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We apply the rough set theory to BL-algebras. As a generalization of filters (subalgebras) of BL-
algebras, we introduce the notion of rough filters (subalgebras) of BL-algebras and investigate
some of their properties.

1. Introduction

The rough sets theory introduced by Pawlak [13] has often proved to be an excellent
mathematical tool for the analysis of a vague description of objects (called actions in decision
problems). Many different problems can be addressed by rough sets theory. During the last
few years this formalism has been approached as a tool used in connection with many
different areas of research. There have been investigations of the relations between rough
sets theory and the Dempster-Shafer theory and between rough sets and fuzzy sets. Rough
sets theory has also provided the necessary formalism and ideas for the development of
some propositional machine learning systems. It has also been used for, among many others,
knowledge representation; data mining; dealing with imperfect data; reducing knowledge
representation and for analyzing attribute dependencies. The notions of rough relations and
rough functions are based on rough sets theory and can be applied as a theoretical basis
for rough controllers, among others. An algebraic approach to rough sets has been given by
Iwinski [1]. Rough set theory is applied to semigroups and groups (see [2, 3]). In 1994, Biswas
and Nanda [4] introduced and discussed the concept of rough groups and rough subgroups.
Jun [5] applied rough set theory to BCK-algebras. Recently, Rasouli [6] introduced and
studied the notion of roughness inMV -algebras.

BL-algebras are the algebraic structures for Hàjek Basic Logic (BL-logic) [7], arising
from the continuous triangular norms (t-norms), familiar in the frameworks of fuzzy set
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theory. The language of propositional Hàjek basic logic [7] contains the binary connectives ◦,
⇒ and the constant 0.

Axioms of BL are as follows:

(A1) (ϕ ⇒ ψ) ⇒ ((ψ ⇒ ω) ⇒ (ϕ ⇒ ω)),

(A2) (ϕ ◦ ψ) ⇒ ϕ,

(A3) (ϕ ◦ ψ) ⇒ (ψ ◦ ϕ),
(A4) (ϕ ◦ (ϕ⇒ ψ)) ⇒ (ψ ◦ (ψ ⇒ ϕ)),

(A5a) (ϕ ⇒ (ψ ⇒ ω)) ⇒ ((ϕ ◦ ψ) ⇒ ω),

(A5b) ((ϕ ◦ ψ) ⇒ ω) ⇒ (ϕ ⇒ (ψ ⇒ ω)),

(A6) ((ϕ ⇒ ψ) ⇒ ω) ⇒ (((ψ ⇒ ϕ) ⇒ ω) ⇒ ω),

(A7) 0 ⇒ ω.

BL-algebras rise as Lindenbaum algebras from the above logical axioms in a similar
manner that Boolean algebras orMV -algebras do from Classical logic or Lukasiewicz logic,
respectively.MV -algebras are BL-algebras while the converse, in general, is not true. Indeed,
BL-algebras with involutory complement areMV -algebras. Moreover, Boolean algebras are
MV -algebras andMV -algebraswith idempotent product are Boolean algebras. Filters theory
plays an important role in studying these logical algebras. From logical point of view, various
filters correspond to various sets of provable formula.

In this paper, we apply the rough set theory to BL-algebras, and we introduce the
notion of (lower) upper rough subalgebras and (lower) upper rough filters of BL-algebras
and obtain some related results.

2. Preliminaries

Definition 2.1. A BL-algebra is an algebra (L,∧,∨, ∗, → , 0, 1) with four binary operations
∧,∨, ∗, → and two constants 0, 1 such that:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice,

(BL2) (L, ∗, 1) is a commutative monoid,

(BL3) c ≤ a → b if and only if a ∗ c ≤ b, for all a, b, c ∈ L, (i.e., ∗ and → form an adjoint
pair),

(BL4) a ∧ b = a ∗ (a → b),

(BL5) (a → b) ∨ (b → a) = 1.

Examples of BL-algebras [7] are t-algebras ([0, 1],∧,∨, ∗t, → t, 0, 1), where ([0, 1],∧,
∨, 0, 1) is the usual lattice on [0, 1] and ∗t is a continuous t-norm, whereas → t is the
corresponding residuum.

If (L,∧,∨,−, 0, 1) is a Boolean algebra, then (L,∧,∨, ∗, → , 0, 1) is a BL-algebra where the
operation ∗ coincides with ∧ and x → y = x− ∨ y, for all x, y ∈ L.

From now (L,∧,∨, ∗, → , 0, 1) or simply L is a BL-algebra.
A BL-algebra is called anMV -algebra if ¬¬x = x, for all x ∈ L, where ¬x = x → 0.
A BL-algebra is nontrivial if 0/= 1. For any BL-algebra L, (L,∧,∨, 0, 1) is a bounded

distributive lattice. We denote the set of natural numbers by N and define a0 = 1 and
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an = an−1 ∗ a, for n ∈ N \ {0}. The order of a ∈ L, a/= 1, in symbols ord(a) is the smallest
n ∈N such that an = 0; if no such n exists, then ord(a) = ∞.

Lemma 2.2 (see [7–11]). In any BL-algebra L, the following properties hold for all x, y, z ∈ L:
(1) x ≤ y if and only if x → y = 1,

(2) x → (y → z) = (x ∗ y) → z = y → (x → z),

(3) if x ≤ y, then y → z ≤ x → z and z → x ≤ z → y,

(4) y → x ≤ (z → y) → (z → x) and x → y ≤ (y → z) → (x → z),

(5) x ≤ y implies x ∗ z ≤ y ∗ z,
(6) 1 → x = x, x → x = 1, x ≤ y → x, x → 1 = 1, 0 → x = 1,

(7) (x → y) → (x → z) = (x ∧ y) → z,

(8) x → y ≤ (x ∗ z) → (y ∗ z),
(9) x ≤ y → x and x ∗ y ≤ x, y,

(10) x ∨ y = [(x → y) → y] ∧ [(y → x) → x].

For any BL-algebra L, B(L) denotes the Boolean algebra of all complemented elements
in lattice of L.

Proposition 2.3 (see [7, 11]). For e ∈ L, the following are equivalent:
(i) e ∈ B(L),
(ii) e ∗ e = e and e = e−−,

(iii) e ∗ e = e and e− → e = e,

(iv) e ∨ e− = 1,

(v) (e → x) → e = e, for every x ∈ L.

Hàjek [7] defined a filter of a BL-algebra L to be a nonempty subset F of L such that
(i) if a, b ∈ F implies a ∗ b ∈ F and (ii) if a ∈ F, a ≤ b, then b ∈ F. Turunen [8] defined a
deductive system of a BL-algebra L to be a nonempty subsetD of L such that (i) 1 ∈ D and (ii)
x ∈ D and x → y ∈ D imply y ∈ D. Note that a subset F of a BL-algebra L is a deductive
system of L if and only if F is a filter of L [8].

Let U denote a nonempty set of objects called the univers, and let θ ⊆ U × U be
an equivalence relation on U. The pair (U; θ) is called a Pawlak approximation space. The
equivalence relation θ partitions the set U into disjoint subsets. Let U/θ denote the quotient
set consisting of all the equivalence classes of θ. The empty set ∅ and the elements of U/θ
are called elementary sets. A finite union of elementary sets, that is, the union of one or more
elementary sets, is called a composed set [12]. The family of all composed sets is denoted
by Com(Apr). It is a subalgebra of the Boolean algebra 2U formed by the power set of U.
A set which is a union of elementary sets is called a definable set [12]. The family of all
definable sets is denoted by Def(Apr). For a finite universe, the family of definable sets is
the same as the family of composed sets. A Pawlak approximation space defines uniquely
a topological space (U; Def(Apr)), in which Def(Apr) is the family of all open and closed
sets [13]. In connection to rough set theory there exist two views. The operator-oriented view
interprets rough set theory as an extension of set theory with two additional unary operators.
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Under such a view, lower and upper approximations are related to the interior and closure
operators in topological spaces, the necessity and possibility operators in modal logic, and
lower and upper approximations in interval structures. The set-oriented view focuses on the
interpretation and characterization of members of rough sets. Both operator-oriented and set-
oriented views are useful in the understanding and application of the theory of rough sets.

Definition 2.4. For an approximation space (U; θ), by a rough approximation in (U; θ) we
mean a mapping Apr : P(U) → P(U) × P(U) defined for every X ∈ P(U) by Apr(X) =
(Apr(X); Apr(X)), where

Apr(X) = {x ∈ U : [x]θ ∩X /= ∅}, Apr(X) = {x ∈ U : [x]θ ⊆ X}. (2.1)

Apr(X) is called a lower rough approximation of X in (U; θ), whereas Apr(X) is called an
upper rough approximation of X in (U; θ).

Let F be a filter of a BL-algebra L. Define relation ≡F on L as follows:

x≡Fy iff x −→ y ∈ F, y −→ x ∈ F. (2.2)

Then ≡F is a congruence relation on L. L/F denotes the set of all congruence classes of ≡F ,
that is, L/F = {[x]F : x ∈ L}, thus L/F is a BL-algebra.

3. Lower and Upper Approximations in BL-Algebras

Definition 3.1. Let L be a BL-algebra and F a filter of L. For any nonempty subset X of L, the
sets

AprF(X) = {x ∈ L : [x]F ⊆ X}, AprF(X) = {x ∈ L : [x]F ∩X /= ∅} (3.1)

are called, respectively, the lower and upper approximations of the setX with respect to the filter
F. Therefore, when U = L and θ is the induced congruence relation by filter F, then we use
the pair (L, F) instead of the approximation space (U, θ). Also, in this case we use the symbols
AprF(X) and AprF(X) instead of Apr(X) and Apr(X).

Proposition 3.2. Let (L, F) be an approximation space and X, Y ⊆ L. Then the following hold:

(1) AprF(X) ⊆ X ⊆ AprF(X),

(2) AprF(X ∩ Y) = AprF(X) ∩AprF(Y),

(3) AprF(X) ∪AprF(Y) ⊆ AprF(X ∪ Y),

(4) AprF(X ∩ Y) ⊆ AprF(X) ∩AprF(Y),

(5) AprF(X) ∪AprF(Y) = AprF(X ∪ Y),
(6) AprF(AprF(X)) ⊆ AprF(AprF(X)),
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(7) AprF(AprF(X)) ⊆ AprF(AprF(X)),

(8) AprF(X
c) = (AprF(X))c, AprF(X

c) = (AprF(X))c,

(9) if X /= ∅, then AprL(X) = L,

(10) if X /=L, then AprL(X) = ∅.

Proof. The proof is similar to the proof of Theorem 2.1 of [14].

Proposition 3.3. Let (L, F) be an approximation space. Then, AprF is a closure operator and AprF
is an interior operator.

Proof. Let X be an arbitrary subset of L.

(i) By Proposition 3.2 part (1), we have X ⊆ AprF(X).

(ii) We will show that AprF(AprF(X)) = AprF(X). Suppose that x ∈ AprF(AprF(X)).
By Definition 3.1, we have [x]F ∩AprF(X)/= ∅. Hence there exists y ∈ AprF(X) such
that [x]F = [y]F . By Definition 3.1, [y]F∩X /= ∅, and sowe get that [x]F∩X /= ∅. Hence
x ∈ AprF(X) and then AprF(AprF(X)) ⊆ AprF(X). By part (1) of Proposition 3.2,
we have AprF(X) ⊆ AprF(AprF(X)).

(iii) Suppose thatX ⊆ Y . We will show that AprF(X) ⊆ AprF(Y). Let x ∈ AprF(X). Then
[x]F∩X /= ∅. SinceX ⊆ Y , we get that [x]F ∩Y /= ∅, that is, x ∈ AprF(Y). Analogously,
we can prove that AprF is an interior operator.

Definition 3.4. (L, F) is an approximation space and X ⊆ L. X is called definable with respect to
F, if AprF(X) = AprF(X).

Proposition 3.5. Let (L, F) be an approximation space. Then ∅, L, and [x]F are definable respect to
F.

Proof. The proof is straightforward.

Proposition 3.6. Let (L, F) be an approximation space. If F = {1}, then every subset of L is definable.

Proof. Let X be an arbitrary subset of L. We have

[x]F =
{
y ∈ L : x −→ y = 1, y −→ x = 1

}
=
{
y ∈ L : x = y

}
= {x}, (3.2)

for all x ∈ L. We get that

AprF(X) = {x ∈ L : [x]F ⊆ X} = {x ∈ L : {x} ⊆ X} = X,

AprF(X) = {x ∈ L : [x]F ∩X /= ∅} = {x ∈ L : {x} ∩X /= ∅} = X.
(3.3)

Hence X is definable.
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Let X and Y be nonempty subsets of L. Then we define two sets

X ∗ Y =
{
x ∗ y : x ∈ X, y ∈ Y},

X −→ Y =
{
x −→ y : x ∈ X, y ∈ Y}.

(3.4)

If either X or Y is empty, then we define X ∗ Y = ∅ and X → Y = ∅. Clearly,X ∗Y = Y ∗X, for
everyX, Y ∈ L.X∗Y andX → Y are called, respectively,Minkowski product andMinkowski
arrow. However, Minkowski arrow is not the residuum of Minkowski product.

Lemma 3.7. Let (L, F) be an approximation space and X, Y ⊆ L. Then the following hold:

(1) AprF(X) ∗AprF(Y) ⊆ AprF(X ∗ Y),

(2) AprF(X) → AprF(Y) ⊆ AprF(X → Y).

Proof. (1) Let z ∈ AprF(X) ∗AprF(Y), and so there exist x ∈ AprF(X) and y ∈ AprF(Y) such
that z = x ∗ y. We have [x]F ∩ X/= ∅ and [y]F ∩ Y /= ∅. There exist a ∈ X and b ∈ Y such that
[x]F = [a]F and [y]F = [b]F . We get that a ∗ b ∈ X ∗ Y such that [a ∗ b]F = [x ∗ y]F . Hence
[x ∗ y]F ∩ (X ∗ Y)/= ∅, that is, AprF(X) ∗AprF(Y) ⊆ AprF(X ∗ Y).

Similarly, we can prove (2).

Definition 3.8. Let (L, F) be an approximation space. A nonempty subset S of L is called
an upper (resp., a lower) rough subalgebra (or filter) of L, if the upper (resp., the lower)
approximation of S is a subalgebra (or filter) of L. If S is both an upper and a lower rough
subalgebra (or filter) of L, we say S is a rough subalgebra (or filter) of L.

Proposition 3.9. Let (L, F) be an approximation space. If S is a subalgebra of L, then S is an upper
rough subalgebra of L.

Proof. We will show that AprF(S) is a subalgebra of L. Since 0, 1 ∈ S, 0 ∈ [0]F and 1 ∈ [1]F ,
then [0]F ∩ S/= ∅ and [1]F ∩S/= ∅. Hence 0, 1 ∈ AprF(S). Taking X = Y = S in Lemma 3.7, by S
is a subalgebra of L, we obtain

AprF(S) ∗AprF(S) ⊆ AprF(S ∗ S) ⊆ AprF(S),

AprF(S) −→ AprF(S) ⊆ AprF(S −→ S) ⊆ AprF(S −→ S).
(3.5)

Hence S is an upper rough subalgebra.

Let (L, F) be an approximation space and S a subalgebra of L. The following example
shows that Smay not be a lower rough subalgebra of L in general.
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Example 3.10. Let L = {0, a, b, c, d, 1}, where 0 < d < c < a, b < 1. Define ∗ and → as follow:

→ 0 a b c d 1

0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

∗ 0 a b c d 1

0 0 0 0 0 0 0
a 0 a c c d a
b 0 c b c d b
c 0 c c c d c
d 0 d d d 0 d
1 0 a b c d 1

(3.6)

Then (L,∧,∨, ∗, → , 0, 1) is a BL-algebra. It is easy to check that F = {1, b} is a filter of L and
S = {0, a, 1} is a subalgebra of L. Since [1]F = F /⊆S, then S is not be a lower rough subalgebra
of L.

Theorem 3.11. Let (L, F) be an approximation space and X a nonempty subset of L. Then the
following hold:

(i) X ⊆ F if and only if AprF(X) = F,

(ii) F ⊆ X if and only if F ⊆ AprF(X).

Proof. (i) Let X ⊆ F and z ∈ AprF(X). Then [z]F ∩ X /= ∅, and so there exists x ∈ X such that
[x]F = [z]F . Since X ⊆ F, then [x]F = F. So z ∈ F, that is, AprF(X) ⊆ F. Now let z ∈ F. Then
[z]F = F and so [z]F ∩X = F ∩X = X/= ∅. Thus z ∈ AprF(X), and hence AprF(X) = F.

The converse follows from Proposition 3.2 part (1).
(ii) Let F ⊆ X and x ∈ F. Then [x]F = F ⊆ X, and so x ∈ AprF(X). Therefore F ⊆

AprF(X).

Theorem 3.12. Let (L, F) be an approximation space and J a filter of L. Then the following hold:

(1) F ⊆ J if and only if AprF(J) = J = AprF(J),

(2) AprF(F) = F = AprF(F),

(3) F ⊆ AprF(J).

Proof. (1) Suppose that F ⊆ J . By Proposition 3.2 part (1), J ⊆ AprF(J) and AprF(J) ⊆ J .

Now let x ∈ AprF(J). Then [x]F ∩ J /= ∅ and so there exists y ∈ J such that [x]F = [y]F .
We get that x → y, y → x ∈ F. Since F ⊆ J , J is a filter and y ∈ J , then x ∈ J , that is,
AprF(J) ⊆ J . Hence AprF(J) = J . Similarly, we can obtain J ⊆ AprF(J). Conversely, suppose

that AprF(J) = J = AprF(J) and x ∈ F. We have 1 ∈ [x]F ∩ J . Hence x ∈ AprF(J). Thus

F ⊆ AprF(J). We get that F ⊆ J .
(2) The result follows from (1).
(3) Let x ∈ F. Then 1 ∈ F∩J = [x]F ∩J and so x ∈ AprF(J). Therefore F ⊆ AprF(J).

Lemma 3.13. Let L be linearly ordered and F a filter of L. If x ≤ y and [x]F /= [y]F , then for each
t ∈ [x]F and s ∈ [y]F , t ≤ s.
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Proof. Let there exist t ∈ [x]F and s ∈ [y]F such that s < t. Then t → x ≤ s → x, and also
t → x ∈ F. So s → x ∈ F. By x ≤ y we get that y → s ≤ x → s, also we have y → s ∈ F,
and so x → s ∈ F. Thus s ∈ [x]F ∩ [y]F , that is, [x]F = [y]F , it is a contradiction. Thus for
each t ∈ [x]F and s ∈ [y]F , t ≤ s.

Theorem 3.14. Let (L, F) be an approximation space and J a filter of L. Then the following hold.

(1) If F ⊆ J , then J is a rough filter of L.

(2) If J ⊆ F, then J is an upper rough filter of L.

(3) If L is linearly ordered, then J is an upper rough filter of L.

Proof. (1) The proof follows from Theorem 3.12 part (1).
(2) The proof is easy by Theorem 3.11 part (i).
(3) Let x, y ∈ AprF(J). Then it is easy to see that x ∗ y ∈ AprF(J). If x ≤ y and

x ∈ AprF(J), then [x]F ∩ J /= ∅ and so there is t ∈ J such that [x]F = [t]F . If [x]F = [y]F , we get
that y ∈ AprF(J). If [x]F /= [y]F , then by Lemma 3.13 we obtain t ≤ y. So by t ∈ J we get that
y ∈ J , that is, y ∈ AprF(J).

If X is a nonempty subset of a BL-algebra L, we let ¬X = {¬x | x ∈ X}. It is easy to see
that for every nonempty subset X, Y of L, X ⊆ Y implies that ¬X ⊆ ¬Y .

Proposition 3.15. Let F be a filter of L andX a nonempty subset of L. Then ¬AprF(X) ⊆ AprF(¬X).

Proof. Let z ∈ ¬AprF(X). Then there is t ∈ AprF(X) such that z = ¬t and so [t]F ∩ X/= ∅.
Thus there exists h ∈ X such that [t]F = [h]F , hence [z]F = [¬t]F = [¬h]F . Also h ∈ X
implies that ¬h ∈ ¬X and so [z]F ∩ ¬X = [¬h]F ∩ ¬X/= ∅. Therefore z ∈ AprF(¬X) and hence
¬AprF(X) ⊆ AprF(¬X).

Remark 3.16. (1) We cannot replace the inclusion symbol ⊆ by an equal sign in Propo-
sition 3.15. Consider filter F = {1, b} in Example 3.10. Let subset X = {0, c} of L; we
have ¬X = {1, 0}, ¬AprF(X) = ¬{0, a, c} = {0, 1} and AprF(¬X) = {0, b, 1}. Therefore,
AprF(¬X)/⊆¬AprF(X).

(2) We can show that Proposition 3.15 may not be true for AprF . Consider
Example 3.10, filter F = {1, b} and subset X = {0, a, c} of L. We can get that ¬X = {0, 1},
AprF(¬X) = {0} and ¬AprF(X) = ¬{0, a, c} = {0, 1}. Therefore, ¬AprF(X)/⊆AprF(¬X).
Also by considering X = {1} we can check that AprF(¬X) = {0} and ¬AprF(X) = ∅. Thus
AprF(¬X)/⊆¬AprF(X).

Let L be a BL-algebra. An element a of L is said to be regular if and only if ¬¬a = a.
The set of all regular elements of L is denoted by Reg(L). The set of regular elements is also
denoted byMV (L) in [10] where it is proved that it is the largest subMV -algebra of L.

Lemma 3.17. Let F be a filter of L and ∅/=X ⊆ L. Then,

(i) Reg(L) ∩AprF(¬X) ⊆ ¬AprF(¬¬X),

(ii) Reg(L) ∩AprF¬(X ∩ Reg(L)) ⊆ ¬AprF(X).
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Proof. (i) Let z ∈ Reg(L)∩AprF(¬X). Then [z]F∩¬X /= ∅ and ¬¬z = z and so there exists x ∈ X
such that [¬x]F = [z]F . Thus we have z = ¬¬z = ¬(¬z) and [¬z]F ∩ ¬¬X = [¬¬x]F ∩ ¬¬X/= ∅
and hence ¬z ∈ AprF(¬¬X). Therefore, z ∈ ¬AprF(¬¬X), and this implies that Reg(L) ∩
AprF(¬X) ⊆ ¬AprF(¬¬X).

(ii) Let z ∈ Reg(L) ∩ AprF¬(X ∩ Reg(L)). Then ¬¬z = z and [z]F ∩ ¬(X ∩ Reg(L))/= ∅.
So there exists x ∈ X ∩ Reg(L) such that [¬x]F = [z]F and ¬¬x = x. We get that z = ¬(¬z)
and [¬z]F ∩X = [x]F ∩X /= ∅ and so z ∈ ¬AprF(X). Therefore, Reg(L)∩AprF¬(X ∩Reg(L)) ⊆
¬AprF(X).

An element a of L is said to be dense if and only if ¬a = 0. We denote by Ds(L) the set
of the dense elements of L. Ds(L) is a filter of L [15].

Lemma 3.18. Let F be a filter of L. Then F ⊆ AprF(Ds(L)) ⊆ {z ∈ L | ¬¬z ∈ F}.

Proof. Let z ∈ AprF(Ds(L)). Then [z]F ∩ Ds(L)/= ∅ and so there is t ∈ [z]F such that ¬t = 0.
Thus [0]F = [¬t]F = [¬z]F and hence ¬¬z ∈ F. Also since Ds(L) is a filter of L, then by
Theorem 3.12 part (3), F ⊆ AprF(Ds(L)).

Lemma 3.19. Let F be a filter of L and X a nonempty set of L. ThenX is definable respect to F if and
only if AprF(X) = X or AprF(X) = X.

Proof. Suppose thatX is definable. ThenX ⊆ AprF(X) = AprF(X) ⊆ X and so AprF(X) = X =

AprF(X). Conversely, let AprF(X) = X. We show that AprF(X) = X. We have AprF(X) ⊆ X.

Now let x ∈ X. and z ∈ [x]F . Then [z]F ∩X = [x]F ∩X /= ∅ and so z ∈ AprF(X) = X. Therefore
AprF(X) = X. If AprF(X) = X, then we show that AprF(X) = X. Let x ∈ AprF(X). Then
[x]F ∩ X /= ∅ and so there is z ∈ X such that [x]F = [z]F . By hypothesis we get that [z]F ⊆ X,
hence x ∈ X. Therefore AprF(X) ⊆ X. Since X ⊆ AprF(X), then AprF(X) = X.

By Theorem 3.12 part (1) and Lemma 3.19 we have the following.

Corollary 3.20. Let F and J be two filters of L. Then J is definable respect to F if and only if F ⊆ J .

Let X and Y be two nonempty subsets of L. Then we define

X � Y =
{
t ∈ L | x ∗ y ≤ t, for some x ∈ X, y ∈ Y}. (3.7)

If either X or Y are empty, then we define X � Y = ∅. If A and B are two filters of L, then it
is clear that A � B is the smallest filter containing of A and B. For any subsets X, Y, Z of L we
have X �Y = Y �X and (X �Y)�Z = X � (Y �Z). It is easy to see that AprF(X)∪AprE(X) ⊆
AprF�E(X), for any filter E and F of L and nonempty subset X of L. Since 1 ∈ X � Y ⊆
AprF(X � Y), for nonempty subsets X, Y of L and filter F of L, then we can conclude that
F ⊆ AprF(X � Y).

Proposition 3.21. Let F be a filter of L and X, Y be nonempty subsets of L. Then

(i) AprF(X � Y) ⊆ AprF(X) �AprF(Y),

(ii) If X, Y ⊆ F, then AprF(X � Y) = AprF(X) �AprF(Y),

(iii) If L is linearly ordered, then AprF(X � Y) = AprF(X) �AprF(Y).
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Proof. (i) Let z ∈ AprF(X � Y). Then [z]F ∩ (X � Y)/= ∅ and so there is t ∈ X � Y such that
[z]F = [t]F . Hence there are x ∈ X and y ∈ Y such that x ∗ y ≤ t. On the other hand,
[z]F = [t]F implies that t → z ∈ F, then there is f ∈ F such that t ≤ f → z. By hypothesis
we can conclude that x ∗ y ≤ t ≤ f → z, and hence x ∗ (y ∗ f) ≤ z. Also by Lemma 2.2,
we have f ≤ y ∗ f → y and f ≤ y → y ∗ f , thus f ∈ F implies that (y ∗ f → y) ∈ F

and (y → y ∗ f) ∈ F. Therefore [y ∗ f]F = [y]F , hence y ∗ f ∈ AprF(Y), and also we have
x ∈ AprF(X). So z ∈ AprF(X) �AprF(Y).

(ii) If X, Y ⊆ F, then X � Y ⊆ F. So by Theorem 3.11AprF(X) = AprF(Y) = AprF(X �
Y) = F. Therefore AprF(X � Y) = F = F � F = AprF(X) �AprF(Y).

(iii) Let L be linearly ordered and z ∈ AprF(X)�AprF(Y). Then there are h ∈ AprF(X)
and k ∈ AprF(Y) such that h ∗ k ≤ z. So [h]F ∩ X /= ∅ and [k]F ∩ Y /= ∅ imply that there are
x ∈ X and y ∈ Y such that [x]F = [h]F and [y]F = [k]F . Hence [x∗y]F = [h∗k]F and we have
x ∗ y ∈ X � Y . If [z]F = [h ∗ k]F , then by hypothesis we get that [z]F ∩ X � Y /= ∅ and hence
z ∈ AprF(X � Y). If [z]F /= [h ∗ k]F , then by Lemma 3.13 x ∗ y ≤ z and so z ∈ X � Y . Therefore
[z]F ∩ (X � Y)/= ∅, that is, z ∈ AprF(X � Y).

Proposition 3.22. Let F be a filter of L and X, Y be nonempty subsets of L. Then

(i) AprF(X) �AprF(Y) ⊆ AprF(X � Y).
(ii) If X and Y are definable respect to F, then AprF(X) �AprF(Y) = AprF(X � Y).

Proof. (i) Let z ∈ AprF(X)�AprF(Y). Then x∗y ≤ z, for some x ∈ AprF(X) and y ∈ AprF(Y).
Consider b ∈ [z]F , so there is f ∈ F such that z ≤ f → b. Hence x ∗y ≤ f → b, we can obtain
that x∗(y∗f) ≤ b. Thus by hypothesis we have [y∗f]F = [y]F ⊆ Y , [x]F ⊆ X and x∗(y∗f) ≤ b,
hence b ∈ X�Y . Therefore z ∈ AprF(X�Y), it implies that AprF(X)�AprF(Y) ⊆ AprF(X�Y).

(ii) Since X and Y are definable respect to F, then AprF(X) = X and AprF(Y) = Y . By
part (i), we get that X � Y ⊆ AprF(X � Y) ⊆ X � Y . Therefore AprF(X) � AprF(Y) = X � Y =
AprF(X � Y).

By the following example, we show that we cannot replace the inclusion symbol ⊆ by
an equal sign in general in the above proposition part (i).

Example 3.23. Let L = {0, a, b, c, d, 1}, where 0 < d, b < a < 1, 0 < d < c < 1. Define ∗ and → as
follow:

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

∗ 0 a b c d 1

0 0 0 0 0 0 0
a 0 b b d 0 a
b 0 b b 0 0 b
c 0 d 0 c d c
d 0 0 0 d 0 d
1 0 a b c d 1

. (3.8)

Then (L,∧,∨, ∗, → , 0, 1) is a BL-algebra. It is easy to check that F = {1, c} is a filter of L.
By considering subsets X = {a} and Y = {c} of L, we have AprF(X � Y) = {1, a, d, c} and
AprF(X) = AprF(Y) = ∅. Therefore AprF(X) �AprF(Y)/=AprF(X � Y).
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Proposition 3.24. Let F and J be two filters of L and X be a nonempty subset of L. Then

(i) If X ⊆ B(L), then AprF�J(X) ⊆ AprF(X) �AprJ(X),

(ii) AprF(X) �AprJ(X) ⊆ AprF�J(X) �AprF�J(X),

(iii) AprF�J(X) ⊆ AprF(X) �AprJ(X).

Proof. (i) Let z ∈ AprF�J(X). Then [z]F�J ∩X /= ∅ and so there is x ∈ X such that x → z ∈ F�J .
Thus there are f ∈ F and e ∈ J such that f∗e∗x ≤ z, byX ⊆ B(A), we get that (f∗x)∗(e∗x) ≤ z.
Since [f ∗ x]F = [x]F and [e ∗ x]J = [x]J , then we have z ∈ AprF(X) �AprJ(X).

(ii) Let h ∈ AprF(X) � AprJ(X). Then t ∗ s ≤ h, for some t, s ∈ L such that [t]F ∩ X /= ∅
and [s]J ∩ X /= ∅. So [t]F�J ∩ X/= ∅ and [s]F�J ∩ X/= ∅ and hence t, s ∈ AprF�J(X). Thus h ∈
AprF�J(X) �AprF�J(X).

(iii) Let z ∈ AprF�J(X). Then [z]F�J ⊆ X. Since z ∗ z ≤ z and [z]F, [z]J ⊆ [z]F�E ⊆ X,
hence z ∈ AprF(X) �AprJ(X).

By Proposition 3.21 part (i) and Proposition 3.24 part (i) we can obtain the following
corollary.

Corollary 3.25. Let F and J be two filters of L and X, Y be nonempty subsets of B(L). Then
AprF�J(X � Y) ⊆ (AprF(X) �AprF(Y)) � (AprJ(X) �AprJ(Y)).

Let J and F be two filters of L such that J ⊆ F and let X be a nonempty subset of
L. Then it is easy to see that AprJ(X) ⊆ AprF(X) and AprF(X) ⊆ AprJ(X). So we have

AprF∩J(X) ⊆ AprF(X) ∩AprJ(X) and AprF(X) ∩AprJ(X) ⊆ AprF∩J(X).

Consider BL-algebra L in Example 3.10. We can see that J = {1, a} and F = {1, b} are
two filters of L. Put X = {a, b}. We have AprF∩J(X) = {a, b} and AprF(X) = AprJ(X) =

{1, b, c, a}, so AprF∩J(X)/=AprF(X) ∩ AprJ(X). Also AprF∩J(X) = X and AprF(X) =
AprJ(X) = ∅, thus AprF(X) ∩AprJ(X)/=AprF∩J(X).

By the following proposition we can obtain some conditions that AprF∩J(X) =
AprF(X) ∩AprJ(X) or AprF(X) ∩AprJ(X) = AprF∩J(X).

Proposition 3.26. Let F and J be two filters of L and X be a nonempty subset of L. Then

(i) If X ⊆ F ∩ J or X is definable respect to J or F, then AprF∩J(X) = AprF(X) ∩AprJ(X),

(ii) If X is a filter of L containing J and F, then AprF(X) ∩AprJ(X) = AprF∩J(X).

Proof. (i)Assume thatX ⊆ F∩J . Then by Theorem 3.11 part (i), AprF∩J(X) = F∩J = AprF(X)∩
AprJ(X). If X is definable respect to J , then AprF(X) ∩ AprJ(X) = X ⊆ AprF∩J(X), and it
proves theorem.

(ii) If X is a filter of L containing J and F, then by Theorem 3.12 part (1) AprF∩J(X) =
X = X ∩X = AprF(X) ∩AprJ(X).
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Proposition 3.27. Let L and L′ be two BL-algebras and f : L → L′ be a homomorphism. Then

(i) If X be a nonempty subset of L and F be a filter of L′, then f−1(AprF(f(X)) =
Aprf−1(F)(X),

(ii) f(Aprker f(X)) = f(X), for any nonempty subset X of L.

(iii) Let f be onto, Y be a nonempty subset of L and F a filter of L. If ker f ⊆ F, then
f(AprF(Y)) = Aprf(F)(f(Y)).

Proof. (i) By hypothesis we have

z ∈ f−1(AprF(f(X)) ⇔ f(z) ∈ (AprF(f(X)) ⇔ [f(z)]F ∩ f(X)/= ∅ ⇔ [f(z)]F =
[f(x)]F , for some x ∈ X ⇔ [z]f−1(F) = [x]f−1(F), for some x ∈ X ⇔ [z]f−1(F) ∩
X /= ∅ ⇔ z ∈ Aprf−1(F)(X).

(ii) The proof is easy by part (i).
(iii) Let z ∈ f(AprF(Y)). Then there is t ∈ AprF(Y) such that z = f(t), and so there

exists y ∈ Y such that [t]F = [y]F . Thus by [f(t)]f(F) = [f(y)]f(F) we get that [f(t)]f(F) ∩
f(Y)/= ∅. Therefore z ∈ Aprf(F)(f(Y)). Now let z ∈ Aprf(F)(f(Y)). Then [z]f(F) ∩ f(Y)/= ∅. By
hypothesis we have h ∈ L such that z = f(h), and so there is y ∈ Y such that [f(h)]f(F) =
[f(y)]f(F). Since F is a filter of L and ker f ⊆ F, then we obtain that [y]F = [h]F . So h ∈
AprF(Y), hence z = f(h) ∈ f(AprF(Y)).
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