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For the Bakirov system, which is known to possess only one higher-order local generalized
symmetry, we explicitly find a zero-curvature representation containing an essential parameter.

1. Introduction

Bakirov [1] discovered that the following evidently integrable triangular system of a linear
PDE with a source determined by another linear PDE,

ut = uxxxx + v2, vt =
1
5
vxxxx, (1.1)

possesses only one higher-order (x, t)-independent local generalized symmetry of order not
exceeding 53, namely, a sixth-order one. Beukers et al. [2] extended the result of Bakirov
to (x, t)-independent local generalized symmetries of unlimited order. Bilge [3] found a
formal recursion operator for the Bakirov system (1.1) and showed that the structure of
the operator’s nonlocal terms prevents the generation of local higher symmetries from the
known sixth-order symmetry. Sergyeyev [4] showed that the existence of such a formal
recursion operator is essentially a consequence of the triangular form of the Bakirov system.
Finally, Sergyeyev [5] proved that the Bakirov system possesses only one higher-order local
generalized symmetry, namely, the sixth-order one found by Bakirov, even if (x, t)-dependent
symmetries are taken into account. Due to these results, the Bakirov system looks quite
different from other known integrable systems which possess infinite algebras of higher
symmetries.



2 International Journal of Mathematics and Mathematical Sciences

In the present paper, we explicitly find a linear spectral problem associated with the
Bakirov system (1.1), in the form of a zero-curvature representation containing an essential
parameter. Section 2 gives necessary preliminaries. In Section 3, we find for the system (1.1)
a 4 × 4 zero-curvature representation containing a parameter, and we prove in Section 4
that this parameter cannot be removed by gauge transformations. Section 5 gives concluding
remarks. We believe that the obtained Lax pair of the Bakirov system will be useful for future
studies on the relation between Lax pairs and higher symmetries of integrable PDEs.

2. Preliminaries

A zero-curvature representation (ZCR) of a system of PDEs (see, e.g., [6] and references
therein) is the compatibility condition

DtX = DxT − [X, T] (2.1)

of the overdetermined linear problem

Ψx = XΨ, Ψt = TΨ, (2.2)

where Dt and Dx stand for the total derivatives, X and T are n × n matrix functions of
independent and dependent variables and finite-order derivatives of dependent variables,
the square brackets denote the matrix commutator, Ψ is a column of n functions of
independent variables, and the ZCR (2.1) is satisfied by any solution of the represented
system of PDEs. Two ZCRs are equivalent if they are related by a gauge transformation

X′ = GXG−1 + (DxG)G−1,

T ′ = GTG−1 + (DtG)G−1,

Ψ′ = GΨ, detG/= 0

(2.3)

of the linear problem (2.2), where G is a n×nmatrix function of independent and dependent
variables and finite-order derivatives of dependent variables.

3. Zero-Curvature Representation

Our aim is to find a ZCR (2.1) of the Bakirov system (1.1). Assuming for simplicity that
X = X(u, v) and T = T(u, v, ux, vx, uxx, vxx, uxxx, vxxx) and using (1.1), we rewrite (2.1) in the
equivalent form

(
uxxxx + v2

)∂X
∂u

+
1
5
vxxxx

∂X

∂v
−DxT + [X, T] = 0. (3.1)

Since (3.1) cannot be a system of ODEs restricting solutions of (1.1), it must be an identity
with respect to u and v, and therefore u, v, and all derivatives of u and v should be treated
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as formally independent quantities in (3.1). This allows us to solve (3.1) and obtain the fol-
lowing expressions for the matrices X and T :

X = Pu +Qv + R,

T = Puxxx +
1
5
Qvxxx + [R, P]uxx +

1
5
[R,Q]vxx + [R, [R, P]]ux

+
1
5
[R, [R,Q]]vx + [R, [R, [R, P]]]u +

1
5
[R, [R, [R,Q]]]v + S,

(3.2)

where P , Q, R, and S are any n × n constant matrices satisfying the following commutator
relations:

P = −1
5
[Q, [R, [R, [R,Q]]]], [P,Q] = 0,

[P, [Q,R]] = 0, [P, [R, P]] = 0, [Q, [R,Q]] = 0,

[[R, P], [R,Q]] = 0, [P, [R, [R, [R, P]]]] = 0,

[[R, P], [R, [R,Q]]] = 0, [P, S] + [R, [R, [R, [R, P]]]] = 0,

[Q,S] +
1
5
[R, [R, [R, [R,Q]]]] = 0, [R, S] = 0.

(3.3)

We have to find a solution of (3.3) which should be nontrivial in the following
sense: X contains both u and v, that is, (2.1) gives expressions for both equations of (1.1);
[X, T]/= 0, because commutative ZCRs are simply matrices of conservation laws (for this
reason, and without loss of generality, the matrices P , Q, R, and S are set to be traceless);
X contains a parameter (essential or spectral) which cannot be removed (gauged out) by
gauge transformations (2.3). We solve (3.3), using the Mathematica computer algebra system
[7], successively takingQ in all possible Jordan forms, suppressing the excessive arbitrariness
of solutions by transformations (2.3) with constant G and increasing the matrix dimension n
if necessary. The cases of 2 × 2 and 3 × 3 matrices contain no nontrivial solutions of (3.3),
while the 4 × 4 case gives us the following:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
8
5
z
(−3 + 6z − 11z2

)
α3 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.4)

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (3.5)
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R =

⎛
⎜⎜⎜⎜⎜⎜⎝

α 0 0 0

0 zα 0 α

0 0 (−1 + 2z)α 0

0
(−3 + 6z − 11z2

)
α 0 −3zα

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.6)

S =

⎛
⎜⎜⎜⎜⎜⎝

S11 0 0 0

0 S22 0 S24

0 0 S33 0

0 S42 0 S44

⎞
⎟⎟⎟⎟⎟⎠

(3.7)

with

S11 =
8
5

(
2 − 12z + 21z2 − 18z3 + 3z4

)
α4,

S22 =
8
5

(
3 − 10z + 15z2 − 4z4

)
α4,

S24 =
8
5

(
−1 + 3z + z2 − 3z3

)
α4,

S33 =
8
5

(
−8 + 28z − 39z2 + 22z3 − 7z4

)
α4,

S42 =
8
5

(
3 − 15z + 26z2 − 18z3 − 29z4 + 33z5

)
α4,

S44 =
8
5

(
3 − 6z + 3z2 − 4z3 + 8z4

)
α4,

(3.8)

where α is an arbitrary parameter and z is any of the four roots

z1,2 =
1
20

(
9 + i

√
39 ±

√
−138 − 2i

√
39
)
,

z3,4 =
1
20

(
9 − i

√
39 ±

√
−138 + 2i

√
39
) (3.9)

of the algebraic equation

3 − 12z + 21z2 − 18z3 + 10z4 = 0. (3.10)
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Consequently, a nontrivial ZCR (2.1) of the Bakirov system (1.1) is determined by the
following 4 × 4 matrices X and T :

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α v
8
5
z
(−3 + 6z − 11z2

)
α3u 0

0 zα v α

0 0 (−1 + 2z)α 0

0
(−3 + 6z − 11z2

)
α 0 −3zα

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.11)

T =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 T14

0 T22 T23 T24

0 0 T33 0

0 T42 T43 T44

⎞
⎟⎟⎟⎟⎟⎠

(3.12)

with

T11 =
8
5

(
2 − 12z + 21z2 − 18z3 + 3z4

)
α4,

T12 =
1
5

(
−4

(
2 − 3z + 6z2 + 3z3

)
α3v − 2

(
1 − 2z + 5z2

)
α2vx + (1 − z)αvxx + vxxx

)
,

T13 =
8
5
z
(
−3 + 6z − 11z2

)
α3
(
8(1 − z)3α3u + 4(1 − z)2α2ux + 2(1 − z)αuxx + uxxx

)
,

T14 =
1
5
α
(
4z(−3 + z)α2v − 2(1 + z)αvx − vxx

)
,

T22 =
8
5

(
3 − 10z + 15z2 − 4z4

)
α4,

T23 =
1
5

(
4
(
−2 + 9z − 18z2 + 19z3

)
α3v − 2

(
1 − 2z + 5z2

)
α2vx + (1 − z)αvxx + vxxx

)
,

T24 =
8
5

(
−1 + 3z + z2 − 3z3

)
α4,

T33 =
8
5

(
−8 + 28z − 39z2 + 22z3 − 7z4

)
α4,

T42 =
8
5

(
3 − 15z + 26z2 − 18z3 − 29z4 + 33z5

)
α4,

T43 =
1
5

(
−3 + 6z − 11z2

)
α
(
4z(−3 + 5z)α2v + (2 − 6z)αvx + vxx

)
,

T44 =
8
5

(
3 − 6z + 3z2 − 4z3 + 8z4

)
α4.

(3.13)

Let us remember that, in (3.11) and (3.13), z is any of the four roots (3.9) of (3.10) and α is an
arbitrary parameter.
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4. Essential Parameter

Now, we have to prove that α is an essential parameter, that is, that α cannot be removed from
the obtained ZCR by a gauge transformation (2.3). We do this, using the method of gauge-
invariant description of ZCRs of evolution equations [6, 8] (see also the independent work
[9], based on the very general and abstract study of ZCRs [10]). Since the matrixX (3.11) does
not contain derivatives of u and v, the two characteristic matrices of the obtained ZCR are
simply Cu = ∂X/∂u = P and Cv = ∂X/∂v = Q. We take one of them, Cu = P (3.4), introduce
the operator∇x, defined as∇xM = DxM − [X,M] for any 4 × 4 matrix functionM, compute
∇xCu, and find that

∇xCu + 2(1 − z)αCu = 0. (4.1)

In the terminology of [6, 8], relation (4.1) is one of the two closure equations of the cyclic
basis. The scalar coefficient 2(1 − z)α in (4.1) is an invariant with respect to the gauge
transformations (2.3), because the matrices Cu and ∇xCu are transformed as C′

u = GCuG−1

and ∇′
xC

′
u = G(∇xCu)G−1 (see [8, 9]). The explicit dependence of the invariant 2(1 − z)α on

the parameter α shows that this parameter cannot be “gauged out” from the matrix X (3.11).

5. Conclusion

We believe that the ZCR of the Bakirov system, found in this paper, can be used in future
studies of the relation between Lax pairs, recursion operators, generalized symmetries, and
conservation laws. The following problems arise from the obtained result. Is it possible to
derive a recursion operator for the Bakirov system from the obtained ZCR, for example,
through the cyclic basis technique [6]? If yes, is that recursion operator different from the
formal recursion operator found in [3]? And why does not the obtained ZCR generate an
infinite sequence of nontrivial local conservation laws for the Bakirov system, for example,
through the standard techniques described in [11]?
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