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We investigate a fuzzy version of stability for the functional equation f(x + y + z +w) + 2f(x) +
2f(y) + 2f(z) + 2f(w) − f(x + y) − f(x + z) − f(x +w) − f(y + z) − f(y +w) − f(z +w) = 0.

1. Introduction

A classical question in the theory of functional equations is “when is it true that a mapping,
which approximately satisfies a functional equation, must be somehow close to an exact
solution of the equation?” Such a problem, called a stability problem of the functional equation,
was formulated by Ulam [1] in 1940. In the next year, Hyers [2] gave a partial solution of
Ulam’s problem for the case of approximate additive mappings. Subsequently, his result was
generalized by Aoki [3] for additive mappings, and by Rassias [4] for linear mappings, to
considering the stability problem with the unbounded Cauchy differences. During the last
decades, the stability problems of functional equations have been extensively investigated by
a number of mathematicians, see [5–16].

In 1984, Katsaras [17] defined a fuzzy norm on a linear space to construct a fuzzy
structure on the space. Since then, some mathematicians have introduced several types of
fuzzy norm in different points of view. In particular, Bag and Samanta [18], following Cheng
and Mordeson [19], gave an idea of a fuzzy norm in such a manner that the corresponding
fuzzymetric is of the Kramosil andMichálek type [20]. In 2008,Mirmostafaee andMoslehian
[21] introduced for the first time the notion of fuzzy Hyers-Ulam-Rassias stability. They
obtained a fuzzy version of stability for the Cauchy functional equation

f
(
x + y

) − f(x) − f
(
y
)
= 0 (1.1)
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whose solution is called an additive mapping. In the same year, they [22] proved a fuzzy ver-
sion of stability for the quadratic functional equation

f
(
x + y

)
+ f
(
x − y

) − 2f(x) − 2f
(
y
)
= 0 (1.2)

whose solution is called a quadratic mapping.Nowwe consider the quadratic-additive functional
equation

f
(
x + y + z +w

)
+ 2f(x) + 2f

(
y
)
+ 2f(z) + 2f(w) − f

(
x + y

)

− f(x + z) − f(x +w) − f
(
y + z

) − f
(
y +w

) − f(z +w) = 0
(1.3)

whose solution is called a quadratic-additive mapping. In [23], Chang et al. obtained a stability
of the quadratic-additive functional equation by taking and composing an additive mapping
A and a quadratic mapping Q to prove the existence of a quadratic-additive mapping F
which is close to the given mapping f . In their processing, A is approximate to the odd part
f((x) − f(−x))/2 of f and Q is close to the even part (f(x) + f(−x))/2 of it, respectively.

In this paper, we get a general stability result of the quadratic-additive functional
equation in the fuzzy normed linear space. To do it, we introduce a Cauchy sequence {Jnf(x)}
starting from a given mapping f , which converges to the desired mapping F in the fuzzy
sense. As we mentioned before, in previous studies of stability problem of (1.3), Chang et
al. attempted to get stability theorems by handling the odd and even part of f , respectively.
According to our proposal in this paper, we can take the desired approximate solution F at
once.

2. Fuzzy Stability of the Quadratic-Additive Functional Equation

We use the definition of a fuzzy normed space given in [18] to exhibit a reasonable fuzzy ver-
sion of stability for the quadratic-additive functional equation in the fuzzy normed linear
space.

Definition 2.1 (see [18]). Let X be a real linear space. A mapping N : X × � → [0, 1] (the so-
called fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ �,

(N1) N(x, c) = 0 for c ≤ 0,

(N2) x = 0 if and only if N(x, c) = 1 for all c > 0,

(N3) N(cx, t) = N(x, t/|c|) if c /= 0,

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)},
(N5) N(x, ·) is a nondecreasing mapping on � and limt→∞N(x, t) = 1.

The pair (X,N) is called a fuzzy normed linear space. Let (X,N) be a fuzzy normed
linear space. Let {xn} be a sequence in X. Then {xn} is said to be convergent if there exists
x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of the
sequence {xn}, and we denote it byN − limn→∞xn = x. A sequence {xn} in X is called Cauchy
if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 and all p > 0 we have
N(xn+p − xn, t) > 1 − ε. It is known that every convergent sequence in a fuzzy normed space
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is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed space is called a fuzzy Banach space.

Let (X,N) be a fuzzy normed space and (Y,N ′) a fuzzy Banach space. For a given
mapping f : X → Y , we use the abbreviation

Df
(
x, y, z,w

)
:= f
(
x + y + z +w

)
+ 2f(x) + 2f

(
y
)
+ 2f(z) + 2f(w) − f

(
x + y

)

− f(x + z) − f(x +w) − f
(
y + z

) − f
(
y +w

) − f(z +w)
(2.1)

for all x, y, z,w ∈ X. For given q > 0, the mapping f is called a fuzzy q-almost quadratic-additive
mapping if

N ′(Df
(
x, y, z,w

)
, s + t + u + v

) ≥ min
{
N(x, sq),N

(
y, tq
)
,N(z, uq),N(w, vq)

}
(2.2)

for all x, y, z,w ∈ X and s, t, u, v ∈ (0,∞). Now we get the general stability result in the fuzzy
normed linear setting.

Theorem 2.2. Let q be a positive real number with q /= 1/2, 1. And let f be a fuzzy q-almost quadratic-
additive mapping from a fuzzy normed space (X,N) into a fuzzy Banach space (Y,N ′). Then there is
a unique quadratic-additive mapping F : X → Y such that

N ′(F(x) − f(x), t
) ≥ sup

t′<t
N

(
x,

(|4 − 2p||2 − 2p|t′)q
(2(|4 − 2p| + |2 − 2p|))q

)
(2.3)

for all x ∈ X and t > 0, where p = 1/q.

Proof. It follows from (2.2) and (N4) that

N ′(f(0), t
)
= N ′(Df(0, 0, 0, 0), 3t

) ≥ N

(
0,
(
3t
4

)q)
= 1 (2.4)

for all t ∈ (0,∞). By (N2), we have f(0) = 0. We will prove the theorem in three cases: q > 1,
1/2 < q < 1, and 0 < q < 1/2.

Case 1. Let q > 1 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
f(2nx) + f(−2nx)

2 · 4n +
f(2nx) − f(−2nx)

2n+1
(2.5)

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x) − Jj+1f(x) =
Df
(
2jx,−2jx, 2jx,−2jx)

2 · 4j+1 +
Df
(
2jx, 2jx, 2jx,−2jx)

2j+3

− Df
(−2jx,−2jx,−2jx, 2jx)

2j+3

(2.6)
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for all x ∈ X and j ≥ 0. Together with (N3), (N4), and (2.2), this equation implies that if
n +m > m ≥ 0, then

N ′

⎛

⎝Jmf(x) − Jn+mf(x),
n+m−1∑

j=m

(
1
2

(
2p

4

)j

+
(
2p

2

)j
)

tp

⎞

⎠

≥ N ′

⎛

⎝
n+m−1∑

j=m

(
Jjf(x) − Jj+1f(x)

)
,
n+m−1∑

j=m

(
1 + 2j+1

)
2jp

2 · 4j tp

⎞

⎠

≥ min
n+m−1⋃

j=m

{

N ′
(

Jjf(x) − Jj+1f(x),

(
1 + 2j+1

)
2jp

2 · 4j tp
)}

≥ min
n+m−1⋃

j=m

{

min

{

N ′
(

Df
(
2jx,−2jx, 2jx,−2jx)

2 · 4j+1 ,
2jptp

2 · 4j
)

,

N ′
(

Df
(
2jx, 2jx, 2jx,−2jx)

2j+3
,
2jptp

2j+1

)

,

N ′
(

−Df
(−2jx,−2jx,−2jx, 2jx)

2j+3
,
2jptp

2j+1

)}}

≥ min
n+m−1⋃

j=m

{
N
(
2jx, 2j t

)}
= N(x, t)

(2.7)

for all x ∈ X and t > 0. Let ε > 0 be given. Since limt→∞N(x, t) = 1, there is t0 > 0 such that

N(x, t0) ≥ 1 − ε. (2.8)

We observe that for some t̃ > t0, the series
∑∞

j=0(1+2
j+1)2jp/2 ·4j t̃p converges for p = (1/q) < 1.

It guarantees that, for an arbitrary given c > 0, there exists n0 ≥ 0 such that

n+m−1∑

j=m

(
1 + 2j+1

)
2jp

2 · 4j t̃p < c (2.9)

for eachm ≥ n0 and n > 0. By (N5) and (2.7), we have

N ′(Jmf(x) − Jn+mf(x), c
) ≥ N ′

⎛

⎝Jmf(x) − Jn+mf(x),
n+m−1∑

j=m

(
1 + 2j+1

)
2jp

2 · 4j t̃p

⎞

⎠

≥ N
(
x, t̃
)
≥ N(x, t0) ≥ 1 − ε

(2.10)



International Journal of Mathematics and Mathematical Sciences 5

for all x ∈ X. Hence {Jnf(x)} is a Cauchy sequence in the fuzzy Banach space (Y,N ′), and so
we can define a mapping F : X → Y by

F(x) := N ′ − lim
n→∞

Jnf(x) (2.11)

for all x ∈ X. Moreover, if we put m = 0 in (2.7), we have

N ′(f(x) − Jnf(x), t
) ≥ N

⎛

⎜
⎝x,

tq
(∑n−1

j=0

(
(1/2)(2p/4)j + (2p/2)j

))q

⎞

⎟
⎠ (2.12)

for all x ∈ X. Next we will show that F is a desired quadratic-additive mapping. Using (N4),
we have

N ′(DF
(
x, y, z,w

)
, t
)

≥ min
{
N ′
(
F
(
x + y + z +w

) − Jnf
(
x + y + z +w

)
,
t

30

)
,

N ′
(
2F(x) − 2Jnf(x),

t

15

)
,N ′
(
2F
(
y
) − 2Jnf

(
y
)
,
t

15

)
,

N ′
(
2F(z) − 2Jnf(z),

t

15

)
,N ′
(
2F(w) − 2Jnf(w),

t

15

)
,

N ′
(
F
(
x + y

) − Jnf
(
x + y

)
,
t

30

)
,N ′
(
F(x + z) − Jnf(x + z),

t

30

)
,

N ′
(
F(x +w) − Jnf(x +w),

t

30

)
,N ′
(
F
(
y + z

) − Jnf
(
y + z

)
,
t

30

)
,

N ′
(
F
(
y +w

) − Jnf
(
y +w

)
,
t

30

)
,N ′
(
F(z +w) − Jnf(z +w),

t

30

)
,

N ′
(
DJnf

(
x, y, z,w

)
,
t

2

)}

(2.13)

for all x, y, z,w ∈ X and n ∈ �. The first eleven terms on the right-hand side of (2.13) tend to
1 as n → ∞ by the definition of F and (N2), and the last term holds:

N ′
(
DJnf

(
x, y, z,w

)
,
t

2

)
≥ min

{

N ′
(

Df
(
2nx, 2ny, 2nz, 2nw

)

2 · 4n ,
t

8

)

,

N ′
(

Df
(−2nx,−2ny,−2nz,−2nw)

2 · 4n ,
t

8

)

,

N ′
(

Df
(
2nx, 2ny, 2nz, 2nw

)

2 · 2n ,
t

8

)

,

N ′
(

Df
(−2nx,−2ny,−2nz,−2nw)

2 · 2n ,
t

8

)}

(2.14)
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for all x, y, z,w ∈ X. By (N3) and (2.2), we obtain

N ′
(

Df
(±2nx,±2ny,±2nz,±2nw)

2 · 4n ,
t

8

)

= N ′
(
Df
(±2nx,±2ny,±2nz,±2nw), 4

nt

4

)

≥ min
{
N

(
2nx,

(
4nt
16

)q)
,N

(
2ny,

(
4nt
16

)q)
,

N

(
2nz,
(
4nt
16

)q)
,N

(
2nw,

(
4nt
16

)q)}

≥ min

{

N

(

x,
2(2q−1)n

24q
tq
)

,N

(

y,
2(2q−1)n

24q
tq
)

,

N

(

z,
2(2q−1)n

24q
tq
)

,N

(

w,
2(2q−1)n

24q
tq
)}

,

N ′
(

Df
(±2nx,±2ny,±2nz,±2nw)

2 · 2n ,
t

8

)

≥ min

{

N

(

x,
2(q−1)n

24q
tq
)

,N

(

y,
2(q−1)n

24q
tq
)

,

N

(

z,
2(q−1)n

24q
tq
)

,N

(

w,
2(q−1)n

24q
tq
)}

(2.15)

for all x, y, z,w ∈ X and n ∈ �. Since q > 1, together with (N5), we can deduce that the last
term of (2.13) also tends to 1 as n → ∞. It follows from (2.13) that

N ′(DF
(
x, y, z,w

)
, t
)
= 1 (2.16)

for each x, y, z,w ∈ X and t > 0. By (N2), this means thatDF(x, y, z,w) = 0 for all x, y, z,w ∈
X.

Nowwe approximate the difference between f and F in a fuzzy sense. For an arbitrary
fixed x ∈ X and t > 0, choose 0 < ε < 1 and 0 < t′ < t. Since F is the limit of {Jnf(x)}, there is
n ∈ � such thatN ′(F(x) − Jnf(x), t − t′) ≥ 1 − ε. By (2.12), we have

N ′(F(x) − f(x), t
) ≥ min

{
N ′(F(x) − Jnf(x), t − t′

)
,N ′(Jnf(x) − f(x), t′

)}

≥ min

⎧
⎪⎨

⎪⎩
1 − ε,N

⎛

⎜
⎝x,

t′q
(∑n−1

j=0

(
(1/2)(2p/4)j + (2p/2)j

))q

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

≥ min
{
1 − ε,N

(
x,

(4 − 2p)q(2 − 2p)qt′q

(2(4 − 2p + 2 − 2p))q

)}

(2.17)
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since
∑n−1

j=0 ((1/2)(2
p/4)j + (2p/2)j) ≤ 2(4 − 2p + 2 − 2p)/((4 − 2p)(2 − 2p)). Because 0 < ε <

1 is arbitrary, we get inequality (2.3) in this case. Finally, to prove the uniqueness of F,
let F ′ : X → Y be another quadratic-additive mapping satisfying (2.3). Then by (2.6), we
get

F(x) − JnF(x) =
n−1∑

j=0

(
JjF(x) − Jj+1F(x)

)
= 0,

F ′(x) − JnF
′(x) =

n−1∑

j=0

(
JjF

′(x) − Jj+1F
′(x)
)
= 0

(2.18)

for all x ∈ X and n ∈ �. Together with (N4) and (2.3), this implies that

N ′(F(x) − F ′(x), t
)

= N ′(JnF(x) − JnF
′(x), t

)

≥ min
{
N ′
(
JnF(x) − Jnf(x),

t

2

)
, N ′
(
Jnf(x) − JnF

′(x),
t

2

)}

≥ min

{

N ′
((

F − f
)
(2nx)

2 · 4n ,
t

8

)

, N ′
((

f − F ′)(2nx)
2 · 4n ,

t

8

)

,

N ′
((

F − f
)
(−2nx)

2 · 4n ,
t

8

)

, N ′
((

f − F ′)(−2nx)
2 · 4n ,

t

8

)

,

N ′
((

F − f
)
(2nx)

2 · 2n ,
t

8

)

, N ′
((

f − F ′)(2nx)
2 · 2n ,

t

8

)

,

N ′
((

F − f
)
(−2nx)

2 · 2n ,
t

8

)

,N ′
((

f − F ′)(−2nx)
2 · 2n ,

t

8

)}

≥ sup
t′<t

N

(

x,
2(q−1)n−2q(4 − 2p)q(2 − 2p)qt′q

(4(3 − 2p))q

)

(2.19)

for all x ∈ X and n ∈ �. Observe that, for q = (1/p) > 1, the last term of the above inequality
tends to 1 as n → ∞ by (N5). This implies that N ′(F(x) − F ′(x), t) = 1, and so we get

F(x) = F ′(x) (2.20)

for all x ∈ X by (N2).
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Case 2. Let (1/2) < q < 1 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1
2

(
4−n
(
f(2nx) + f(−2nx)) + 2n

(
f
( x

2n
)
− f
(
− x

2n
)))

(2.21)

for all x ∈ X. Then we also have J0f(x) = f(x) and

Jjf(x) − Jj+1f(x) =
Df
(
2jx,−2jx, 2jx,−2jx)

2 · 4j+1 − 2j−2Df

(
x

2j+1
,

x

2j+1
,

x

2j+1
,− x

2j+1

)

+ 2j−2Df

(
− x

2j+1
,− x

2j+1
,− x

2j+1
,

x

2j+1

)

(2.22)

for all x ∈ X and j ≥ 0. If n +m > m ≥ 0, then we have

N ′

⎛

⎝Jmf(x) − Jn+mf(x),
n+m−1∑

j=m

(
1
2

(
2p

4

)j

+
(

2
2p

)j+1
)

tp

⎞

⎠

≥ min
n+m−1⋃

j=m

{

min

{

N ′
(

Df
(
2jx,−2jx, 2jx,−2jx)

2 · 4j+1 ,
2jptp

2 · 4j
)

,

N ′
(

−2j−2Df

(
x

2j+1
,

x

2j+1
,

x

2j+1
,− x

2j+1

)
,

2j tp

2(j+1)p

)

,

N ′
(

2j−2Df

(
− x

2j+1
,− x

2j+1
,− x

2j+1
,

x

2j+1

)
,

2j tp

2(j+1)p

)}}

≥ min
n+m−1⋃

j=m

{
N
(
2jx, 2j t

)
,N

(
x

2j+1
,

t

2j+1

)}
= N(x, t)

(2.23)

for all x ∈ X and t > 0. In a similar argument following (2.7) of the previous case, we can
define the limit F(x) := N ′ − limn→∞Jnf(x) of the Cauchy sequence {Jnf(x)} in the Banach
fuzzy space Y . Moreover, putting m = 0 in the above inequality, we have

N ′(f(x) − Jnf(x), t
) ≥ N

⎛

⎜
⎝x,

tq
(∑n−1

j=0

(
(1/2)(2p/4)j + (2/2p)j+1

))q

⎞

⎟
⎠ (2.24)
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for each x ∈ X and t > 0. To prove that F is a quadratic-additive mapping, we have enough
to show that the last term of (2.13) in Case 1 tends to 1 as n → ∞. By (N3) and (2.2), we get

N ′
(
DJnf

(
x, y, z,w

)
,
t

2

)

≥ min

{

N ′
(

Df
(
2nx, 2ny, 2nz, 2nw

)

2 · 4n ,
t

8

)

,N ′
(

Df
(−2nx,−2ny,−2nz,−2nw)

2 · 4n ,
t

8

)

,

N ′
(
2n−1Df

( x

2n
,
y

2n
,
z

2n
,
w

2n
)
,
t

8

)
,N ′
(
2n−1Df

(−x
2n

,
−y
2n

,
−z
2n

,
−w
2n

)
,
t

8

)}

≥ min
{
N
(
x, 2(2q−1)n−4qtq

)
,N
(
y, 2(2q−1)n−4qtq

)
,N
(
z, 2(2q−1)n−4qtq

)
,

N
(
w, 2(2q−1)n−4qtq

)
,N
(
x, 2(1−q)n−4qtq

)
,N
(
y, 2(1−q)n−4qtq

)
,

N
(
z, 2(1−q)n−4qtq

)
,N
(
w, 2(1−q)n−4qtq

)}

(2.25)

for all x, y, z,w ∈ X and t > 0. Observe that all the terms on the right-hand side of the above
inequality tend to 1 as n → ∞, since 1/2 < q < 1. Hence, with arguments similar to those of
(2.13)–(2.15), we can say that DF(x, y, z,w) = 0 for all x, y, z,w ∈ X. Recall that, in Case 1,
inequality (2.3) follows from (2.12). By the same reasoning, we get (2.3) from (2.24) in this
case.

Now to prove the uniqueness of F, let F ′ be another quadratic-additive mapping
satisfying (2.3). Then, together with (N4), (2.3), and (2.18), we have

N ′(F(x) − F ′(x), t
)

= N ′(JnF(x) − JnF
′(x), t

)

≥ min
{
N ′
(
JnF(x) − Jnf(x),

t

2

)
, N ′

(
Jnf(x) − JnF

′(x),
t

2

)}

≥ min

{

N ′
((

F − f
)
(2nx)

2 · 4n ,
t

8

)

,N ′
((

f − F ′)(2nx)
2 · 4n ,

t

8

)

,

N ′
((

F − f
)
(−2nx)

2 · 4n ,
t

8

)

,N ′
((

f − F ′)(−2nx)
2 · 4n ,

t

8

)

,

N ′
(
2n−1
((

F − f
)( x

2n
))

,
t

8

)
,N ′
(
2n−1
((

f − F ′)
( x

2n
))

,
t

8

)
,

N ′
(
2n−1
(
(
F − f

)
(−x
2n

))
,
t

8

)
,N ′
(
2n−1
(
(
f − F ′)

(−x
2n

))
,
t

8

)}
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≥ min

{

sup
t′<t

N
(
x, 2(2q−1)n−4q(4 − 2p)q(2p − 2)qt′q

)
,

sup
t′<t

N
(
x, 2(1−q)n−4q(4 − 2p)q(2p − 2)qt′q

)}

(2.26)

for all x ∈ X and n ∈ �. Since limn→∞2(2q−1)n−4q = limn→∞2(1−q)n−4q = ∞ in this case, both
terms on the right-hand side of the above inequality tend to 1 as n → ∞ by (N5). This
implies that N ′(F(x) − F ′(x), t) = 1 and so F(x) = F ′(x) for all x ∈ X by (N2).

Case 3. Finally, we take 0 < q < (1/2) and define Jnf : X → Y by

Jnf(x) =
1
2

(
4n
(
f
(
2−nx

)
+ f
(−2−nx)) + 2n

(
f
( x

2n
)
− f
(
− x

2n
)))

(2.27)

for all x ∈ X. Then we have J0f(x) = f(x) and

Jjf(x) − Jj+1f(x) = −4
j

2
Df

(
x

2j+1
,− x

2j+1
,

x

2j+1
,− x

2j+1

)

− 2j−2Df

(
x

2j+1
,

x

2j+1
,

x

2j+1
,− x

2j+1

)

+ 2j−2Df

(
− x

2j+1
,− x

2j+1
,− x

2j+1
,

x

2j+1

)

(2.28)

which implies that if n +m > m ≥ 0 then

N ′

⎛

⎝Jmf(x) − Jn+mf(x),
2
2p

n+m−1∑

j=m

((
4
2p

)j

+
(

2
2p

)j
)

tp

⎞

⎠

≥ min
n+m−1⋃

j=m

{

min

{

N ′
(

−4
j

2
Df

(
x

2j+1
,− x

2j+1
,

x

2j+1
,− x

2j+1

)
,
2 · 4j tp
2(j+1)p

)

,

N ′
(

−2j−2Df

(
x

2j+1
,

x

2j+1
,

x

2j+1
,− x

2j+1

)
,

2j tp

2(j+1)p

)

,

N ′
(

2j−2Df

(
− x

2j+1
,− x

2j+1
,− x

2j+1
,

x

2j+1

)
,

2jtp

2(j+1)p

)}}

≥ min
n+m−1⋃

j=m

{
N

(
x

2j+1
,

t

2j+1

)}
= N(x, t)

(2.29)
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for all x ∈ X and t > 0. Similar to the previous cases, it leads us to define the mapping
F : X → Y by F(x) := N ′ − limn→∞Jnf(x). Putting m = 0 in the above inequality, we have

N ′(f(x) − Jnf(x), t
) ≥ N

⎛

⎜
⎝x,

tq
(∑n−1

j=0

(
(1/2)(4/2p)j+1 + (2/2p)j+1

))q

⎞

⎟
⎠ (2.30)

for all x ∈ X and t > 0. Notice that

N ′
(
DJnf

(
x, y, z,w

)
,
t

2

)

≥ min
{
N ′
(
4n

2
Df
( x

2n
,
y

2n
,
z

2n
,
w

2n
)
,
t

8

)
,N ′
(
4n

2
Df

(−x
2n

,
−y
2n

,
−z
2n

,
−w
2n

)
,
t

8

)
,

N ′
(
2n−1Df

( x

2n
,
y

2n
,
z

2n
,
w

2n
)
,
t

8

)
,N ′
(
2n−1Df

(−x
2n

,
−y
2n

,
−z
2n

,
−w
2n

)
,
t

8

)}

≥ min
{
N
(
x, 2(1−2q)n−4qtq

)
,N
(
y, 2(1−2q)n−4qtq

)
,N
(
z, 2(1−2q)n−4qtq

)
,

N
(
w, 2(1−2q)n−4qtq

)
,N
(
x, 2(1−q)n−4qtq

)
,N
(
y, 2(1−q)n−4qtq

)
,

N
(
z, 2(1−q)n−4qtq

)
,N
(
w, 2(1−q)n−4qtq

)}

(2.31)

for each x, y, z,w ∈ X and t > 0. Since 0 < q < (1/2), all terms on the right-hand side tend to
1 as n → ∞, which implies that the last term of (2.13) tends to 1 as n → ∞. Therefore, we
can say that DF ≡ 0. Moreover, using arguments similar to those of (2.13)–(2.15) in Case 1,
we get inequality (2.3) from (2.30) in this case. To prove the uniqueness of F, let F ′ : X → Y
be another quadratic-additive mapping satisfying (2.3). Then by (2.18), we get

N ′(F(x) − F ′(x), t
)

≥ min
{
N ′
(
JnF(x) − Jnf(x),

t

2

)
,N ′
(
Jnf(x) − JnF

′(x),
t

2

)}

≥ min
{
N ′
(
4n

2

((
F − f

)( x

2n
))

,
t

8

)
,N ′
(
4n

2

((
f − F ′)

( x

2n
))

,
t

8

)
,

N ′
(
4n

2

((
F − f

)(− x

2n
))

,
t

8

)
,N ′
(
4n

2

((
f − F ′)

(
− x

2n
))

,
t

8

)
,

N ′
(
2n−1
((

F − f
)( x

2n
))

,
t

8

)
,N ′
(
2n−1
((

f − F ′)
( x

2n
))

,
t

8

)
,

N ′
(
2n−1
(
(
F − f

)
(−x
2n

))
,
t

8

)
,N ′
(
2n−1
(
(
f − F ′)

(−x
2n

))
,
t

8

)}

≥ sup
t′<t

N

(

x,
2(1−2q)n−4q(2p − 4)(2p − 2)t′q

(2p − 3)q

)

(2.32)
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for all x ∈ X and n ∈ �. Observe that, for 0 < q < (1/2), the last term tends to 1 as n →
∞ by (N5). This implies that N ′(F(x) − F ′(x), t) = 1 and F(x) = F ′(x) for all x ∈ X by
(N2).

Remark 2.3. Consider a mapping f : X → Y satisfying (2.2) for all x, y, z,w ∈ X and a real
number q < 0. Take any t > 0. If we choose a real number swith 0 < 4s < t, then

N ′(Df
(
x, y, z,w

)
, t
) ≥ N ′(Df

(
x, y, z,w

)
, 4s
)

≥ min
{
N(x, sq),N

(
y, sq
)
,N(z, sq),N(w, sq)

} (2.33)

for all x, y, z,w ∈ X. Since q < 0, we have lims→ 0+sq = ∞. This implies that

lim
s→ 0+

N(x, sq) = lim
s→ 0+

N
(
y, sq
)
= lim

z→ 0+
N(x, sq) = lim

w→ 0+
N(w, sq) = 1, (2.34)

and so

N ′(Df
(
x, y, z,w

)
, t
)
= 1 (2.35)

for all x, y, z,w ∈ X and t > 0. By (N2), we are allowed to getDf(x, y, z,w) = 0 for all x, y, z,
w ∈ X. In other words, f is itself a quadratic-additive mapping if f is a fuzzy q-almost
quadratic-additive mapping for the case q < 0.

Corollary 2.4. Let f be an even mapping satisfying all of the conditions of Theorem 2.2. Then there
is a unique quadratic mapping F : X → Y such that

N ′(F(x) − f(x), t
) ≥ sup

t′<t
N

(
x,

( |4 − 2p|t′
2

)q)
(2.36)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an even mapping, we obtain

Jnf(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f(2nx) + f(−2nx)
2 · 4n if q >

1
2
,

1
2
(
4n
(
f(2−nx) + f(−2−nx))) if 0 < q <

1
2

(2.37)

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x) − Jj+1f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Df
(
2jx,−2jx, 2jx,−2jx)

2 · 4j+1 if q >
1
2
,

−4
j

2
Df

(
x

2j+1
,− x

2j+1
,

x

2j+1
,− x

2j+1

)
if 0 < q <

1
2

(2.38)



International Journal of Mathematics and Mathematical Sciences 13

for all x ∈ X and j ∈ � ∪ {0}. From these, using the similar method in Theorem 2.2, we obtain
the quadratic-additive mapping F satisfying (2.36). Notice that F(x) := N ′ − limn→∞Jnf(x)
for all x ∈ X, F is even, F(2x) = 4F(x), andDF(x, y, z,w) = 0 for all x, y, z,w ∈ X. Hence, we
get

F
(
x + y

)
+ F
(
x − y

) − 2F(x) − 2F
(
y
)
= −DF

(
x, y, x,−x) = 0 (2.39)

for all x, y ∈ X. This means that F is a quadratic mapping.

Corollary 2.5. Let f be an odd mapping satisfying all of the conditions of Theorem 2.2. Then there is
a unique additive mapping F : X → Y such that

N ′(F(x) − f(x), t
) ≥ sup

t′<t
N

(
x,

( |2 − 2p|t′
2

)q)
(2.40)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an odd mapping, we obtain

Jnf(x) =

⎧
⎪⎨

⎪⎩

f(2nx) + f(−2nx)
2n+1

if q > 1,

2n−1
(
f(2−nx) + f(−2−nx)) if 0 < q < 1

(2.41)

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x) − Jj+1f(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

Df
(
2jx, 2jx, 2jx,−2jx)

2j+3
− Df

(−2jx,−2jx,−2jx, 2jx)

2j+3
if q > 1,

2j−2
(
Df

(
− x

2j+1
,− x

2j+1
,− x

2j+1
,

x

2j+1

)
−Df

(
x

2j+1
,

x

2j+1
,

x

2j+1
,− x

2j+1

))
if 0 < q < 1

(2.42)

for all x ∈ X and j ∈ � ∪ {0}. From these, using the similar method in Theorem 2.2, we obtain
the quadratic-additive mapping F satisfying (2.40). Notice that F(x) := N ′ − limn→∞Jnf(x)
for all x ∈ X, F is odd, F(2x) = 2F(x), andDF(x, y, z,w) = 0 for all x, y, z,w ∈ X. Hence, we
get

F
(
x + y

) − F(x) − F
(
y
)
= −DF

(
x − y

2
,
−x − y

2
,
x − y

2
,
−x + y

2

)
= 0 (2.43)

for all x, y ∈ X. This means that F is an additive mapping.
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We can use Theorem 2.2 to get a classical result in the framework of normed spaces.
Let (X, ‖ · ‖) be a normed linear space. Then we can define a fuzzy norm NX on X by

NX(x, t) =

⎧
⎨

⎩

0 if t ≤ ‖x‖,
1 if t > ‖x‖,

(2.44)

where x ∈ X and t ∈ �, see [22]. Suppose that f : X → Y is a mapping into a Banach space
(Y, |‖ · ‖|) such that

∣
∣
∥
∥Df

(
x, y, z,w

)∥∥
∣
∣ ≤ ‖x‖p + ∥∥y∥∥p + ‖z‖p + ‖w‖p (2.45)

for all x, y, z,w ∈ X, where p > 0 and p /= 1, 2. LetNY be a fuzzy norm on Y . Then we get

NY

(
Df
(
x, y, z,w

)
, s + t + u + v

)
=

⎧
⎨

⎩

0 if s + t + u + v ≤ ∣∣∥∥Df
(
x, y, z,w

)∥∥∣∣,

1 if s + t + u + v >
∣∣∥∥Df

(
x, y, z,w

)∥∥∣∣
(2.46)

for all x, y, z,w ∈ X and s, t, u, v ∈ �. Consider the case

NY

(
Df
(
x, y, z,w

)
, s + t + u + v

)
= 0. (2.47)

This implies that

‖x‖p + ∥∥y∥∥p + ‖z‖p + ‖w‖p ≥ ∣∣∥∥Df
(
x, y, z,w

)∥∥∣∣ ≥ s + t + u + v, (2.48)

and so ‖x‖p ≥ s, ‖y‖p ≥ t, ‖z‖p ≥ u, or ‖w‖p ≥ v in this case. Hence, for q = 1/p, we have

min
{
NX(x, sq),NX

(
y, tq
)
,NX(z, uq),NX(w, vq)

}
= 0 (2.49)

for all x, y, z,w ∈ X and s, t, u, v > 0. Therefore, in every case, the inequality

NY

(
Df
(
x, y, z,w

)
, s + t + u + v

) ≥ min
{
NX(x, sq),NX

(
y, tq
)
,NX(z, uq),NX(w, vq)

}
(2.50)

holds. It means that f is a fuzzy q-almost quadratic-additive mapping, and by Theorem 2.2,
we get the following stability result.

Corollary 2.6. Let (X, ‖·‖) be a normed linear space and let (Y, |‖·‖|) be a Banach space. If f : X → Y
satisfies

∣
∣
∥
∥Df

(
x, y, z,w

)∥∥
∣
∣ ≤ ‖x‖p + ∥∥y∥∥p + ‖z‖p + ‖w‖p (2.51)



International Journal of Mathematics and Mathematical Sciences 15

for all x, y, z,w ∈ X, where p > 0 and p /= 1, 2, then there is a unique quadratic-additive mapping
F : X → Y such that

∣∣∥∥F(x) − f(x)
∥∥∣∣ ≤

(
2

|2 − 2p| +
2

|4 − 2p|
)
‖x‖p (2.52)

for all x ∈ X.

Lemma 2.7. If F : X → Y is a mapping such that

Df
(
x, y, z,w

)
= 0 (2.53)

for all x, y, z,w ∈ X \ {0} with F(0) = 0, then

DF
(
x, y, z,w

)
= 0 (2.54)

for all x, y, z,w ∈ X.

Proof. We easily know that

DF
(
x, y, z, 0

)
= DF

(
2x, y, z,−x) −DF

(
2x, y,−x,−x) +DF

(
2x, y, x,−x)

−DF(2x, z,−x,−x) +DF(2x, z, x,−x) − 2DF(2x, x, x,−x)
+DF(x,−x,−x,−x) = 0

(2.55)

for all x, y, z ∈ X\{0}. Using a similar method, we haveDF(x, y, 0, w) = 0,DF(x, 0, z,w) = 0,
DF(0, y, z,w) = 0, DF(x, y, 0, 0) = 0, DF(x, 0, z, 0) = 0, DF(x, 0, 0, w) = 0, DF(0, y, z, 0) = 0,
DF(0, 0, z,w) = 0, DF(0, y, 0, w) = 0, DF(x, 0, 0, 0) = 0, DF(0, y, 0, 0) = 0, DF(0, 0, z, 0) = 0,
DF(0, 0, 0, w) = 0, andDF(0, 0, 0, 0) = 0 for all x, y, z,w ∈ X \ {0}, as we desired.
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