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We study the uniqueness ofmeromorphic functions and differential polynomials sharing one value
with weight and prove two main theorems which generalize and improve some results earlier
given by M. L. Fang, S. S. Bhoosnurmath and R. S. Dyavanal, and so forth.

1. Introduction and Results

Let f be a nonconstant meromorphic function defined in the whole complex plane � . It is
assumed that the reader is familiar with the notations of the Nevanlinna theory such as
T(r, f), m(r, f),N(r, f), and S(r, f), that can be found, for instance, in [1–3].

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex
number. We say that f and g share the value a CM (counting multiplicities) if f − a and
g − a have the same zeros with the same multiplicities, and we say that f and g share the
value a IM (ignoring multiplicities) if we do not consider the multiplicities. When f and g
share 1 IM, let z0 be a 1-point of f of order p and a 1-points of g of order q; we denote by
N11(r, 1/(f − 1)) the counting function of those 1-points of f and g, where p = q = 1 and
by N

(2)
E (r, 1/(f − 1)) the counting function of those 1-points of f and g, where p = q ≥ 2.

NL(r, 1/(f − 1)) is the counting function of those 1-points of both f and g, where p > q. In
the same way, we can define N11(r, 1/(g − 1)), N(2)

E (r, 1/(g − 1)), and NL(r, 1/(g − 1)). If f
and g share 1 IM, it is easy to see that
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Let f be a nonconstant meromorphic function. Let a be a finite complex number and k

a positive integer; we denote byN(k)(r, 1/(f−a)) (orN(k)(r, 1/(f−a))) the counting function
for zeros of f − awith multiplicity ≤ k (ignoring multiplicities) and by N(k)(r, 1/(f − a)) (or
N(k)(r, 1/(f−a))) the counting function for zeros of f−awith multiplicity at least k (ignoring
multiplicities). Set

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+N(2)

(
r,

1
f − a

)
+ · · · +N(k)

(
r,

1
f − a

)
,

Θ
(
a, f

)
= 1 − lim

r→∞
N
(
r,
(
1/f − a

))
T
(
r, f

) .

(1.2)

We further define

δk
(
a, f

)
= 1 − lim

r→∞
Nk

(
r, 1/

(
f − a

))
T
(
r, f

) . (1.3)

In 2002, C. Y. Fang and M. L. Fang [4] proved the following result.

Theorem A (see [4]). Let f(z) and g(z) be two nonconstant entire functions, and let n(≥8) be a
positive integer. If [fn(z)(f(z)−1)]f ′(z) and [gn(z)(g(z)−1)]g ′(z) share 1CM, then f(z) ≡ g(z).

Fang [5] proved the following result.

Theorem B (see [5]). Let f(z) and g(z) be two nonconstant entire functions, and let n, k be two
positive integers with n > 2k + 8. If [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k) share 1 CM, then
f(z) ≡ g(z).

In [6], for some general differential polynomials such as [fn(f − 1)m](k), Liu proved
the following result.

TheoremC (see [6]). Let f(z) and g(z) be two nonconstant entire functions, and let n,m, k be three
positive integers such that n > 5k + 4m + 9. If [fn(z)(f(z) − 1)m](k) and [gn(z)(g(z) − 1)m](k)

share 1 IM, then either f(z) ≡ g(z) or f and g satisfy the algebraic equation R(f, g) ≡ 0, where
R(ω1, ω2) = ωn

1 (ω1 − 1)m −ωn
2 (ω2 − 1)m.

The following example shows that Theorem A is not valid when f and g are two
meromorphic functions.

Example 1.1. Let f = (n+2)(h−hn+2)/(n+1)(1−hn+2), g = (n+2)(1−hn+1)/(n+1)(1−hn+2), where
h = ez. Then [fn(z)(f(z) − 1)]f ′(z) and [gn(z)(g(z) − 1)]g ′(z) share 1 CM, but f(z)/≡ g(z).

Lin and Yi [7] and Bhoosnurmath and Dyavanal [8] generalized the above results and
obtained the following results.

Theorem D (see [7]). Let f(z) and g(z) be two nonconstant meromorphic functions with
Θ(∞, f) > 2/(n + 1), and let n(≥ 12) be a positive integer. If [fn(z)(f(z) − 1)]f ′(z) and
[gn(z)(g(z) − 1)]g ′(z) share 1 CM, then f(z) ≡ g(z).
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Theorem E (see [8]). Let f(z) and g(z) be two nonconstant meromorphic functions satisfying
Θ(∞, f) > 3/(n + 1), and let n, k be two positive integers with n > 3k + 13. If [fn(z)(f(z) − 1)](k)

and [gn(z)(g(z) − 1)](k) share 1 CM, then f(z) ≡ g(z).

Naturally, one may ask the following question: is it really possible to relax in any way
the nature of sharing 1 in the above results?

To state the next result, we require the following definition.

Definition 1.2 (see [9]). Let k be a nonnegative integer or infinity. For a ∈ � = � ∪ {∞} one
denotes by Ek(a, f) the set of all a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), one says that f, g share the
value awith weight k.

We write that f, g share (a, k) to mean that f, g share the value awith weight k; clearly
if f, g share (a, k), then f, g share (a, p) for all integers p with 0 ≤ p ≤ k. Also, we note that
f, g share a value a IM or CM if and only if they share (a, 0) or (a,∞), respectively.

Recently, with the notion of weighted sharing of values, Xu et al. [10] improved the
above results and proved the following theorem.

Theorem F (see [10]). Let f(z) and g(z) be two nonconstant meromorphic functions, and let n, k
be two positive integers with n > 5k + 11. If Θ(∞, f) + Θ(∞, g) > 4/n, [fn(z)(f(z) − 1)](k), and
[gn(z)(g(z) − 1)](k) share 1 (1, 2), then f(z) ≡ g(z).

Theorem G (see [10]). Let f(z) and g(z) be two nonconstant meromorphic functions, and let n, k
be two positive integers with n > 7k + 23/2. IfΘ(∞, f) +Θ(∞, g) > 4/n, [fn(z)(f(z) − 1)](k), and
[gn(z)(g(z) − 1)](k) share 1 (1, 1), then f(z) ≡ g(z).

Remark 1.3. The proof of Theorem E contains some mistakes: for example, one cannot get
formulas (6.9) and (6.10) in [8]. Therefore, the last inequality in page 1203 of [8] does not
hold. So, Theorem E will not stand. Similarly, in [10], the proof of Case 1 in Theorem F is
incorrect (see page 63 of paper [10]). Hence, the conclusion of Theorems F and G will not
stand.

Now one may ask the following questions which are the motivations of the paper.

(i) What happens if the conclusions of Theorems E, F, and G can not stand?

(ii) Can the value n be further reduced in the above results?

In the paper, we investigate the solutions of the above questions. We improve and gen-
eralize the above related results by proving the following theorems.

Theorem 1.4. Let f(z) and g(z) be two nonconstant meromorphic functions, and let n, k be two
positive integers with n > 3k+11. IfΘ(∞, f) > 2/n, [fn(z)(f(z) − 1)](k), and [gn(z)(g(z) − 1)](k)

share 1 (1, 2), then f(z) ≡ g(z) or [fn(z)(f(z) − 1)](k) · [gn(z)(g(z) − 1)](k) ≡ 1.

Theorem 1.5. Let f(z) and g(z) be two nonconstant meromorphic functions, and let n, k be two
positive integers with n > 5k+14. IfΘ(∞, f) > 2/n, [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k)

share 1 (1, 1), then f(z) ≡ g(z) or [fn(z)(f(z) − 1)](k) · [gn(z)(g(z) − 1)](k) ≡ 1.
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2. Some Lemmas

For the proof of our result, we need the following lemmas.

Lemma 2.1 (see [1]). Let f be nonconstant meromorphic function, and let a0, a1, . . . , an be finite
complex numbers such that an /= 0. Then

T
(
r, anf

n + an−1fn−1 + · · · + a0

)
= nT

(
r, f

)
+ S

(
r, f

)
. (2.1)

Lemma 2.2 (see [1]). Let f(z) be a nonconstant meromorphic function, k a positive integer, and c
a nonzero finite complex number. Then

T
(
r, f

) ≤ N
(
r, f

)
+N

(
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1
f

)
+N

(
r,

1
f (k) − c

)
−N

(
r,

1
f (k+1)

)
+ S

(
r, f

)

≤ N
(
r, f

)
+Nk+1

(
r,

1
f

)
+N

(
r,

1
f (k) − c

)
−N0

(
r,

1
f (k+1)

)
+ S

(
r, f

)
.

(2.2)

HereN0(r, 1/f (k+1)) is the counting function which only counts those points such that f (k+1) = 0 but
f(f (k) − c)/= 0.

Lemma 2.3 (see [11]). Let f be a nonconstant meromorphic function, and let k, p be two positive
integers. Then

Np

(
r

1
f (k)

)
≤ Np+k

(
r
1
f

)
+ kN

(
r, f

)
+ S

(
r, f

)
. (2.3)

Clearly N(r(1/f (k))) = N1(r(1/f (k))).

Lemma 2.4 (see [1]). Let f(z) be a transcendental meromorphic function, and let a1(z), a2(z) be
two meromorphic functions such that T(r, ai) = S(r, f), i = 1, 2. Then

T
(
r, f

) ≤ N
(
r, f

)
+N

(
r,

1
f − a1

)
+N

(
r,

1
f − a2

)
+ S

(
r, f

)
. (2.4)

Lemma 2.5. Let f and g be two nonconstant meromorphic functions, and let k(≥1), l(≥1) be two
positive integers. Suppose that f (k) and g(k) share (1, l).

(i) If l = 2 and

Δ1 = 2Θ
(∞, f

)
+ (k + 2)Θ

(∞, g
)
+ Θ

(
0, f

)
+ Θ

(
0, g

)
+ δk+1

(
0, f

)
+ δk+1

(
0, g

)
> k + 7 (2.5)

then either f (k)g(k) ≡ 1 or f ≡ g.
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(ii) If l = 1 and

Δ2 = (k + 3)Θ
(∞, f

)
+ (k + 2)Θ

(∞, g
)
+ Θ

(
0, f

)
+ Θ

(
0, g

)
+ 2δk+1

(
0, f

)
+ δk+1

(
0, g

)
> 2k + 9

(2.6)

then either f (k)g(k) ≡ 1 or f ≡ g.

Proof. Let

h(z) =
f (k+2)(z)
f (k+1)(z)

− 2
f (k+1)(z)
f (k)(z) − 1

− g(k+2)(z)
g(k+1)(z)

+ 2
g(k+1)(z)
g(k)(z) − 1

. (2.7)

Suppose that h/≡ 0.
If z0 is a common simple 1-point of f (k) and g(k), substituting their Taylor series at z0

into (2.7), we see that z0 is a zero of h(z). Thus, we have

N11

(
r,

1
f (k) − 1

)
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≤ N(r, h) + S
(
r, f

)
+ S

(
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)
.

(2.8)

By our assumptions, h(z) have poles only at zeros of f (k+1) and g(k+1) and poles of
f and g, and those 1-points of f (k) and g(k) whose multiplicities are distinct from the
multiplicities of correspond to 1-points of g(k) and f (k), respectively. Thus, we deduce from
(2.7) that
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,

(2.9)

hereN0(r, 1/f (k+1) ) has the same meaning as in Lemma 2.2.
By Lemma 2.2, we have
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Since f (k) and g(k) share (1, 0), we get
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We obtain from (2.8)–(2.11) that
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(i) If l ≥ 2, it is easy to see that
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Since
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(
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)
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(
r, g

)

≤ m
(
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+m

(
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g

)
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(
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)
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(
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≤ T
(
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(
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,

(2.14)

combining with (2.12), (2.13), and (2.14), we obtain

T
(
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)
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(2.15)
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Without loss of generality, we suppose that there exists a set I with infinite measure such that
T(r, g) ≤ T(r, f) for r ∈ I:

T
(
r, f

) ≤ {[
(k + 8) − 2Θ

(∞, f
) − (k + 2)Θ

(∞, g
) −Θ

(
0, f

) −Θ
(
0, g

)
−δk+1

(
0, f

) − δk+1
(
0, g

)]
+ ε

}
T
(
r, f

)
+ S(r, F)

(2.16)

for r ∈ I and 0 < ε < Δ1 − (k + 7), that is,

[Δ1 − (k + 7) − ε]T
(
r, f

) ≤ S
(
r, f

)
, (2.17)

that is, Δ1 ≤ k + 7, which contradicts hypothesis (2.5).
Therefore, we have h ≡ 0, that is,

f (k+2)(z)
f (k+1)(z)

− 2
f (k+1)(z)
f (k)(z) − 1

=
g(k+2)(z)
g(k+1)(z)

− 2
g(k+1)(z)
g(k)(z) − 1

. (2.18)

By solving this equation, we obtain

g(k) =
(b + 1)f (k) + (a − b − 1)

bf (k) + (a − b)
, (2.19)

where a(/= 0), b are two constants. Next, we consider three cases.

Case 1 (b /= 0,−1). For more details see the following subcases.

Subcase 1.1 (a − b − 1/= 0). Then, by (2.19), we have N(r, 1/(f (k) − (a − b − 1)/(b + 1))) =
N(r, 1/g(k)).

By Lemma 2.2 and Lemma 2.3, we get

T
(
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(
r, f

)
+Nk+1

(
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1
f

)
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(
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1
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)
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)
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1
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)
+ S

(
r, f

)

≤ N
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)
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1
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)
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(
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1
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)
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(
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)
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(
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)
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(
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)
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(
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+N
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1
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+N

(
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)
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)
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(
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)
,

(2.20)
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that is, T(r, f) ≤ (k + 8 − Δ1)T(r, f) + S(r, f). Thus, by (2.5) we deduce that T(r, f) ≤ S(r, f)
for r ∈ I, a contradiction.

Subcase 1.2 (a − b − 1 = 0). Then, by (2.19), we have g(k) = (b + 1)f (k)/(bf (k) + 1).
ThereforeN(r, 1/(f (k) + (1/b))) = N(r, g(k)).
By Lemma 2.2 and Lemma 2.3, we get

T
(
r, f

) ≤ N
(
r, f

)
+Nk+1

(
r,

1
f

)
+N

(
r,

1
f (k) + (1/b)

)
−N0

(
r,

1
f (k+1)

)
+ S

(
r, f

)

≤ N
(
r, f

)
+Nk+1

(
r,

1
f

)
+N

(
r, g(k)

)
+ S

(
r, f

)

≤ 2N
(
r, f

)
+ (k + 2)N

(
r, g

)
+N

(
r,

1
f

)
+N

(
r,

1
g

)

+Nk+1

(
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1
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+Nk+1

(
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+ S

(
r, f

)
+ S

(
r, g

)
,

(2.21)

that is, T(r, f) ≤ (k + 8 − Δ1)T(r, f) + S(r, f). Thus, by (2.5) we deduce that T(r, f) ≤ S(r, f)
for r ∈ I, a contradiction.

Case 2 (b = −1). For more details see the following subcases.

Subcase 2.1 (a+1/= 0). Then by (2.19), we get a/((a+1)−f (k)) = g(k). So, we haveN(r, 1/(f (k)−
(a + 1))) = N(r, g(k)). We can deduce a contradiction as in Case 1.

Subcase 2.2 (a + 1 = 0). Then by (2.19), we get f (k)g(k) ≡ 1.

Case 3 (b = 0). For more details see the following subcases.

Subcase 3.1 (a−1/= 0). Then by (2.19), we get (f (k) +a−1)/a = g(k). So, we haveN(r, 1/(f (k)−
(1 − a))) = N(r, g(k)). We can deduce a contradiction as in Case 1.

Subcase 3.2 (a − 1 = 0). Then by (2.19), we get f (k) ≡ g(k). From this, we obtain f = g + P(z),
where P(z) is a polynomial, and so T(r, f) = T(r, g) +S(r, f). If P(z)/≡ 0, then, by Lemma 2.4,
we get

T
(
r, f

) ≤ N
(
r, f

)
+N

(
r,

1
f

)
+N

(
r,

1
f − P

)
+ S

(
r, f

)

≤ N
(
r, f

)
+N

(
r,

1
f

)
+N

(
r,

1
g

)
+ S

(
r, f

)

≤ 2N
(
r, f

)
+ (k + 2)N

(
r, g

)
+N

(
r,

1
f

)
+N

(
r,

1
g

)

+Nk+1

(
r,

1
f

)
+Nk+1

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(2.22)
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Thus, by (2.5) we deduce that T(r, f) ≤ S(r, f) for r ∈ I, a contradiction. Therefore, we con-
clude that P(z) ≡ 0, that is, f ≡ g.

(ii) If l = 1, it is easy to see that

N11

(
r,

1
f (k) − 1

)
+ 2NL

(
r,

1
f (k) − 1

)
+ 3NL

(
r,

1
g(k) − 1

)
+ 2N(2)

E

(
r,

1
f (k) − 1

)

≤ N

(
r,

1
g(k) − 1

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(2.23)

By Lemma 2.3, we can get

NL

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k) − 1

)
+N

(
r,

1
f (k) − 1

)

≤ N

(
r,

f (k)

f (k+1)

)
≤ N

(
r,
f (k+1)

f (k)

)
+ S

(
r, f

)

≤ N

(
r,

1
f (k)

)
+N

(
r, f

)
+ S

(
r, f

)

≤ (k + 1)N
(
r, f

)
+Nk+1

(
r,

1
f

)
+ S

(
r, f

)
.

(2.24)

Combining with (2.12), (2.24), and (2.14), we obtain

T
(
r, f

) ≤ (k + 3)N
(
r, f

)
+ (k + 2)N

(
r, g

)
+N

(
r,

1
f

)
+N

(
r,

1
g

)
+ 2Nk+1

(
r,

1
f

)

+Nk+1

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(2.25)

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T(r, g) ≤ T(r, f) for r ∈ I:

T
(
r, f

) ≤ {[
(2k + 10) − (k + 3)Θ

(∞, f
) − (k + 2)Θ

(∞, g
) −Θ

(
0, f

)
−Θ(

0, g
) − 2δk+1

(
0, f

) − δk+1
(
0, g

)]
+ ε

}
T
(
r, f

)
+ S(r, F)

(2.26)

for r ∈ I and 0 < ε < Δ2 − (2k + 9), that is,

[Δ2 − (2k + 9) − ε]T
(
r, f

) ≤ S
(
r, f

)
, (2.27)

that is, Δ2 ≤ 2k+9, which contradicts hypothesis (2.6).
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Therefore, we have h ≡ 0, that is,

f (k+2)(z)
f (k+1)(z)

− 2
f (k+1)(z)
f (k)(z) − 1

=
g(k+2)(z)
g(k+1)(z)

− 2
g(k+1)(z)
g(k)(z) − 1

. (2.28)

By solving this equation, we obtain

g(k) =
(b + 1)f (k) + (a − b − 1)

bf (k) + (a − b)
, (2.29)

where a(/= 0), b are two constants. Using the argument in (i), we can obtain f (k)g(k) ≡ 1 or
f ≡ g. We here omit the details.

The proof of Lemma 2.5 is completed.

3. Proof of Theorem 1.4

Proof. Let F(z) = fn(f − 1) and G(z) = gn(g − 1). We have

Δ1 = 2Θ
(∞, f

)
+ (k + 2)Θ

(∞, g
)
+ Θ

(
0, f

)
+ Θ

(
0, g

)
+ δk+1

(
0, f

)
+ δk+1

(
0, g

)
. (3.1)

Since

Θ(0, F) = 1 − lim
r→∞

N(r, 1/F)
T(r, F)

= 1 − lim
r→∞

N
(
r, 1/

(
fn

(
f − 1

)))
(n + 1)T

(
r, f

)

= 1 − lim
r→∞

N
(
r, 1/f

)
+N

(
r, 1/

(
f − 1

))
(n + 1)T

(
r, f

) ≥ 1 − lim
r→∞

2T
(
r, f

)
(n + 1)T

(
r, f

) ≥ n − 1
n + 1

,

(3.2)

similarly,

Θ(0, G) ≥ n − 1
n + 1

,

Θ(∞, F) ≥ n

n + 1
,

Θ(∞, G) ≥ n

n + 1
.

(3.3)

Next, by Lemma 2.1, we have

δk+1(0, F) = 1 − lim
r→∞

Nk+1(r, 1/F)
T(r, F)

≥ 1 − lim
r→∞

(k + 1)N(r, 1/F)
T(r, F)

≥ 1 − lim
r→∞

(k + 2)T
(
r, f

)
(n + 1)T

(
r, f

) ≥ 1 − k + 2
n + 1

=
n − (k + 1)

n + 1
.

(3.4)
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Similarly

δk+1(0, G) ≥ 1 − k + 2
n + 1

=
n − (k + 1)

n + 1
. (3.5)

From (3.2)–(3.5), we get

Δ1 ≥ 2
n

n + 1
+ (k + 2)

n

n + 1
+
n − 1
n + 1

+
n − 1
n + 1

+
n − (k + 1)

n + 1
+
n − (k + 1)

n + 1
. (3.6)

Since n > 3k + 11, we get Δ1 > k + 7. Considering that F(k) and G(k) share (1, 2), then, by
Lemma 2.5, we deduce that either F(k)G(k) ≡ 1 or F ≡ G.

Next, we consider the following two cases.

Case 1. F(k)G(k) ≡ 1, that is, [fn(z)(f(z) − 1)](k) · [gn(z)(g(z) − 1)](k) ≡ 1.

Case 2. F ≡ G, that is,

fn(f − 1
)
= gn(g − 1

)
. (3.7)

Suppose that f /≡g; then we consider following two cases.

(i) Let h = f/g be a constant. Then from (3.7) it follows that h/= 1, hn /= 1, hn+1 /= 1 and
g = (1 − hn)/(1 − hn+1) = constant, which leads to contradiction.

(ii) Let h = f/g be not a constant. Since f /≡g, we have h/≡ 1, and hence we deduce that
g = (1−hn)/(1−hn+1) and g = ((1−hn)/(1−hn+1))h = (1+h+h2 + · · ·+hn−1)h/(1+
h + h2 + · · · + hn), where h is a nonconstant meromorphic function. It follows that

T
(
r, f

)
= T

(
r, gh

)
= nT(r, h) + S

(
r, f

)
. (3.8)

On the other hand, by the second fundamental theorem, we get

N
(
r, f

)
=

n∑
j=1

N

(
r,

1
h − αj

)
≥ (n − 2)T(r, h) + S

(
r, f

)
, (3.9)

where αj(/= 1)(j = 1, 2, . . . , n) are distinct roots of the algebraic equation hn+1 = 1.
So we have

Θ
(∞, f

)
= 1 − lim

r→∞
N
(
r, f

)
T
(
r, f

) ≤ 1 − lim
r→∞

(n − 2)T(r, h) + S
(
r, f

)
nT(r, h) + S

(
r, f

) ≤ 1 − n − 2
n

=
2
n
, (3.10)

which contradicts the assumption that Θ(∞, f) > 2/n. Thus f ≡ g. This completes the proof
of Theorem 1.4.
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4. Proof of Theorem 1.5

Proof. From (3.2)–(3.5), we get

Δ2 ≥ (k + 3)
n

n + 1
+ (k + 2)

n

n + 1
+
n − 1
n + 1

+
n − 1
n + 1

+ 2
n − (k + 1)

n + 1
+
n − (k + 1)

n + 1
. (4.1)

Since n > 5k + 14, we get Δ2 > 2k + 9. Considering that F(k) and G(k) share (1, 2), then, by
Lemma 2.5, we deduce that either F(k)G(k) ≡ 1 or F ≡ G.

Next, by using the argument in Theorem 1.4, we obtain the conclusion of Theorem 1.5.
We here omit the details.

Acknowledgments

This research was supported by the NSF of Key Lab of Geomathematics of Sichuan Province
of China. The author wishes to thank the referee for his/her valuable comments and sugges-
tions.

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford,
UK, 1964.

[2] L. Yang, Value Distribution Theory, Springer, Berlin, Germany, 1993.
[3] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, China,

1995.
[4] C.-Y. Fang and M.-L. Fang, “Uniqueness of meromorphic functions and differential polynomials,”

Computers & Mathematics with Applications, vol. 44, no. 5-6, pp. 607–617, 2002.
[5] M.-L. Fang, “Uniqueness and value-sharing of entire functions,” Computers & Mathematics with Appli-

cations, vol. 44, no. 5-6, pp. 823–831, 2002.
[6] L. Liu, “Uniqueness of meromorphic functions and differential polynomials,” Computers &Mathemat-

ics with Applications, vol. 56, no. 12, pp. 3236–3245, 2008.
[7] W.-C. Lin and H.-X. Yi, “Uniqueness theorems for meromorphic function,” Indian Journal of Pure and

Applied Mathematics, vol. 35, no. 2, pp. 121–132, 2004.
[8] S. S. Bhoosnurmath and R. S. Dyavanal, “Uniqueness and value-sharing of meromorphic functions,”

Computers & Mathematics with Applications, vol. 53, no. 8, pp. 1191–1205, 2007.
[9] I. Lahiri, “Weighted sharing and uniqueness of meromorphic functions,”Nagoya Mathematical Journal,

vol. 161, pp. 193–206, 2001.
[10] H.-Y. Xu, C.-F. Yi, and T.-B. Cao, “Uniqueness of meromorphic functions and differential polynomials

sharing one value with finite weight,” Annales Polonici Mathematici, vol. 95, no. 1, pp. 51–66, 2009.
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