¢(@7)]]. In the case B(y) = 0, then
limyy| . o|v|¢g(v) = 0, so by Theorem 5.6, M, is compact, and thus ||[My|l. = 0. So assume
B(y) > 0. Then there exists a sequence {v,} in T such that 1 < |v,| — cwasn — oo and

B(y) = lim [o[|g(o)]| + |9 (o) ] (517)

For each n € N let f, be the function on T defined by

-

0 if |v]| < |v,| or ¢(v) =0,
¥(©) if |v| > |v,|, |v| is even, ¢(v)#0
fu(@) =1 |¢@)| = ’ ’ (5.18)
- |(PEU; | otherwise.
(e (o

Then || f,||,, = 1, and {f,} converges to 0 pointwise. Thus, for any compact operator
K:L® — £, there exists a subsequence { f,, } such that ||[K f,,[|,, — 0ask — oo. Thus

1My = K] 2 Timsup | (My = K) full,, 2 lim supllg fol,

(5.19)
= limsup sup [v|[|¢ ()| + |¢(v7)]] = B(¢).

k—oo  [v]2[vn|

Therefore, || M|, > B(¢).
We now show that [[ M|, < B(¢). For each n € N, define the operator K, on L* by

f(v) if|v|<n,
Ky f(v) = (5.20)
0 if |v] > n.
Then, for v € T*, we have
|[v|Df(v) for 1< |v| <mn,
[0|D(K,f)(v) = { (n+ )| f(v7)| for|v|=n+1, (5.21)
0 for |[v| >n+1.

Thus, K, f € £y, with ||[K,.f|l,, < |f(0)| +2n| f]|..
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Assume { fi} is a sequence in L* with || k||, < 1. Then there exists a subsequence { f; }
converging pointwise to some function f € L*. Thus,

| |W

|fk (o) - f(o)| +max{ sup |U|D<fk —f)(v) sup |U||fk (v7) - f(v >|} (5.22)

1<|v|<n [v|=n+

ankj_an

<| (o) - f(o)|+2nma><{ sup D(fiy = f) (@), sup |fiy (") - f<v>|}

1<|v|<n |v|=n+

So ||ank]. - anllW — 0asj — oo. Therefore, K, is compact, and thus, since M, is bounded,
MK, is also compact.
For f € L*, we have

[ (M = My Koi) fl,, = suplol|g:(0) f(0) =g (v7) f(07) + ¢ (07) Kuf (07)]

|v|>n

=ma><{ sup [0]|¢:(@)]|f ()], sup [v]|¢(v)f (o) - w(v)f(v)l}

[o|=n+1 |o|>n+1

< supfol[|g@)] + ¢ ()] f]l.,

[o>n
(5.23)
Therefore, we obtain
[ My, < hinjiP”Mtp - My K, ||
= hi“flipnﬁrﬁl” (My - My K)o (5.24)
<B(y),
thus completing the proof. O

Acknowledgment

The authors wish to thank the referee for the very helpful suggestions for the improvement of
the paper.

References

[1] E Colonna, “Bloch and normal functions and their relation,” Rendiconti del Circolo Matematico di
Palermo. Serie I, vol. 38, no. 2, pp. 161-180, 1989.

[2] K. H. Zhu, Operator Theory in Function Spaces, vol. 139 of Monographs and Textbooks in Pure and Applied
Mathematics, Marcel Dekker, New York, NY, USA, 1990.



36 International Journal of Mathematics and Mathematical Sciences

[3] P. Cartier, “Fonctions harmoniques sur un arbre,” in Symposia Mathematica, vol. 9, pp. 203270, Aca-
demic Press, London, UK, 1972.

[4] J. M. Cohen and F. Colonna, “Embeddings of trees in the hyperbolic disk,” Complex Variables, vol. 24,
no. 3-4, pp. 311-335, 1994.

[5] F. Colonna and G. R. Easley, “Multiplication operators on the Lipschitz space of a tree,” Integral Equa-
tions and Operator Theory, vol. 68, no. 3, pp. 391-411, 2010.

[6] R.E Allen, F. Colonna, and G. R. Easley, “Multiplication operators on the weighted Lipschitz space of
a tree,” to appear in The Journal of Operator Theory.

[7] F. Colonna and G. R. Easley, “Multiplication operators between the Lipschitz space and the space of
bounded functions on a tree,” to appear in Mediterranean Journal of Mathematics.

[8] J. B. Conway, A Course in Functional Analysis, vol. 96 of Graduate Texts in Mathematics, Springer, New
York, NY, USA, 2nd edition, 1990.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



