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For p-valently Janowski starlike and convex functions defined by applying subordination for the
generalized Janowski function, the sharp upper bounds of a functional |a,.> - yaf’ .| related to the
Fekete-Szego problem are given.

1. Introduction

Let &/, denote the family of functions f(z) normalized by

f(z) =2+ i a,z" (p=123,...), (1.1)

n=p+1

which are analytic in the open unit disk U = {z € C : |z| < 1}. Furtheremore, let 70 be the class
of functions w(z) of the form

w(z) = iwkzk, (1.2)
k=1

which are analytic and satisfy |w(z)| < 1in U. Then, a function w(z) € % is called the Schwarz
function. If f(z) € 4, satisfies the following condition

Re[l+%(%—p>] >0 (zel), (1.3)
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for some complex number b (b#0), then f(z) is said to be p-valently starlike function of
complex order b. We denote by .S; (p) the subclass of «4,, consisting of all functions f(z) which
are p-valently starlike functions of complex order b. Similarly, we say that f(z) is a member
of the class X, (p) of p-valently convex functions of complex order bin Uif f(z) € <4, satisfies

Re[l+%<%—(p—l)>] >0 (zel), (1.4)

for some complex number b (b#0).
Next, let F(z) = zf'(z)/f(z) = u+ivand b = pe? (p > 0, 0 < ¢ < 2). Then, the
condition of the definition of S (p) is equivalent to

1/zf i
Re[l+z<%—p>] =1+°°;"’(u—p)+512‘*’v>0. (1.5)

We denote by d(I;, p) the distance between the boundary line [; : (cos ¢)u + (sing)v +
p —p cos ¢ = 0 of the half plane satisfying the condition (1.5) and the point F(0) = p. A simple
computation gives us that

|cosp x p+sing x 0+ p—pcosy|
=p,
\/cos?p + sin’¢

that is, that d(l;, p) is always equal to |b| = p regardless of ¢. Thus, if we consider the circle
C; with center at p and radius p, then we can know the definition of .$; (p) means that F(U) is
covered by the half plane separated by a tangent line of C; and containing C;. For p = 1, the
same things are discussed by Hayami and Owa [3].

Then, we introduce the following function:

d(h,p) =

(1.6)

(-1<B<AZ<1), (1.7)

which has been investigated by Janowski [4]. Therefore, the function p(z) given by (1.7) is
said to be the Janowski function. Furthermore, as a generalization of the Janowski function,
Kuroki et al. [6] have investigated the Janowski function for some complex parameters A and
B which satisfy one of the following conditions:

() A#B, |Bl<1, |AI<1, Re(1-AB)Z2|A-B|;
(1.8)
(i) A#B, |B|=1, |A|<1, 1-AB>0.

Here, we note that the Janowski function generalized by the conditions (1.8) is analytic and
univalent in U, and satisfies Re(p(z)) > 0 (z € U). Moreover, Kuroki and Owa [5] discussed
the fact that the condition |A| < 1 can be omitted from among the conditions in (1.8)-(i) as
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the conditions for A and B to satisfy Re(p(z)) > 0. In the present paper, we consider the more
general Janowski function p(z) as follows:

_pt+Az B
p(z) - 1 + BZ (P - 1/2/3/' . -)/ (19)

for some complex parameter A and some real parameter B (A#pB, -1 < B = 0). Then, we
don’t need to discuss the other cases because for the function:

p+A12
1+Blz

q(z) = (A1,B1 €C, A1#pBy, |Bi| £1), (1.10)

letting By = |Bi|e® and replacing z by —e™z in (1.10), we see that

p-Aez _p+Az

p) =q(-e"z) = e =g (A= -ae™, B=Bi), (L.11)

maps U onto the same circular domain as g(U).

Remark 1.1. For the case B = -1 in (1.9), we know that p(z) maps U onto the following half
plane:

— 2 AP
Re(p + A>p(z) > ]%, (1.12)

and for the case -1 < B < 01in (1.9), p(z) maps U onto the circular domain

p+AB
1-B?

|A +pB|
1-B2 °

p(z) - (1.13)

Let p(z) and g(z) be analytic in U. Then, we say that the function p(z) is subordinate
to g(z) in U, written by

p(z) <q(z) (zel), (1.14)

if there exists a function w(z) € W such that p(z) = q(w(z)) (z € U). In particular, if g(z) is
univalent in U, then p(z) < g(z) if and only if

p(0)=4q(0),  p(U) Cq(U). (1.15)
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We next define the subclasses of <4, by applying the subordination as follows:

. B ) zf'(z) p+Az
SP(A,B) = {f(Z) €e4p : W < 1+ Bz (Z € U)},
o B (1.16)
B ' zf"(z) p+Az
K, (A,B) = {f(z) EAp:1+ 2 <17E2 (z EU)},
where A#pB, -1 < B < 0. We immediately know that
f(2) € X, (A,B) iff zf p(z) € S(A,B). (1.17)
Then, we have the next theorem.
Theorem 1.2. If f(z) € 5;‘,(A,B) (-1 <B =0), then f(z) € S;(p), where
b - | B(—pB + Re(A)) cos (p1+_BBIZm(A) sing + |A - pB|| er (0< g <2m). (1.18)
Espesially, f(z) € S,(A,-1) ifand only if f(z) € S;(p) whereb = (p + A)/2.
Proof. Supposing that zf'(z)/ f(z) < (p + Az) /(1 - z), it follows from Remark 1.1 that
Re|(p+A) SHC) N |A|2, (1.19)
f(z) 2
that is, that
Re[Z(p+Z> zf’(z)] >Re[2p<p+z>] - |p+A|2. (1.20)
f(z)
This means that
2(p+4) 12f(2)
R - > -1, 1.21
) |p+A|2<f(Z) ’) (20
which implies that
1 zf'(z) >
R - -1. 1.22
e[(1/2><p+A)< @ F ]> (122

Therefore, f(z) € S;, where b = (p + A) /2. The converse is also completed.
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Next, for the case -1 < B < 0, by the definition of the class S;(A, B), if a tangent line
I, of the circle C, containing the point p is parallel to the straight line L : (cos 8)u + (sin0)v =
0 (o < 79 < ), and the image F(U) by F(z) = zf'(z)/ f(z) is covered by the circle Cy, then
there exists a non-zero complex number b with arg(b) = 6 + or and |b| = d(l>, p) such that
f(z) € S;(p), where d(I, p) is the distance between the tangent line I, and the point p. Now,
for the function p(z) = (p + Az)/(1+ Bz) (A#pB, -1 < B < 0), the image p(U) is equivalent
to

p—-AB
1-B2

(1.23)

C2={we(C:|w— 1B

A-pB
_lA-p I}’
and the point ¢ on 0C, = {w € C: |w— (p — AB) /(1 - B?)| = |A - pB|/(1 — B?)} can be written
by

|A-pB| ,, p-AB
-, ¢ "1 p

gi=2(0) = <—7r <Jp< 7r> (1.24)

Further, the tangent line I, of the circle C, through each point ¢(0) is parallel to the straight
line L : (cos 8)u + (sin@)v = 0. Namely, [, can be represented by

|A—pB|cos6 +p - BRe(A) _ |A - pB|sin6 — BIm(A)
12:(C059)<u— - B + (sinf)( v - - B =0,

(1.25)

which implies that

|A~pB| + {p-BRe(A)} cos® -~ BIm(A)sin® _

0. 1.26
- B (1.26)

Iy : (cosO)u + (sinB)v —

Then, we see that the distance d(l,, p) between the point p and the above tangent line I, of the
circle C, is

A-pB ~ BRe(A 0 — BIm(A) sin 0
coszp+sin6><0—| PB| + {p~ BRe(A)) cos m(4)sin

1-B2
(1.27)
_ |-B(-pB +Re(A)) cos 8 - BIm(A) sin6 + | A - pBl| |
- 1- B2 ’
Therefore, if the subordination
! A
2f @) PrAZ L pB, 1 <B<0) (1.28)

f(z) 1+ Bz
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holds true, then f(z) € S; where

_ |-B(-pB +Re(A)) cos 8 — BIm(A) sin6 + | A - pBl| |

b
1- B2

e O+, (1.29)

Finally, setting ¢p = 6 + or (0 < ¢ < 2ur), the proof of the theorem is completed. O

Noonan and Thomas [8, 9] have stated the gth Hankel determinant as

an  An+l *° Anig-1
An+l An+2 " Qg
Hg(n) = det ' o ' (n,qeN=1{1,2,3,...}). (1.30)
Anig-1 On+q """ On+2g-2

This determinant is discussed by several authors with g = 2. For example, we can know that
the functional |H,(1)| = |az — a3| is known as the Fekete-Szego problem, and they consider
the further generalized functional |a; — pua3|, where a; = 1 and y is some real number (see,
[1]). The purpose of this investigation is to find the sharp upper bounds of the functional
lapso — ya§+1| for functions f(z) € .S;(A, B) or X,(A, B).

2. Preliminary Results

We need some lemmas to establish our results. Applying the Schwarz lemma or subordina-
tion principle.

Lemma 2.1. If a function w(z) € W, then

fon| < 1. (2.1)

Equality is attained for w(z) = "z for any 6 € R.
The following lemma is obtained by applying the Schwarz-Pick lemma (see, e.g., [7]).

Lemma 2.2. For any functions w(z) € 0,

] 1= Junf? (22)
holds true. Namely, this gives us the following representation:
w; = (1-lwiP)g, (23)

for some ¢ (1g] £ 1).
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3. p-Valently Janowski Starlike Functions
Our first main result is contained in
Theorem 3.1. If f(z) € S5 (A, B), then
'aP+2 - #a;zﬁl
[(A-pB){(1-21)A - ((p+1) —2p)B}|
5 ({(1-2u)A=((p+1) -2pp)B| 2 1),
<
| |A-pB|
i (11 =2 A= ((p+1) ~2p)B| £ 1),
(3.1)
with equality for
zP A
- - z = - - - >
Y ELRIE or zPe”*(B = 0) (|@-2u)A-((p+1)-2pu)B| 2 1),
f(2) = .
A/2)Z2 (B —
52T or ze2=(B=0) (|(1-2u)A-((p+1)-2pu)B| <1).
(3.2)
Proof. Let f(z) € S5, (A, B). Then, there exists the function w(z) € 70 such that
zf'(z) p+ Aw(z)
f(z)  1+Bw(z)’ (33)
which means that
n-1
(n-p)an= D (A-kB)axw, (nZp+1), (3.4)
k=p
where a, = 1. Thus, by the help of the relation in Lemma 2.2, we see that
1 2
Apir = pa, | = ‘E(A -pB) {wz +(A-(p+ 1)3)74’%} ~u(A-pB)wi
(3.5)

A-pB
- 2’[J ||(

1-w})+ {(A- (p+1)B) - 2u(A - pB) }w?|
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Then, by Lemma 2.1, supposing that 0 < w; < 1 without loss of generality, and applying the
triangle inequality, it follows that

|(1-wh)e+ (A= (p+1)B) ~20u(A-pB) Just|

<1+{|[(A=(p+1)B) -2u(A-pB)| - 1}wy

§ {|(A—(P+1)B)—2ﬂ(A—PB)| (I(A=(p+1)B) ~2u(A-pB)| 2 1; w1 =1),
~ 1

([(A=(p+1)B) -2u(A-pB)| = 1; w1 =0).
(3.6)

O
Especially, taking u = (p + 1) /2p in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. If f(z) € S5;(A, B), then

A(A-pB
p+l |(2—P)| (|A| > P),
Gpi2 = 5=y | P 3.7)
P 2 p+1
P |A-pB]| _
with equality for
z Az >
Aapoymam 7 FeE=0) (1412 p),
f@)= 2 (3.8)

(A2 (g =
(1+ Bz2) PP 278 e (B=0) (JAl<p).

Furthermore, putting A = p — 2a and B = -1 for some a (0 < a < p) in Theorem 3.1,
we arrive at the following result by Hayami and Owa [2, Theorem 3].

Corollary 3.3. If f(z) € S;(a), then

~

(-l @p-0+1)-4p-aul (x=3)

1 p-a+l
< - —Spus—),
S{pP-«a <2_#_2(p_a)> (3.9)

2
p2 — Hay
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with equality for

z 1 p-a+l
(1 - z)2 </‘ S0k 2(p—a) >
f(z) = (3.10)

_z 1, cp-a+l
a-2y= \2-""2p-a )

4. p~-Valently Janowski Convex Functions

Similarly, we consider the functional |a,.> — yaf, .| for p-valently Janowski convex functions.

Theorem 4.1. If f(z) € X,(A, B), then

pl(A-pB){((p+1)*-2p(p + ) A= ((p+1)° - 22 (p +2)u) B}
2(p+1)*(p+2)

4

([(p+1)*-2p(p +2)u) A= ((p+1)° ~20*(p +2)) B| = (p+ 1)°),
<3

2
Ap+2 — nuap+1

p|A-pB|
2(p+2)

L(|((e+ 1) -2(p+2)1) A= ((p+1)° - 202 (p +2)) B| < (p+1)°),

(4.1)
with equality for
rz”’zl:'l <p,p - %;p + 1;—Bz> or zP1Fi(p,p + 1, Az) (B=0),
([(p+1)*-2p(p +2)u) A= ((p+1)° 202 (p +2)) B| 2 (p+1)°),
f(2) =1 (4.2)

ppB-A_ p 2> (P PA2>
PoFi( = ; 1+ =;-B P1Fi( =, 1+%;— B=0),
zzl<2, B +2 z= ) or zP1F; > +2 ke ( )

L(|(e+ 1) -20(p+2)p) A= ((p+1)° - 207 (p + 2)p) B| < (p+1)%),
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where o F1(a, b; c; z) represents the ordinary hypergeometric function and 1F(a, b; z) represents the
confluent hypergeometric function.

Proof. By the help of the relation (1.17) and Theorem 3.1, if f(z) € X,(A, B), then

(P+1)2 2

p+2a B .
p+2 (P+2># p+1|”

P

(4.3)

< C(p),

where C(u) is one of the values in Theorem 3.1. Then, dividing the both sides by (p +2)/p
and replacing ((p +1)*/p(p + 2))u by p, we obtain the theorem. O

Now, letting yt = (p + 1)>/2p*(p + 2) in Theorem 4.1, we have the following corollary.

Corollary 4.2. If f(z) € X,(A, B), then

( +1)3 2(p+2) -

g _ P 2 | < 44

p+2 22( +2)ap+1 = (4.4)
PP p|A-pB| ne

wiht equality for

zP5F; (p,p - %;p + 1,'—Bz> or zP1Fi(p,p+1;Az) (B=0) (JA|=p),
f(z)=

p pB-A p 2> <p p A 2>

p P 4. p Lt r.z = <

z 2F1<2, 5 ,1+2, Bz?) or zP1F; 2,1+2, 52 B=0) (|Al<p),
(4.5)

where o F1(a, b; c; z) represents the ordinary hypergeometric function and 1F(a, b; z) represents the
confluent hypergeometric function.

Moreover, we suppose that A = p —2a and B = -1 for some a (0 < a < p). Then, we
arrive at the result by Hayami and Owa [2, Theorem 4].
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Corollary 4.3. If f(z) € K, (a), then

2
| ap+2 - l’lap+l

(p(r-a){(p+1)*Q(p-a) +1) ~4p(p+2) (p - )}
(p+1)*(p+2)

(p+1)°
<# 5 2P(P+2)>'

< J P(P—a) < (p+])2 _ o (p+1)2(p—a+1)> (4.6)
N Ras 2p(p+2) =" T 2p(p+2)(p-a) )’
P(p_“){4p(P+2)(P—“)#—(P+1)2(2(P—“)+1)}
(p+1)*(p+2)
<#> (P+1)2(P—rx+1)>
- 2p(p+2)(p-a) )’
with equality for

P : i (p+1)° (p+1)°(p-a+1)

a2 i) <”§WOT”Z 2p(p+2)(p-a) )

f(z)= . i 47)
ZP2F1<P P;Zz> < (p+1) -, < (p+1) (p—cx+1)>l

p-al+

2’ 2 2p(p+2) ~ 1= 2p(p+2)(p-a)

where ,F1(a, b; c; z) represents the ordinary hypergeometric function.
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