
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 537478, 24 pages
doi:10.1155/2011/537478

Research Article
Value Distribution for a Class of Small Functions in
the Unit Disk

Paul A. Gunsul

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA

Correspondence should be addressed to Paul A. Gunsul, paul.gunsul@gmail.com

Received 20 October 2010; Accepted 21 January 2011

Academic Editor: Brigitte Forster-Heinlein

Copyright q 2011 Paul A. Gunsul. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

If f is a meromorphic function in the complex plane, R. Nevanlinna noted that its characteristic
function T(r, f) could be used to categorize f according to its rate of growth as |z| = r → ∞.
Later H. Milloux showed for a transcendental meromorphic function in the plane that for each
positive integer k, m(r, f (k)/f) = o(T(r, f)) as r → ∞, possibly outside a set of finite measure
where m denotes the proximity function of Nevanlinna theory. If f is a meromorphic function
in the unit disk D = {z : |z| < 1}, analogous results to the previous equation exist when
lim supr→ 1− (T(r, f)/ log(1/(1 − r))) = +∞. In this paper, we consider the class of meromorphic
functions P in D for which lim supr→ 1− (T(r, f)/ log(1/(1 − r))) < ∞, limr→ 1−T(r, f) = +∞,
and m(r, f ′/f) = o(T(r, f)) as r → 1. We explore characteristics of the class and some places
where functions in the class behave in a significantly different manner than those for which
lim supr→ 1− (T(r, f)/ log(1/(1 − r))) = +∞ holds. We also explore connections between the class
P and linear differential equations and values of differential polynomials and give an analogue to
Nevanlinna’s five-value theorem.

1. Introduction

This paper uses notation from Nevanlinna theory which is summarized here for the reader’s
convenience. We denote by n(r, f) the number of poles of f in |z| ≤ r < 1, where each pole
is counted according to its multiplicity. Also, n(r, f) counts the number of distinct poles of
f in |z| ≤ r < 1 disregarding multiplicity. If x ≥ 0, then log+x = max(0, logx). We define
the proximity functionm(r, f), the counting functionN(r, f), and the Nevanlinna characteristic
function T(r, f) as follows:

m
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)
=

1
2π

∫2π

0
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)∣∣
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N
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log r,

T
(
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(
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(
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(1.1)

Also, we have that

N
(
r, f

)
=
∫ r

0

n
(
t, f

) − n(0, f)

t
dt + n

(
0, f

)
log r. (1.2)

A meromorphic function f in the unit disk D = {z : |z| < 1} can be categorized
according to the rate of growth of its Nevanlinna characteristic T(r, f) as |z| = r approaches
one. If

lim sup
r→ 1

T
(
r, f

)

− log(1 − r) = +∞, (1.3)

many value distribution theorems analogous to those for transcendental meromorphic
functions in the complex plane can be derived. In particular, results useful in studying
solutions of linear differential equations which are analogous to theorems of H. Milloux can
be shown—namely, for each positive integer k,

m

(

r,
f (k)

f

)

= o
(
T
(
r, f

))
(1.4)

as r approaches one, possibly outside a set of finite measure where m denotes the proximity
function of Nevanlinna theory. For meromorphic functions of lesser growth than (1.3),
analogous theorems need not hold. If F consists of those meromorphic functions f in D for
which

lim sup
r→ 1

T
(
r, f

)

− log(1 − r) = α
(
f
)
<∞, (1.5)

Shea and Sons [1] showed that f ′ is in F for each f in F, but also that there exist functions f
in F with unbounded characteristic for which

m

(
r,
f ′

f

)
> log

1
1 − r + log log

1
1 − r (1.6)

on a sequence of r approaching one. Thus all functions in F with unbounded characteristic
need not satisfy (1.4) for k = 1.

In this paper, we denote by P those functions f in F for which T(r, f) is unbounded as
r approaches one and for which (1.4) does hold for k = 1.We derive striking properties of class
P andmake some connections between functions in classP and solutions of linear differential
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equations defined in D. For functions in F with α(f) > 0, we develop an interesting theorem
analogous to Nevanlinna’s five-value theorem for functions in the plane. Further, we prove a
value distribution theorem for differential polynomials

Φ =
n∑

k=0

akf
(k), (1.7)

where f is in P, the ak are meromorphic functions in D, and T(r, ak) = o(T(r, f)), as r → 1.
Our paper proceeds as follows. In Section 2, we note examples of functions in P and

properties of the class. In Section 3, we prove a uniqueness theorem for functions in class F
(and hence in class P). In Section 4, we look at differential equations for which functions in
P are either coefficients or solutions, and in Section 5 we consider differential polynomials.

Much of the research reported here was part of the author’s Ph.D. dissertation written
at Northern Illinois University [2].

2. Properties and Examples of Functions in Class P
First we note that P is not empty. For β > 0, the function f defined in D by

f(z) = exp
(

βi

1 − z
)

(2.1)

is in class P, since

T
(
r, f

)
=

β

2π
log

(
1 + r
1 − r

)
(2.2)

by a calculation in Benbourenane [3] and by properties of m and a lemma of Tsuji ([4, page
226]),

m

(
r,
f ′

f

)
= O

(
log log

1
1 − r

)
, (r −→ 1). (2.3)

Clearly α(f) as defined in (1.5) is β/2π for this function.
The following proposition gives some simple closure properties of P.

Proposition 2.1. If f and g are in P and c is a nonzero complex number, we have

(i) cf is in P;

(ii) 1/f is in P;

(iii) fn is in P for each positive integer n;

(iv) fg may not be in P;

(v) f + g may not be in P.
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The proof of (i), (ii), and (iii) in Proposition 2.1 follows by easy calculation. To see (iv),
let g = 1/f , and to see (v), let g = −f .

The complicated nature of class P is demonstrated by the following theorem whereby
some sums and products are in P.

Theorem 2.2. Let f be a meromorphic function in class P.

(i) If c is a nonzero complex number for which

lim inf
r→ 1

N(r,−c)
T
(
r, f

) = 0, (2.4)

then f + c is in P.

(ii) If g is a meromorphic function in D which is not identically zero and such that T(r, g) =
o(T(r, f)), (r → 1), andm(r, g ′/g) = o(T(r, f)), (r → 1), then fg is in P.

(iii) There exists a Blaschke product B such that Bf is not in P.

(iv) There exists a Blaschke product B such that Bf is in P.

Remark 2.3. In Nevanlinna theory, the Valiron deficiency of a complex value c for a
meromorphic function f in D is defined by

Δ
(
c, f

)
= lim inf

r→ 1

N(r, c)
T
(
r, f

) . (2.5)

It is known (cf. Theorem 2.20 on page 210 in [5]) that if

lim
r→ 1

T
(
r, f

)
= +∞, (2.6)

then

lim
r→ 1

N(r, a)
T
(
r, f

) = 1 (2.7)

except for at most a set of a-values of vanishing inner capacity. This fact enables us to show
that the function F in P defined by

F(z) = exp
(

i

1 − z
)

(2.8)

has F + c in P for all complex numbers c, because

Δ(−c, F) = 0 (2.9)

for all c /= 0.
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Remark 2.4. The following example illustrates part (ii) of Theorem 2.2.

Example 2.5. Let f(z) = ei/(1−z) and g(z) = e(1+z)/(1−z). Then g is not identically zero, and it is
well known that T(r, g) = O(1). Therefore, T(r, g) = o(T(r, f)) as r → 1. Also we have that

m

(
r,
g ′

g

)
≤ T

(

r,
2

(1 − z)2
)

= O(1) as r −→ 1, (2.10)

since 2/(1−z)2 is the quotient of two bounded, analytic functions in the unit disk. And so we
have that fg = e(i+1+z)/(1−z) ∈ P.

We turn to the proof of Theorem 2.2.

Proof of Part (i). Let g = f + c. Then g ′ = f ′. We will show that g ∈ P.
First, by calculation and properties of the Nevanlinna characteristic, note that

T
(
r, g

)
= T

(
r, f

)
+O(1) as r −→ 1. (2.11)

Also, by calculation and properties of the proximity function, we get

m

(
r,
g ′

g

)
= m

(
r,

f ′

f + c

)

≤ m
(
r,
f ′

f

)
+m

(
r,

f

f + c

)

≤ m
(
r,
f ′

f

)
+m

(
r, 1 +

c

f + c

)

≤ m
(
r,
f ′

f

)
+m

(
r,

1
f + c

)
+O(1) as r −→ 1.

(2.12)

Now, since f ∈ P,

m

(
r,
f ′

f

)
= o

(
T
(
r, f

))
as r −→ 1,

= o
(
T
(
r, g

))
as r −→ 1.

(2.13)

Also, since Δ(−c, f) = 0,

lim sup
r→ 1

m
(
r, 1/

(
f + c

))

T
(
r, f

) = 0, (2.14)
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and so

m

(
r,

1
f + c

)
= o

(
T
(
r, f

))
as r −→ 1,

= o
(
T
(
r, g

))
as r −→ 1.

(2.15)

Therefore, g ∈ P since m(r, g ′/g) = o(T(r, g)) as r → 1, and T(r, g) is unbounded as
r → 1.

Proof of Part (ii). First, T(r, fg) is unbounded, since it can be shown that

T
(
r, fg

)
= T

(
r, f

)
+O(1) as r −→ 1, (2.16)

since T(r, f) is unbounded.
Now note that (fg)′/(fg) = g ′/g + f ′/f . Therefore,

m

(

r,

(
fg

)′

fg

)

≤ m
(
r,
g ′

g

)
+m

(
r,
f ′

f

)
,

= o
(
T
(
r, f

))
as r −→ 1,

= o
(
T
(
r, fg

))
as r −→ 1.

(2.17)

Thus fg ∈ P.

Proof of Part (iii). Let B be the Blaschke product defined in [6, Proposition 6.1, page 273]. This
Blaschke product has the feature that for any ε > 0 there exists an exceptional set E1 ⊂ [0, 1)
satisfying

∫

E1

dr

1 − r <∞, (2.18)

such that

∣
∣∣∣
B′(z)
B(z)

∣
∣∣∣ = O

((
1

1 − |z|
)1.5+ε

)

, |z| /∈ E1, (2.19)

and there exists a set F1 ∈ [0, 1), satisfying

∫

F1

dr

1 − r = ∞, (2.20)

and a constant C > 0, such that

∣∣∣
∣
B′(x)
B(x)

∣∣∣
∣ ≥

C

(1 − x)1.5
log

1
1 − x , x ∈ F1 \ E1. (2.21)
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Let g(z) = i/(1 − z). Then eg(z) ∈ P. Now define q(z) = B(z)eg(z). We will now show
that q(z) /∈ P.

First, it is easily shown that T(r, eg(z)) = T(r, q) +O(1) as r → 1.
Note that since (eg(z))′ = g ′eg(z), we have g ′ = (eg(z))′/eg(z). Therefore, since eg(z) ∈ P,

m
(
r, g ′) = o

(
T
(
r, eg(z)

))
as r −→ 1. (2.22)

And so

m

(
r,
B′

B

)
= m

(
r,
q′

q
− g ′

)
≤ m

(
r,
q′

q

)
+m

(
r,−g) + log 2. (2.23)

Therefore,

m

(
r,
q′

q

)
≥ m

(
r,
B′

B

)
−m(

r,−g) − log 2. (2.24)

Using (2.21), we have on a small exceptional set with |z| = r for r ∈ F1 \ E1,

∣
∣∣∣
B′

B

∣
∣∣∣ ≥

C

(1 − r)1.5
log

1
1 − r . (2.25)

Taking the log+ of both sides, we get

log+
∣∣
∣∣
B′

B

∣∣
∣∣ ≥ log+

(
C

(1 − r)1.5
log

1
1 − r

)

≥ log
C

(1 − r)1.5

≥ logC + 1.5 log
1

1 − r .

(2.26)

So, calculating the following ratio yields

m
(
r, q′/q

)

T
(
r, q

) ≥ m(r, B′/B)
T
(
r, eg(z)

) − m
(
r, g ′)

T
(
r, eg(z)

) − log 2
T
(
r, eg(z)

) −→ 3π > 0 as r −→ 1. (2.27)

Therefore, q /∈ P.

Proof of Part (iv). Let B be a Blaschke product with zeros {zn} such that |zn| = 1 − 1/n5 for all
integers n ≥ 2. Theorem B in Heittokangas [6] shows that B′ is inHp for p in (0, 3/4), so B′/B
is of bounded characteristic. Hence Bf is in P for f in P.

Remark 2.6. Since a Blaschke product is a bounded, analytic function, we see from parts (iii)
and (iv) above that multiplication by such functions may or may not yield a function in P.
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Further study of examples in class P shows that the function f defined by f(z) =
exp(i/1 − z) has (1.4) holding for all k. However, there are also f in P for which (1.4) does
not hold for k = 2. We have the following theorem.

Theorem 2.7. There exists an analytic function h in P such thatm(r, h′′/h)/= o(T(r, h)), as r → 1.

Proof. First, we begin by constructing a function which has unbounded characteristic as r →
1, but its derivative is of bounded characteristic. This construction is from [7, page 557].

Let a be an integer greater than or equal to 2. Define form ≥ 1,

Qm =
m∑

k=1

ak =
a

a − 1
(am − 1),

tm = 1 − γ

Qm
,

(2.28)

where γ is a constant such that 0 < γ < 1. Now define

F(z) =
∫z

0
f(w)dw, (2.29)

where

f(z) =
∞∏

m=1

(

1 +
(
z

tm

)am
)

. (2.30)

Shea showed in [7] that f is analytic in the unit disk and satisfies

α log
(

1
1 − r

)
< T

(
r, f

) ≤ logM
(
r, f

)
< β log

(
1

1 − r
)

as r −→ 1, (2.31)

where α and β are constants such that

0 < α <
γ

a
, β > γ +

log 2
log a

, (2.32)

and M(r, f) is the maximum modulus function for f . Choose γ and a such that γ +
log 2/ loga < 1, so we can take β < 1. This implies that F is bounded in the unit disk by
the following argument: for z = reiθ,

|F(z)| =
∣∣
∣∣

∫z

0
f(w)dw

∣∣
∣∣ ≤

∫ r

0

∣∣∣f
(
ρeiθ

)∣∣∣dρ ≤
∫ r

0
M

(
ρ, f

)
dρ. (2.33)

By (2.31), we have that

M
(
ρ, f

)
<

1
(
1 − ρ)β

. (2.34)
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Therefore, since β < 1, we have by a simple integration that

|F(z)| <
∫ r

0

1
(
1 − ρ)β

dρ = O(1) as r −→ 1. (2.35)

Let K(z) =
∫z
0 F(w)dw. Define h(z) = K(z)eg(z) where g(z) = i/(1 − z). Recall that

eg(z) ∈ P. We now show that h(z) ∈ P. First, we see that T(r,K) = O(1) as r → 1, by the
following:

T(r,K) = m(r,K)

≤ 1
2π

∫2π

0
log+

∫ r

0

∣
∣∣F

(
ρeiθ

)∣∣∣dρ dθ,
(2.36)

and since F is bounded, there exists a constantM such that

T(r,K) ≤ 1
2π

∫2π

0
log+

∫ r

0
Mdρ dθ ≤ logM. (2.37)

Thus, T(r, h) ≤ T(r,K) + T(r, eg(z)) ≤ T(r, eg(z)) +O(1), as r → 1. On the other hand,

T
(
r, eg(z)

)
= T

(
r,
h

K

)

≤ T(r, h) +O(1) as r −→ 1.

(2.38)

Therefore, T(r, h) ∼ T(r, eg(z)) as r → 1.
Now, we bound m(r, h′/h) from above by using properties of the Nevanlinna

characteristic:

m

(
r,
h′

h

)
= m

(
r,
Kg ′eg +K′eg

Keg

)

≤ m
(
r,
K′

K

)
+m

(
r, g ′) + log 2

≤ m(
r, g ′) +O(1) as r −→ 1

= o
(
T
(
r, eg(z)

))
as r −→ 1

= o(T(r, h)) as r −→ 1.

(2.39)

And so we havem(r, h′/h) = o(T(r, h)) as r → 1 and thus h ∈ P.
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Now we show thatm(r, h′′/h)/= o(T(r, h)) as r → 1. By a quick calculation, we have

m

(
r,
K′′

K

)
≤ m

(
r,
h′′

h
− 2g ′K

′

K
− g ′′ − (

g ′)2
)

≤ m
(
r,
h′′

h

)
+m(r, 2) +m

(
r, g ′) +m

(
r,
K′

K

)

+m
(
r, g ′′) + 2m

(
r, g ′) + log 4

≤ m
(
r,
h′′

h

)
+ o(T(r, h)) as r −→ 1.

(2.40)

Also we have from the above constructionK′′ = f so there exists an α > 0 such thatm(r,K′′) >
α log(1/(1 − r)). And so,

m

(
r,
K′′

K

)
≥ m(

r,K′′) −m(r,K)

≥ α log
(

1
1 − r

)
+O(1) as r −→ 1.

(2.41)

Combining (2.40) and (2.41), we have

m(r, h′′/h)
T(r, h)

≥ 2πα/= 0 as r −→ 1. (2.42)

Remark 2.8. If we define A to be the set of functions in F such that (1.4) holds for all positive
integers k, Theorem 2.7 showsA is properly contained in F. Further, we note that in the proof
of Theorem 2.7 above h = Keg can be replaced with h = Kp where p ∈ A. Also the idea of the
proof of Theorem 2.7 can be used to show that for k > 1 there exist functions h in F for which

m

(

r,
h(j)

h

)

= o(T(r, h)) as r −→ 1 (2.43)

for all integers 1 < j ≤ k, but

m

(

r,
h(k+1)

h

)

/= o(T(r, h)) as r −→ 1. (2.44)

The function h in the proof of Theorem 2.7 provides us with further information about
P.

Theorem 2.9. There exists a function h in P such that h′ is not in P.

Proof. The function h = Keg of Theorem 2.7 is in P. Using the Nevanlinna calculus and
properties of K, one can show m(r, h′′/h′)/= o(T(r, h′)) as r → 1. We omit the details here
(cf. [2]).
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For functions f in class F, we may call α(f) defined in (1.5) the index of f . In [1], Shea
and Sons showed for f in F that

α
(
f ′) ≤ α(f)(1 + k(f)) + 1, (2.45)

where

k
(
f
)
= lim sup

r→ 1

N
(
r, f

)

T
(
r, f

)
+ 1

, (2.46)

and this inequality is best possible. For analytic functions in class P, we get

Theorem 2.10. If f is an analytic function in class P, then

(i) T(r, f ′) ≤ T(r, f) + o(T(r, f)) as r → 1;

(ii) α(f ′) ≤ α(f);

(iii) ifN(r, 1/f) = o(log 1/(1 − r)) as r → 1, then α(f) = α(f ′).

Proof. For part (i) since f is analytic in P, we have

T
(
r, f ′) = m

(
r, f ′) ≤ m

(
r,
f ′

f

)
+m

(
r, f

)

= m
(
r,
f ′

f

)
+ T

(
r, f

)
(2.47)

from which the result follows. Using the definition of the index of f ′ and of f , part (ii) comes
from (i).

To see (iii), we observe

T
(
r, f

) ≤ T(r, f ′) + T
(
r,
f

f ′

)
= T

(
r, f ′) + T

(
r,
f ′

f

)
+O(1) as r −→ 1. (2.48)

Thus,

T
(
r, f

) ≤ T(r, f ′) +m
(
r,
f ′

f

)
+N

(
r, f ′) +N

(
r,

1
f

)
+O(1) as r −→ 1. (2.49)

Dividing both sides of (2.49) by log 1/(1 − r) and taking the limit superior as r approaches
one, we get α(f) ≤ α(f ′).
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3. Connections between Class P and Differential Equations

We discuss some relationships between the coefficients of the linear differential equation and
its solutions and how the coefficients and solutions relate to classP. We consider the complex
linear differential equation

f (n) + an−1(z)f (n−1) + · · · + a0(z)f = 0 (3.1)

in the unit disk, with analytic coefficients.
There has been a tremendous amount of recent research on the relationship between

the growth of the solutions of (3.1) and the growth of the analytic coefficients in the unit
disk. Some recent papers include [8–10]. We now quote some of the important results that
have a connection with class F and, therefore, class P. The theorems use the definitions of the
weighted Hardy space and weighted Bergman space which are stated below for convenience.

Definition 3.1. We say that an analytic function f in the unit disk is in the weighted Hardy
spaceHp

q for 0 < p < ∞ and 0 ≤ q < ∞ if

sup
0≤r<1

(
1 − r2

)q
(

1
2π

∫2π

0

∣
∣∣f
(
reiθ

)∣∣∣
p
dθ

)1/p

<∞. (3.2)

We say that f is inH∞
q if

sup
z∈D

(
1 − |z|2

)q ∣
∣f(z)

∣
∣ <∞. (3.3)

Definition 3.2. We say that an analytic function f in the unit disk, D, is in the weighted
Bergman space Ap

q if the area integral over D satisfies

(∫

D

∣∣f(z)
∣∣p
(
1 − |z|2

)q
dσ

)1/p

< ∞ (3.4)

for 0 < p < ∞ and −1 < q < ∞.

The theorems below also mention the Nevanlinna classN, the meromorphic functions
of bounded characteristic in D. If a function is in N, then it is not in P, since P only has
functions of unbounded characteristic.

Theorem 3.3 (see [10, page 320]). Let f be a nontrivial solution of (3.1) with analytic coefficients
aj , j = 0, . . . , n − 1, in the unit disk. Then we have that

(i) if −1 < α < 0 and aj ∈H1/(n−j)
(a+1)(n−j) for all j = 0, . . . , n − 1, then f ∈N;

(ii) if aj ∈ A1/(n−j) for all j = 0, . . . , n− 1, or aj ∈ A1
(n−j−1) for all j = 0, . . . , n− 1, then f ∈ N;

(iii) if aj ∈ H1/(n−j)
n−j for all j = 0, . . . , n − 1, then f ∈ F.
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Theorem 3.4 (see [10, page 320]). We have that

(i) if all nontrivial solutions f ∈ N, then the coefficients aj ∈ ⋂
0<p<1/(n−j)A

p for all j =
0, . . . , n − 1;

(ii) if all nontrivial solutions f ∈ F, then the coefficients aj ∈ ⋂
0<p<1/(n−j)H

p

1/p for all j =
0, . . . , n − 1.

We also have the following characterization, which uses the order of growth of f in the
unit disk defined as

ρ
(
f
)
= lim sup

r→ 1−

log+T
(
r, f

)

− log(1 − r) . (3.5)

Theorem 3.5 (see [9, page 44]). All solutions f of (3.1), where aj is analytic in D for all j =
0, . . . , k − 1, satisfy ρ(f) = 0 if and only if aj ∈

⋂
0<p<1/(n−j)A

p for all j = 0, . . . , n − 1.

When n = 1 in (3.1), we observe using Theorem 3.3, if f ′/f = −a0 ∈ H1
(α+1) with

−1 < α < 0, then f ∈ N and, therefore, f /∈ P. We can also conclude that if f ′/f = −a0 ∈ A1,
then f ∈ N and so f /∈ P. Also, if f ′/f = −a0 ∈ H1

1 , then f ∈ F, which means f may be in P.
On the other hand, using Theorem 3.4, we have if f ∈ P, then f ′/f = −a0 ∈

⋂
0<p<1H

p

1/p.

If a0(z) = −βi/(1 − z)2, then f(z) = eβi/(1−z) is a solution of the differential equation.
However, if a0 = βi/(1 − z)k for an integer k ≥ 3, then a0 is of bounded characteristic, but the
solution

f = Ceβi/(1−z)
k−1

(3.6)

has order ρ = k − 2 > 0 and, therefore, f /∈ F. This shows the delicate nature between the
growth of the coefficient and the solution; that is, a subtle change in growth of the coefficient
can result in a solution that is no longer considered slow growth.

When n = 2 in (3.1), Theorems 3.3 and 3.4 have the following corollary.

Corollary 3.6. Let f be a non-trivial solution of (3.1) with analytic coefficients a0 and a1 in the unit
disk. Then

(i) if a1 ∈ H1
(α+1) and a0 ∈H1/2

2(α+1) for −1 < α < 0, then f ∈ N and f /∈ P;

(ii) if a1 ∈ A1 and a0 ∈ A1/2 or a0 and a1 ∈ A1
1, then f ∈ N and f /∈ P;

(iii) if a1 ∈ H1
1 and a0 ∈ H1/2

2 , then f ∈ F and, therefore, could be in P;

(iv) if all non-trivial solutions f ∈ F, then a1 ∈
⋂

0<p<1H
p

1/p and a0 ∈
⋂

0<p<1/2H
p

1/p.

The function w = eβi/(1−z) is a solution to the equation

w′′ − βi

(1 − z)2
w′ − 2βi

(1 − z)3
w = 0. (3.7)
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Sincew has no zeros, another solution of the above second-order differential equation
that is linearly independent ofw = f1(z) is

f2(z) = f1(z)
∫

dz
(
f1(z)

)2 = eβi/(1−z)
∫
e−2βi/(1−z)dz. (3.8)

Computation shows

f2(z) = eβi/(1−z)
(

−(1 − z) − 2βi log
( −2βi
1 − z

)
+

∞∑

n=1

−2βi
n(n + 1)!

( −2βi
1 − z

)n
)

. (3.9)

We know that f1 ∈ P, but what can be said about f2? The above form of f2 makes it
difficult to calculate the growth, but we do know that, by (iii) in Corollary 3.6, if a0 ∈ H1/2

2
and a1 ∈ H1

1 , then f2 ∈ F.

Example 3.7. We show for a0 = −2βi/(1 − z)3 and a1 = −βi/(1 − z)2, a0 ∈ H1/2
2 and a1 ∈ H1

1 .
To see a0 ∈ H1/2

2 , we first note

|a0|1/2 =
∣
∣∣∣
∣

−2βi
(1 − z)3

∣
∣∣∣
∣

1/2

=

√
2β

|1 − z|3/2
. (3.10)

We integrate and apply a lemma from Tsuji [4, page 226]which states that, in particular,

∫2π

0

dθ
∣∣1 − reiθ∣∣3/2

= O

(
1

(1 − r)1/2
)

, (3.11)

and get that there exists a constantM such that

1
2π

∫2π

0

√
2β

|1 − z|3/2
dθ =

√
2β

2π

∫2π

0

1

|1 − z|3/2
dθ ≤

√
2β

2π
M

(1 − r)1/2
. (3.12)

And so

(
1 − r2

)2
(

1
2π

∫2π

0
|a0|1/2dθ

)2

≤ (1 + r)2(1 − r)2
( √

2βM

2π(1 − r)1/2
)2

= (1 + r)2(1 − r)C,

(3.13)

which goes to zero as r → 1. Therefore, a0 ∈H1/2
2 .

A similar calculation shows that a1 ∈ H1
1 .

The question as to whether f2 ∈ P is not a trivial question as there exist examples, such
as Example 3.9 below, where at least one solution is in class P and at least one solution is not
in class P.
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Example 3.8. The function h in Theorem 2.7 is a solution of (3.1) with n = 2 when a0 = −g ′′ −
(g ′)2 and a1 = −(K′(2g ′) +K′′)/(Kg ′ +K′). Then since

h′′

h
= −a1 h

′

h
− a0, (3.14)

we have that

m

(
r,
h′′

h

)
≤ m(r,−a1) +m

(
r,
h′

h

)
+m(r,−a0) + log 2. (3.15)

Now, recall from the proof of Theorem 2.7 that

α log
1

1 − r ≤ m
(
r,
h′′

h

)
+ o(T(r, h)) as r −→ 1, (3.16)

and since h ∈ P, by (3.15), we conclude that at least one of a0 or a1 has index greater than
or equal to α. Therefore, as a consequence of Theorem 2.7, we have a growth estimate for the
coefficients of this differential equation.

It can also be shown that a0 ∈ H1/2
2 . However, a1 is not in H1

1 , and thus the converse
of Corollary 3.6(iii) is not true.

For differential equations of the form (3.1) where n ≥ 3, we first quote two examples.
The first example has some solutions of (3.1) in P and some not.

Example 3.9 (see [9, Example 10, page 52]). The functions

f1(z) = ei((1+z)/(1−z)) − e−i((1+z)/(1−z)), f2(z) = ei((1+z)/(1−z)), f3(z) =
1 + z
1 − z (3.17)

are linearly independent solutions of

f ′′′ + a1(z)f ′′ + a1(z)f ′ + a0(z)f = 0, (3.18)

where

a0(z) =
−8

(1 + z)(1 − z)5
,

a1(z) =
4

(1 − z)4
+ 2

3z2 + 8z + 5

(1 + z)2(1 − z)2
,

a2(z) = −2 3z + 4
(1 + z)(1 − z) .

(3.19)

It can be shown that f2 ∈ P. However, f3 is of bounded characteristic and, therefore, f3 /∈ P.
(It is known that f1 has order zero but unknown if f1 ∈ P.) Also, according to [9], we have
that a0 ∈

⋂
0<p<1/3A

p

−1/3, a1 ∈
⋂

0<p<1/2A
p

0, and a2 ∈
⋂

0<p<1A
p

0.
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This next example is also from [9].

Example 3.10 (see [9, Example 11, page 53]). The functions

f1(z) = ei((1+z)/(1−z)) − e−i((1+z)/(1−z)), f2(z) = ei((1+z)/(1−z)),

f3,4(z) =
(
1 + z
1 − z

)
× e±i((1+z)/(1−z))

(3.20)

are linearly independent solutions of

f (4) + a3(z)f (3) + a2(z)f ′′ + a1(z)f ′ + a0(z)f = 0, (3.21)

where

a0(z) =
16

(1 − z)8
,

a1(z) =
16

(
1 + z2

)

(1 + z)(1 − z)5
− 3 + 9z + 9z2 + 3z3

(1 + z)3(1 − z)3
,

a2(z) =
8

(1 − z)4
+ 4

9 + 18z + 9z2

(1 + z)2(1 − z)2
,

a3(z) = −12 1 + z
(1 + z)(1 − z) .

(3.22)

It is known that f2, f3, and f4 are all in P, and it is known that f1 has order zero. Also, it can
be shown that a0 ∈

⋂
0<p<1/4A

p

0, a1 ∈
⋂

0<p<1/3A
p

−1/3, a2 ∈
⋂

0<p<1/2A
p

0, and a3 ∈
⋂

0<p<1A
1
0.

Proceeding as in the discussion of Example 3.8, we have the following theorem.

Theorem 3.11. If a function f in P satisfies a differential equation of the form (3.1) such that

m

(

r,
f (n)

f

)

/= o
(
T
(
r, f

))
as r −→ 1,

m

(

r,
f (j)

f

)

= o
(
T
(
r, f

))
as r −→ 1

(3.23)

for all integers j such that 1 ≤ j < n, then at least one of the analytic coefficients aj has index greater
than or equal to α as r → 1 for some α > 0.

For nonhomogeneous differential equations of the form

f (n) + an−1(z)f (n−1) + · · · + a1(z)f ′ + a0(z)f = an(z), (3.24)
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where aj is analytic in the disk for all j = 0, . . . , n, we state a result from [9] that applies to
class F.

Theorem 3.12 (see [9, Theorem 7, page 46]). All solutions f of (3.24) satisfy ρ(f) = 0 if and only
if ρ(an) = 0 and aj ∈

⋂
0<p<1/(k−j)A

p for all j = 0, . . . , n− 1. Therefore, if all solutions f of (3.24) are
in P, then ρ(an) = 0 and aj ∈

⋂
0<p<1/(k−j)A

p for all j = 0, . . . , n − 1.

Theorems 3.3 and 3.4 do not tell the whole story regarding class F. Instead of the
coefficients being in a certain function class, what can we say about the solutions of (3.1) if
we know the coefficients have a certain index in class F? We show the following proposition.

Proposition 3.13. Let k be a positive integer. If a0 is an analytic function inD for which the index of
a0 is α(a0) > k, then f /∈ P for f ∈ F when f (k) − a0f = 0.

Proof. Note that since f (k) − a0f = 0, we have a0 = f (k)/f , and we want to show that

lim sup
r→ 1−

m
(
r, f ′/f

)

T
(
r, f

) /= 0. (3.25)

Since α(a0) > k, there exists a real number s > k such that T(r, a0) ≥ s log(1/(1 − r)) on some
sequence of r’s as r → 1. Also, since f ∈ F, we have T(r, f) ≤ t log(1/(1 − r)). Now, since
f ∈ F, f (k) ∈ F and so f (i)/f (i−1) ∈ F for 1 ≤ i ≤ k. By Shea and Sons [1], m(r, f (i)/f (i−1)) ≤
log(1/(1−r))+(2+o(1)) log log(1/(1−r)) for 1 ≤ i ≤ k as r → 1. Now, we have the following:

m

(

r,
f (k)

f

)

= m

(

r,
f (k)

f (k−1)
f (k−1)

f (k−2) · · ·
f ′

f

)

≤ m
(

r,
f (k)

f (k−1)

)

+ · · · +m
(
r,
f ′′

f ′

)
+m

(
r,
f ′

f

)
,

≤ k log
(

1
1 − r

)
+ k(2 + o(1)) log log

(
1

1 − r
)

as r −→ 1.

(3.26)

So, since a0 is analytic, we have

m

(
r,
f ′

f

)
≥ m

(

r,
f (k)

f

)

−m
(

r,
f (k)

f (k−1)

)

− · · · −m
(
r,
f ′′

f ′

)

≥ s log
(

1
1 − r

)
− k log

(
1

1 − r
)
− k(2 + o(1)) log log

(
1

1 − r
)

as r −→ 1

= (s − k) log
(

1
1 − r

)
− k(2 + o(1)) log log

(
1

1 − r
)

as r −→ 1.

(3.27)

Therefore,m(r, f ′/f)/T(r, f) ≥ (s − k)/t > 0 as r → 1.
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With a similar argument as above, Proposition 3.13 is also true if a0 is meromorphic
andN(r, a0) = o(log(1/(1 − r))) as r → 1.

4. The Identical Function Theorem

For functions in class F, we have an analogue to the Nevanlinna five-value theorem which
we quote as stated in [11].

Theorem 4.1 (see [11, page 48]). Suppose that f1 and f2 are meromorphic in the plane and let Ej(a)
be the set of points z such that fj(z) = a(j = 1, 2). Then if E1(a) = E2(a) for five distinct values of a,
f1(z) ≡ f2(z) or f1 and f2 are both constant.

Our analogue and proof follow. The proof has a subtle difference from the direct
analogue of the proof of Theorem 4.1 in [11].

Theorem 4.2. Let f1(z) and f2(z) be meromorphic functions in class F such that α(f1) ≥ α(f2) > 0
and let Ej(a) be the set of points z such that fj(z) = a for j = 1, 2. Then if E1(a) = E2(a) for q
distinct values of a such that q is an integer and q > 4 + 2/α(f1), then f1(z) ≡ f2(z).

Proof. Suppose f1 and f2 are not identical and that {a1, a2, . . . , aq} are q distinct complex
numbers such that E1(aν) and E2(aν) are identical for ν = 1, 2, . . . , q and q is an integer greater
than or equal to 4 + 2/α(f1). We write the following notations:

Nν(r) =N
(
r,

1
f1(z) − aν

)
=N

(
r,

1
f2(z) − aν

)
(
ν = 1, 2, . . . , q

)
. (4.1)

Now using a reformulation of Nevanlinna’s inequality for functions in class F [1], we have
the following for all r < 1:

(
q − 2

)
T
(
r, f1

) ≤
q∑

ν=1

Nν(r) + log
1

1 − r +O
(
log log

1
1 − r

)
as r −→ 1, (4.2)

(
q − 2

)
T
(
r, f2

) ≤
q∑

ν=1

Nν(r) + log
1

1 − r +O
(
log log

1
1 − r

)
as r −→ 1. (4.3)

Now assume that α(f1) ≥ α(f2) > 0. Then from the definition of index we have that for
0 < ε < α(f1), there exists a sequence {rm} → 1 such that

T
(
rm, f1

)
>
(
α
(
f1
) − ε) log 1

1 − rm ∀m −→ ∞,

or log
1

1 − rm <
1

α
(
f1
) − εT

(
rm, f1

)
.

(4.4)
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So, combining (4.2) and (4.3) and using (4.4), we get

(
q − 2

)(
T
(
rm, f1

)
+ T

(
rm, f2

)) ≤ 2
q∑

ν=1

Nν(rm) + (2 + o(1)) log
1

1 − rm as m −→ ∞

< 2
q∑

ν=1

Nν(rm) +
2 + o(1)
α
(
f1
) − εT

(
rm, f1

)
as m −→ ∞,

(4.5)

which leads to

(

q − 2 − 2 + o(1)
α
(
f1
) − ε

)
(
T
(
rm, f1

)
+ T

(
rm, f2

)) ≤ 2
q∑

ν=1

Nν(rm). (4.6)

Since f1 and f2 are not identical, we have

T

(

rm,
1

(
f1 − f2

)

)

= T
(
rm, f1 − f2

)
+O(1) as m −→ ∞

≤ T(rm, f1
)
+ T

(
rm, f2

)
+O(1) as m −→ ∞

≤ 2
q − 2 − (2 + o(1))/

(
α
(
f1
) − ε)

q∑

ν=1

Nν(rm) +O(1) as m −→ ∞.

(4.7)

On the other hand, every common root of the equations fν(z) = a is a pole of 1/(f1 − f2), and
so we have

q∑

ν=1

Nν(rm) ≤ N
(

rm,
1

(
f1 − f2

)

)

+O(1)

≤ 2
q − 2 − (2 + o(1))/

(
α
(
f1
) − ε)

q∑

ν=1

Nν(rm) +O(1) as r −→ 1,

(4.8)

which gives a contradiction since q > 4+ 2/α(f1) implies 2/(q− 2− (2+ o(1))/(α(f1)− ε)) < 1
as r → 1, unless

∑q

ν=1Nν(rm) = O(1). This, however, cannot occur since T(r, f1) and T(r, f2)
are unbounded. Therefore, the result follows.

Remark 4.3. Since P ⊂ F, Theorem 4.2 gives conditions for when two functions in P are
identical.

5. Values of Differential Polynomials

We now turn our focus on determining values for differential polynomials in the disk as it
relates to class P. In a preliminary report by Sons [12], the author explores various results
for functions satisfying (1.3) in the disk and their analogues for functions in class F. Some of
these results for class F can be refined further if we restrict the functions to class P. We state
a theorem from Sons (without proof) and follow it with a refinement for class P.
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Theorem 5.1 (see [12, Theorem 4]). Let f be a meromorphic function inD which is in class F and
for which

N

(
r,

1
f

)
+N

(
r, f

)
= o

(
T
(
r, f

))
, as r −→ 1. (5.1)

Let n be a positive integer, and for k = 0, 1, 2, . . . , n let ak be a meromorphic function in D for which

T(r, ak) = o
(
T
(
r, f

))
, as r −→ 1. (5.2)

If ψ is defined in D by

ψ =
n∑

k=0

akf
(k) (5.3)

and ψ is nonconstant, then ψ assumes every complex number except possibly zero infinitely often
provided the index of f is α > 1 + n(n + 1)/2.

Theorem 5.2. Let f be a meromorphic function in D which is in class P and for which

N

(
r,

1
f

)
+N

(
r, f

)
= o

(
T
(
r, f

))
, as r −→ 1. (5.4)

Let n be a positive integer, and for k = 0, 1, 2, . . . , n, let ak be a meromorphic function in D for which

T(r, ak) = o
(
T
(
r, f

))
, as r −→ 1. (5.5)

Also, define E to be the set {k : m(r, f (k)/f) = o(T(r, f)) as r → 1}. If ψ is defined in D by

ψ =
n∑

k=0

akf
(k) (5.6)

and ψ is nonconstant, then ψ assumes every complex number except possibly zero infinitely often,
provided the index of f is α > 1 + n(n + 1)/2 −∑

E, where
∑
E is the sum of the values of E.

Proof. Since class F is closed under differentiation, addition, and multiplication, we know
that ψ is in class F. Therefore, we can apply the reformulation of the Second Fundamental
theorem for class F [1] to ψ. Thus, using 0,∞, and c, a nonzero complex number, we get

T
(
r, ψ

) ≤N
(
r,

1
ψ

)
+N

(
r,

1
ψ − c

)
+N

(
r, ψ

)
+ log

(
1

1 − r
)

+O
(
log log

(
1

1 − r
))

, as r −→ 1.

(5.7)
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Since poles of ψ come from poles of ak or f , we have an upper bound forN(r, ψ):

N
(
r, ψ

) ≤N(
r, f

)
+

n∑

k=0

N(r, ak). (5.8)

From the hypothesis, we then have

N
(
r, ψ

) ≤N(
r, f

)
+ o

(
T
(
r, f

))
, as r −→ 1. (5.9)

Therefore, using (5.9) and the First Fundamental theorem, we get

T
(
r, ψ

)
= m

(
r,

1
ψ

)
+N

(
r,

1
ψ

)
+O(1), (r −→ 1)

≤N
(
r,

1
ψ

)
+N

(
r,

1
ψ − c

)
+N

(
r, ψ

)
+ log

(
1

1 − r
)

+O
(
log log

(
1

1 − r
))

, as r −→ 1,

≤N
(
r,

1
ψ

)
+N

(
r,

1
ψ − c

)
+N

(
r, f

)
+ log

(
1

1 − r
)

+O
(
log log

(
1

1 − r
))

, as r −→ 1.

(5.10)

Now, solving form(r, 1/ψ) in the above calculation, we have the following inequality:

m

(
r,

1
ψ

)
≤N

(
r,

1
ψ

)
−N

(
r,

1
ψ

)
+N

(
r,

1
ψ − c

)
+N

(
r, f

)

+ log
(

1
1 − r

)
+ o

(
T
(
r, f

))
+O

(
log log

(
1

1 − r
))

as r −→ 1.

(5.11)

SinceN(r, 1/ψ) ≤N(r, 1/ψ), theN(r, 1/ψ) terms cancel, and so we can say that

m

(
r,

1
ψ

)
≤N

(
r,

1
ψ − c

)
+N

(
r, f

)
+ log

(
1

1 − r
)
+ o

(
T
(
r, f

))

+O
(
loglog

(
1

1 − r
))

as r −→ 1.

(5.12)
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So, using the First Fundamental theorem, properties of the proximity function and (5.12) give
us the following:

T
(
r, f

)
= m

(
r,

1
f

)
+N

(
r,

1
f

)
+O(1)

≤ m
(
1,

1
ψ

ψ

f

)
+N

(
r,

1
f

)
+O(1)

≤ m
(
r,

1
ψ

)
+m

(
r,
ψ

f

)
+N

(
r,

1
f

)
+O(1)

≤ N
(
r,

1
ψ − c

)
+N

(
r, f

)
+ log

(
1

1 − r
)
+m

(
r,
ψ

f

)

+N
(
r,

1
f

)
+ o

(
T
(
r, f

))
+O

(
log log

(
1

1 − r
))

as r −→ 1.

(5.13)

Noticing the fact thatN(r, f) ≤N(r, f) and using the hypothesis that

N
(
r, f

)
+N

(
r,

1
f

)
= o

(
T
(
r, f

))
as r −→ 1, (5.14)

we can say that

T
(
r, f

) ≤ N
(
r,

1
ψ − c

)
+m

(
r,
ψ

f

)
+ log

(
1

1 − r
)
+ o

(
T
(
r, f

))

+O
(
log log

(
1

1 − r
))

as r −→ 1.

(5.15)

We now estimatem(r, ψ/f). By using properties of the proximity function, we get

m

(
r,
ψ

f

)
= m

(

r,

∑n
k=0 akf

(k)

f

)

= m

(

r,
n∑

k=0

ak
f (k)

f

)

≤
n∑

k=0

m

(

r, ak
f (k)

f

)

+ log(n + 1)

≤
n∑

k=0

m(r, ak) +
n∑

k=1

m

(

r,
f (k)

f

)

+ log(n + 1).

(5.16)

Recall the set E = {k : m(r, f (k)/f) = o(T(r, f)) as r → 1}. Notice that since f ∈ P, E is not
empty. The set E also allows us to split the following sum into two pieces. Indeed,

n∑

k=1

m

(

r,
f (k)

f

)

=
∑

k∈E
m

(

r,
f (k)

f

)

+
∑

k/∈E
m

(

r,
f (k)

f

)

. (5.17)
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But now we can say that

∑

k∈E
m

(

r,
f (k)

f

)

= o
(
T
(
r, f

))
as r −→ 1, (5.18)

since this is true for each k ∈ E. Therefore, using (5.18) and the hypothesis

T(r, ak) = o
(
T
(
r, f

))
, as r −→ 1, (5.19)

we can update (5.16) to say that

m

(
r,
ψ

f

)
≤
∑

k/∈E
m

(

r,
f (k)

f

)

+ o
(
T
(
r, f

))
as r −→ 1. (5.20)

We use (3.26) to say that

m

(

r,
f (k)

f

)

≤ k log 1
1 − r + o

(
T
(
r, f

))
as r −→ 1, (5.21)

and, thus, (5.20) becomes

m

(
r,
ψ

f

)
≤
∑

k/∈E
k log

1
1 − r + o

(
T
(
r, f

))
as r −→ 1. (5.22)

We can calculate
∑

k/∈E k log(1/(1 − r)) by noting that

∑

k/∈E
k log

1
1 − r = log

1
1 − r

∑

k/∈E
k =

(
n(n + 1)

2
−
∑

E

)
log

1
1 − r , (5.23)

where
∑
E is the sum of the elements in E. Note that n(n + 1)/2 −∑

E = β ≥ 0. Thus, (5.20)
becomes

m

(
r,
ψ

f

)
≤
(
n(n + 1)

2
−
∑

E

)
log

1
1 − r + o

(
T
(
r, f

))
as r −→ 1. (5.24)

Therefore, we can now update (5.15) to say

T
(
r, f

) ≤N
(
r,

1
ψ − c

)
+
(
n(n + 1)

2
−∑

E + 1
)
log

1
1 − r

+o
(
T
(
r, f

))
+O

(
log log

(
1

1 − r
))

as r −→ 1.

(5.25)
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Since the index of f is equal to α > n(n + 1)/2 −∑
E + 1, we have that

γT
(
r, f

) ≤ N
(
r,

1
ψ − c

)
+ o

(
T
(
r, f

))
as r −→ 1, (5.26)

where γ > 0. Since T(r, f) is unbounded, we have proved the claim that ψ assumes every
complex number except possibly zero infinitely often.
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