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We prove that an operator is weak Dunford-Pettis if its adjoint is one but the converse is false in
general, and we give some necessary and sufficient conditions under which each positive weak
Dunford-Pettis operator has an adjoint which is weak Dunford-Pettis.

1. Introduction and Notation

Let us recall that an operator T from a Banach space E into another F is called Dunford-Pettis
if it carries weakly compact subsets of E onto compact subsets of F. The operator T is said to
be weak Dunford-Pettis if y′

n(T(xn)) converges to 0 whenever (xn) converges weakly to 0 in
E and (y′

n) converges weakly to 0 in F.
The class of weak Dunford-Pettis operators was used by Aliprantis and Burkinshaw

[1] and Kalton and Saab [2] when they studied the domination property of Dunford-Pettis
operators. As this latter class [3], weak Dunford-Pettis operators do not satisfy the duality
property. In fact, there exist weak Dunford-Pettis operators whose adjoints are not weak
Dunford-Pettis. For example, as the Banach space l1(l2n) has the Schur property, its identity
operator Idl1(l2n) is Dunford-Pettis and then weak Dunford-Pettis, but its adjoint Idl∞(l2n), which
is the identity operator of the Banach space l∞(l2n), is not weak Dunford-Pettis (because the
Banach space l∞(l2n) does not have the Dunford-Pettis property (see [4], page 22)). However,
each operator is weak Dunford-Pettis if its adjoint is.

On the other hand, if E and F are two Banach spaces such that F is reflexive, then the
class of weak Dunford-Pettis operators from E into F coincides with that of Dunford-Pettis
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operators from E into F, and therefore some results of [5] can be applied here to give some
answers to our duality problem.

Morever, if E and F are both reflexive, then the class of weak Dunford-Pettis operators
from E into F coincides with that of compact operators from E into F, and hence if T : E → F
is an operator such that T is weak Dunford-Pettis, then its adjoint T ′ : F ′ → E′ is weak
Dunford-Pettis.

Also, if E and F are two Banach spaces such that E′ or F ′ has the Dunford-Pettis
property, then each operator from F ′ into E′ is weak Dunford-Pettis, and hence each weak
Dunford-Pettis T : E → F has an adjoint T ′ : F ′ → E′ which is one.

As we have already done for Dunford-Pettis operators [3] and almost Dunford-Pettis
operators [6], one of the aims of this paper is to characterize Banach lattices for which each
weak Dunford-Pettis operator has an adjoint which is weak Dunford-Pettis.

We refer the reader to [5] for unexplained terminologies on Banach lattice theory and
positive operators.

2. Some Preliminaries

Let us recall that an operator T from a Banach lattice E into a Banach space X is said to be
AM-compact if it carries each order-bounded subset of E onto a relatively compact set of
X. In [7], we used this class of operators to introduce Banach lattices which satisfy the AM-
compactness property. In fact, a Banach lattice E is said to have the AM-compactness property
if every weakly compact operator defined on E, and taking values in a Banach space X, is
AM-compact. For an example, the Banach lattice L2[0, 1] does not have the AM-compactness
property, but l1 has the AM-compactness property.

It follows from [7, Proposition 3.1] that a Banach lattice E has the AM-compactness
property if and only if for every weakly null sequence (fn) of E′, we have |fn| → 0 for
σ(E′, E).

On the other hand, if E is a Banach lattice, then

(1) the lattice operations in the topological dual E′ are called sequentially continuous
if the sequence (|fn|) converges to 0 in σ(E′, E′′) whenever the sequence (fn)
converges to 0 in σ(E′, E′′);

(2) the lattice operations in E′ are called weak∗ sequentially continuous if the sequence
(|fn|) converges to 0 in the weak∗ topology σ(E′, E) whenever the sequence (fn)
converges to 0 in σ(E′, E).

A Banach space (resp., Banach lattice) E has the Dunford-Pettis (resp., weak Dunford-
Pettis) property if every weakly compact operator T defined on E (and taking values in a
Banach space F) is Dunford-Pettis (resp., almost Dunford-Pettis, i.e., the sequence (‖T(xn)‖)
converges to 0 for every weakly null sequence (xn) consisting of pairwise disjoint elements
in E).

We need to recall, from [7], the following sufficient conditions for which a Banach
lattice has the AM-compactness property.

Theorem 2.1 (see [7]). Let E be a Banach lattice. Then E has the AM-compactness property if one
of the following assertions is valid:

(1) the norm of E is order continuous and E has the Dunford-Pettis property,

(2) the topological dual E′ is discrete,
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(3) the lattice operations in E′ are weakly sequentially continuous,

(4) the lattice operations in E′ are weak∗ sequentially continuous.

Remarks 2.2. There exists a Banach lattice E such that

(1) the norm of E′ is order continuous but E does not have the AM-compactness
property nor the weak Dunford-Pettis property. In fact, consider E = L2[0, 1], the
norm of E′ = L2[0, 1], is order continuous but L2[0, 1] does not have the AM-
compactness property nor the weak Dunford-Pettis property;

(2) the norm of E′ is not order continuous, but E has the AM-compactness property or
the weak Dunford-Pettis property. In fact, consider E = l1, the norm of E′ = l∞, is not
order continuous but l1 has the AM-compactness property and the weak Dunford-
Pettis property;

(3) E has the AM-compact property but not the weak Dunford-Pettis property. In fact,
consider E = l2, it has the AM-compactness property but not the weak Dunford-
Pettis property;

(4) E has the weak Dunford-Pettis property but not the AM-compactness property. In
fact, consider E = l∞, it has the weak Dunford-Pettis property but not the AM-
compactness property;

(5) the norms of E and E′ are order continuous, but E does not have the Dunford-
Pettis property. In fact, consider E = l2, the norms of E = l2 and E′ = l2, are order
continuous but l2 does not have the Dunford-Pettis property;

(6) the norms of E and E′ are not order continuous, but E has the Dunford-Pettis
property. In fact, consider E = l1 ⊕ l∞, the norms of E = l1 ⊕ l∞ and E′ = l∞ ⊕ (l∞)′,
are not order continuous but l1 ⊕ l∞ has the Dunford-Pettis property;

(7) the topological dual E′ is discrete with an order continuous norm, and E does not
have the weak Dunford-Pettis property. In fact, consider E = l2, the topological dual
E′ = l2, is discrete with an order continuous norm and l2 does not have the weak
Dunford-Pettis property;

(8) the topological dual E′ is not discrete and its norm is not order continuous, but it
has the weak Dunford-Pettis property. In fact, consider E = (l∞)′, the topological
dual E′ = (l∞)′′, is not discrete and its norm is not order continuous but it has the
weak Dunford-Pettis property.

A Banach space E is said to have the Schur property if every sequence in E weakly
convergent to zero is norm convergent to zero. For an example, the Banach space l1 has the
Schur property.

Note that the Schur property implies the Dunford-Pettis property, and hence the weak
Dunford-Pettis property, but the weak Dunford-Pettis property does not imply the Schur
property. In fact, the Banach space c0 has the weak Dunford-Pettis property (because it has
the Dunford-Pettis property), but it does not have the Schur property.

The following result gives some sufficient conditions for which the topological dual,
of a Banach lattice, has the Schur property.

Theorem 2.3. Let E be a Banach lattice. Then E′ has the Schur property if one of the following
assertions is valid:
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(1) the norm of E′ is order continuous, E has the AM-compactness property and the weak
Dunford-Pettis property,

(2) the norms of E and E′ are order continuous and E has the Dunford-Pettis property,

(3) the topological dual E′ is discrete with an order continuous norm and E has the weak
Dunford-Pettis property.

Proof. (1) Let (fn) ⊂ E′ be a sequence such that fn → 0 in σ(E′, E′′). Since E has the AM-
compactness property, then |fn| → 0 in σ(E′, E) (Proposition 3.1 of [7]).

Now, by Corollary 2.7 of Dodds and Fremlin [8], to show that ‖fn‖ → 0, it suffices
to prove that fn(xn) → 0 for every norm-bounded disjoint sequence (xn) ⊂ E+. To this end,
let (xn) be a such sequence of E+. Since the norm of E′ is order continuous, it follows from
Corollary 2.9 of Dodds and Fremlin [8] that xn → 0 in σ(E, E′). And as E has the weak
Dunford-Pettis property, we obtain fn(xn) → 0. This proves that E′ has the Schur property.

For (2) and (3), it follows from Theorem 2.1 that E has the AM-compactness property.
Finally, assertion (1) of the present theorem ends the proof.

Remarks 2.4. (1) There exists a Banach lattice F which has the AM-compactness property but
its topological dual F ′ does not have the Schur property. In fact, consider F = l1, it has the
AM-compactness property but F ′ = l∞ does not have the Schur property.

(2) If the topological dual F ′, of a Banach lattice F, has the Schur property, then F ′ is
discrete, and hence F has the AM-compact property (see Theorem 2.1).

3. Duality Property for Weak Dunford-Pettis Operators

Now, we study the duality property of weak Dunford-Pettis operators. Our first result proves
that each operator is weak Dunford-Pettis whenever its adjoint is one.

Theorem 3.1. Let E and F be two Banach spaces, and let T be an operator from E into F. If the adjoint
T ′ is weak Dunford-Pettis from F ′ into E′, then T is weak Dunford-Pettis.

Proof. Let (xn) (resp., (y′
n)) be a sequence of E (resp., of F ′) such that xn → 0 in σ(E, E′)

(resp., y′
n → 0 in σ(F ′, F ′′)). We have to prove that y′

n(T(xn)) → 0. For this, let τ : E → E′′

be the canonical injection of E into its topological bidual E′′. Since τ is continuous for the
topologies σ(E, E′) and σ(E′′, E′′′), we obtain τ(xn) → 0 for σ(E′′, E′′′).

Now, as y′
n → 0 in σ(F ′, F ′′) and the adjoint T ′ is weak Dunford-Pettis from F ′ into E′,

we deduce that τ(x)(T ′(y′
n)) → 0. But we know that

τ(xn)
(
T ′(y′

n

))
= T ′(y′

n

)
(xn) = y′

n(T(xn)) for each n. (3.1)

Hence y′
n(T(xn)) → 0, and this ends the proof.

Let us recall from [5] that a norm-bounded subset A of a Banach space X is said to
be Dunford-Pettis whenever every weakly compact operator from X to an arbitrary Banach
space Y carries A to a norm relatively compact set of Y . This is equivalent to saying that A is
Dunford-Pettis if and only if every weakly null sequence (fn) of X′ converges uniformly to
zero on the set A, that is, supx∈A|fn(x)| → 0 (see Theorem 5.98 of [5]).
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Now, we give some sufficient conditions for which each positive weak Dunford-Pettis
operator has an adjoint which is Dunford-Pettis.

Theorem 3.2. Let E and F be two Banach lattices. Then each positive weak Dunford-Pettis operator
T : E → F has an adjoint T ′ : F ′ → E′ which is Dunford-Pettis (and then weak Dunford-Pettis) if
one of the following assertions is valid:

(1) the norm of E′ is order continuous and E has the AM-compactness property,

(2) the norm of E′ is order continuous and F has the AM-compactness property,

(3) the norms of E and E′ are order continuous,

(4) F ′ has the Schur property.

Proof. For (1), (2), and (3), let T : E → F be a positive weak Dunford-Pettis operator and let
(fn) ⊂ F ′ be a sequence such that fn → 0 in σ(F ′, F ′′). In the three cases we have |T ′(fn)| → 0
in σ(E′, E), in fact, consider the following.

(1) As T ′(fn) → 0 in σ(E′, E′′) andE has the AM-compactness property, then |T ′(fn)| →
0 for σ(E′, E).

(2) Since fn → 0 in σ(F ′, F ′′) and F has the AM-compactness property, then |fn| → 0
in σ(F ′, F). Hence, T ′(|fn|) → 0 in σ(E′, E). Now, from |T ′(fn)| ≤ T ′(|fn|) for each n,
we conclude that |T ′(fn)| → 0 in σ(E′, E).

(3) Since the norm of E is order continuous, [−x, x] is weakly compact for each x ∈ E+.
As T is weak Dunford-Pettis, we conclude that T([−x, x]) is a Dunford-Pettis set,
and then for each x ∈ E+, supy∈T([−x,x])|fn(y)| → 0. Now, from supy∈T([−x,x])|fn(y)| =
|T ′(fn)|(x) for each n, we obtain |T ′(fn)|(x) → 0 for each x ∈ E+, and hence
|T ′(fn)| → 0 in σ(E′, E).

On the other hand, by Corollary 2.7 of Dodds and Fremlin [8], to prove that
‖T ′(fn)‖ → 0, it suffices to show that [T ′(fn)](xn) → 0 for every norm-bounded
disjoint sequence (xn) ⊂ E+. To this end, let (xn) be a norm-bounded disjoint
sequence of E+. Since the norm of E′ is order continuous, it follows from Corollary
2.9 of Dodds and Fremlin [8] that xn → 0 in σ(E, E′). Hence, as T is a weak
Dunford-Pettis operator, we obtain fn(T(xn)) → 0. And from

[
T ′(fn

)]
(xn) = fn(T(xn)) for each n, (3.2)

we derive that [T ′(fn)](xn) → 0, and hence T ′ is Dunford-Pettis.

(4) In this case, each operator T : E → F has an adjoint T ′ : F ′ → E′ which is
Dunford-Pettis.

Remarks 3.3. There exist Banach lattices E and F and aweakly Dunford-Pettis operator T from
E into F such that the adjoint T ′ is not Dunford-Pettis in the following situations:

(1) if the topological dual E′ has an order continuous norm. In fact, if E = F = l∞,
we note that E′ = (l∞)′ has an order continuous norm and its identity operator
Idl∞ : l∞ → l∞ is weak Dunford-Pettis but its adjoint Id(l∞)′ : (l∞)

′ → (l∞)′ is not
Dunford-Pettis. However, it is weak Dunford-Pettis because (l∞)′ has the Dunford-
Pettis property,
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(2) if E has the AM-compactness property (resp., F has the AM-compactness property,
E has an order continuous norm). In fact, if E = F = l1, we note that l1 has the
AM-compactness property (resp. its norm is order continuous) and its identity
operator Idl1 : l1 → l1 is weak Dunford-Pettis but its adjoint Idl∞ : l∞ → l∞ is not
Dunford-Pettis. However, it is weak Dunford-Pettis because l∞ has the Dunford-
Pettis property.

As a consequence of Theorems 2.1 and 3.2, we obtain the following.

Corollary 3.4. Let E and F be two Banach lattices. Then each positive weak Dunford-Pettis operator
T : E → F has an adjoint T ′ : F ′ → E′ which is weak Dunford-Pettis if one of the following assertions
is valid:

(1) the topological dual E′ is discrete with an order continuous norm,

(2) the norm of E′ is order continuous and F ′ is discrete,

(3) the norm of E′ is order continuous and the lattice operations in F ′ are weakly sequentially
continuous,

(4) the norm of E′ is order continuous and the lattice operations in F ′ are weak∗ sequentially
continuous,

(5) the norms of E′ and F are order continuous and F has the Dunford-Pettis property,

(6) the norms of E and E′ are order continuous,

(7) E′ or F ′ has the Dunford-Pettis property.

Proof. For (1), (2), (3), (4), and (5), it follows from Theorem 2.1 that E or F has the AM-
compactness property. Since the norm of E′ is order continuous, Theorem 3.2 implies that
each positive weak Dunford-Pettis operator T : E → F has an adjoint T ′ : F ′ → E′ which is
Dunford-Pettis (and then weak Dunford-Pettis).

(6) Follows from (3) of Theorem 3.2.
(7) In this case each operator T : E → F has an adjoint T ′ : F ′ → E′ which is weak

Dunford-Pettis.

For the converse of Theorem 3.2, we have the following.

Theorem 3.5. Let E and F be two Banach lattices. If each positive weak Dunford-Pettis operator
T : E → F has an adjoint T ′ : F ′ → E′ which is Dunford-Pettis, then one of the following assertions
is valid:

(1) the norm of E′ is order continuous,

(2) F ′ has the Schur property.

Proof. Assume byway of contradiction that the norm of E′ is not order continuous and F ′ does
not have the Schur property. We have to construct a positive weak Dunford-Pettis operator
T : E → F such that its adjoint T ′ : F ′ → E′ is not Dunford-Pettis.

Since the norm of E′ is not order continuous, it follows from the proof of Theorem 1 of
Wickstead [9] the existence of a sublattice H of E, which is isomorphic to l1, and a positive
projection P : E → l1.

On the other hand, since F ′ does not have the Schur property, there exists a weakly null
sequence (fn) ⊂ F ′ such that ‖fn‖ = 1 for all n. Moreover, there exists a sequence (yn) ⊂ F+

with ‖yn‖ ≤ 1 and some ε0 > 0 such that |fn(yn)| ≥ ε0 for all n.
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Now, we consider the operator T = S ◦ P : E → l1 → F, where S is the operator
defined by

S : l1 → F, (λn) 
−→
∑

n

λnyn. (3.3)

Since l1 has the Dunford-Pettis property, the operator T is weak Dunford-Pettis. But its adjoint
T ′ : F ′ → E′ is not Dunford-Pettis. Indeed, the sequence (fn) is weakly null in F ′. And as the
operator P : E → l1 is surjective, there exist δ > 0 such that δ · Bl1 ⊂ P(BE), where BH is the
closed unit ball ofH = E or l1. Hence

∥
∥T ′(fn

)∥∥ = sup
x∈BE

∣
∣T ′(fn

)
(x)

∣
∣ = sup

x∈BE

∣
∣fn(T(x))

∣
∣ = sup

x∈BE

∣
∣fn ◦ S

(
p(x)

)∣∣

≥ δ · sup
(λi)i∈Bl1

∣∣fn ◦ S((λi))
∣∣ ≥ δ · ∣∣fn ◦ S((en))

∣∣ ≥ δ · ∣∣fn
(
yn

)∣∣ > δ.ε0,
(3.4)

where (ei)
∞
i=1 is the canonical bases of l

1.
Then ‖T ′(fn)‖ > δ · ε0 for all n, and we conclude that T ′ is not Dunford-Pettis. This

presents a contradiction.

Remarks 3.6. Let E and F be two Banach lattices such that F ′ does not have the Schur property.
If each positive weak Dunford-Pettis operator T from E into F has an adjoint T ′ from F ′ into
E′ which is Dunford-Pettis, then

(1) F does not necessarily have the AM-compactness property. In fact, if we take E = c0
and F = l∞, we observe that each operator T from c0 into l∞ has an adjoint T ′ from
(l∞)′ into l1 which is Dunford-Pettis (because l1 has the Schur property), but F = l∞

does not have the AM-compactness property,

(2) the norm of E is not necessarily order continuous. In fact, if we take E = c and
F = l∞, we note that each operator T from c into l∞ has an adjoint T ′ from (l∞)′

into c′ which is Dunford-Pettis (because c′ has the Schur property), but the norm of
E = c is not order continuous,

(3) E does not necessarily have the AM-compactness property. In fact, if we take
E = l∞ and F = (l∞)′, we note that each positive weak Dunford-Pettis operator
T from l∞ into (l∞)′ has an adjoint T ′ from (l∞)′′ into (l∞)′ which is Dunford-Pettis
(see assertion 2 of Theorem 3.2), but E = l∞ does not have the AM-compactness
property.

Whenever E = F, we obtain the following characterization.

Theorem 3.7. Let E be a Dedekind σ-complete Banach lattice. Then the following assertions are
equivalent:

(1) each positive weak Dunford-Pettis operator T from E into E has an adjoint which is
Dunford-Pettis,

(2) the norms of E and E′ are order continuous.
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Proof. (1)⇒(2). By Theorem 3.5, the norm of E′ is order continuous. We have just to prove
that the norm of E is order continuous. Assume that the norm of E is not order continuous,
and since E is Dedekind σ-complete, then E contains a closed sublattice isomorphic to l∞ and
there is a positive projection P : E → l∞. Let i : l∞ → E be the canonical injection of l∞ into
E. Consider the operator defined by

T = i ◦ P : E −→ l∞ −→ E. (3.5)

Since l∞ has the Dunford-Pettis property, the positive operator T is weak Dunford-Pettis. But
its adjoint T ′ : E′ → E′ is not Dunford-Pettis. If not, the adjoint of the composed operator

P ◦ T ◦ i : l∞ −→ E −→ E −→ l∞ (3.6)

would be Dunford-Pettis. But (P ◦ T ◦ i)′ = (Idl∞)
′ = Id(l∞)′ is not Dunford-Pettis (because

(l∞)′ does not have the Schur property). This presents a contradiction, and hence E has an
order continuous norm.

(2)⇒(1). It follows from (3) of Theorem 3.2.

4. Complements on the Duality of Almost Dunford-Pettis Operators

In [6], we studied the duality for almost Dunford-Pettis operators. In this section we use the
AM-compactness property to give some new results.

Let us recall that an operator T from a Banach lattice E into a Banach space F is said
to be almost Dunford-Pettis if the sequence (‖T(xn)‖) converges to 0 for every weakly null
sequence (xn) consisting of pairwise disjoint elements in E.

Note that the adjoint of a positive almost Dunford-Pettis operator is not necessarily
Dunford-Pettis. In fact, the identity operator of the Banach space l1 is almost Dunford-Pettis
but its adjoint, which is the identity of the Banach space l∞, is not Dunford-Pettis.

The following result gives some sufficient conditions for which each positive almost
Dunford-Pettis operator has an adjoint which is Dunford-Pettis.

Theorem 4.1. Let E and F be two Banach lattices. Then each positive almost Dunford-Pettis operator
T : E → F has an adjoint T ′ : F ′ → E′ which is Dunford-Pettis if one of the following assertions is
valid:

(1) the norm of E′ is order continuous and E has the AM-compactness property,

(2) the norm of E′ is order continuous and F has the AM-compactness property,

(3) F ′ has the Schur property.

Proof. Note that for (1) and (2), the proof is the same as (1) and (2) of Theorem 3.2. In fact, let
T : E → F be a positive almost Dunford-Pettis operator, and let (fn) ⊂ F be a sequence such
that fn → 0 in σ(F ′, F ′′). By the uniform boundedness Theorem, there exists some α > 0 such
that ‖fn‖ ≤ α for all n. In the two cases we have |T ′(fn)| → 0 in σ(E′, E). In fact, consider the
following.

(1) As T ′(fn) → 0 in σ(E′, E′′) andE has the AM-compactness property, then |T ′(fn)| →
0 in σ(E′, E).
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(2) As fn → 0 in σ(F ′, F ′′), and since F has the AM-compactness property, then |fn| →
0 in σ(F ′, F). Hence, T ′(|fn|) → 0 in σ(E′, E) and from |T ′(fn)| ≤ T ′(|fn|) for each n,
we conclude that |T ′(fn)| → 0 in σ(E′, E).

Now to prove that ‖T ′(fn)‖E′ → 0, it suffices to show that [T ′(fn)](xn) → 0 in every
norm-bounded disjoint sequence (xn) ⊂ E+ (Corollary 2.7 of Dodds and Fremlin
[8]). To this end, let (xn) be a norm-bounded disjoint sequence of E+.

Since the norm of E′ is order continuous, it follows from Corollary 2.9 of Dodds and
Fremlin [8] that xn → 0 in σ(E, E′). Hence, as T is almost Dunford-Pettis operator,
we obtain ‖T(xn)‖F → 0. Now, from

∣
∣[T ′(fn

)]
(xn)

∣
∣ =

∣
∣fn(T(xn))

∣
∣ ≤ α · ‖T(xn)‖F for each n, (4.1)

we see that [T ′(fn)](xn) → 0, and hence T ′ is Dunford-Pettis.

(3) In this case each operator T : E → F has an adjoint T ′ : F ′ → E′ which is
Dunford-Pettis.

Remarks 4.2. Let E and F be two Banach lattices, and let T be an operator from E into F. Then
the adjoint T ′ is not necessarily Dunford-Pettis whenever T is almost Dunford-Pettis in the
following situations.

(1) If the topological dual E′ has an order continuous norm. In fact, since the norm of l∞

is not order continuous and the Banach lattice (l∞)′ is not discrete, it follows from
Theorem 1 of Wickstead [9] the existence of two positive operators S1, S2 : l∞ → l∞

such that 0 ≤ S1 ≤ S2, S2 is compact, and S1 is not compact. Now, as (l∞)′ has
an order continuous norm, Theorem 5.31 of Aliprantis and Burkinshaw [5] implies
that S1 is weakly compact. So, by Theorem 5.44 of Aliprantis and Burkinshaw [5],
there exist a reflexive Banach lattice G, lattice homomorphism Q : l∞ → G, and a
positive operator R : G → l∞ such that S1 = R ◦Q. We note that Q is not compact
(because S1 is not one).

On the other hand, if we take E = l∞, F = G, and T = Q, then T : l∞ → G is a
weakly compact operator (because G is reflexive), and hence T is Dunford-Pettis
(l∞ has the Dunford-Pettis property) and then T is almost Dunford-Pettis. But its
adjoint T ′ : G′ → (l∞)′ is not Dunford-Pettis (if not, since G′ is reflexive, T ′ would
be compact and so T is compact, which is a contradiction). However, the norm of
E′ = (l∞)′ is order continuous.

(2) If E has the AM-compactness property. In fact, if we take E = F = l1, we note that
E = l1 has the AM-compactness property and its identity operator Idl1 : l1 → l1 is
almost Dunford-Pettis but the adjoint Idl∞ : l∞ → l∞ is not Dunford-Pettis.

(3) If F has the AM-compactness property. In fact, if we take E = F = l1, we observe
that F = l1 has the AM-compactness property and its identity operator Idl1 : l1 → l1

is almost Dunford-Pettis, but the adjoint Idl∞ : l∞ → l∞ is not Dunford-Pettis.

For the converse of Theorem 4.1, we obtain the following.

Theorem 4.3. Let E and F be two Banach lattices. If each positive almost Dunford-Pettis operator
T : E → F has an adjoint T ′ : F ′ → E′ which is Dunford-Pettis, then one of the following assertions
is valid:
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(1) the norm of E′ is order continuou,

(2) F ′ has the Schur property.

Proof. The proof is the same as that of Theorem 3.5 if we observe that the operator T in the
proof of Theorem 3.5 is almost Dunford-Pettis (because T admits a factorization through the
Banach lattice l1, which has the Schur property).

Remarks 4.4. Let E and F be two Banach lattices such that F ′ does not have the Schur property.
If each positive almost Dunford-Pettis operator T from E into F has an adjoint T ′ from F ′ into
E′ which is Dunford-Pettis, then

(1) E does not necessarily have the AM-compactness property. In fact, if we take
E = l∞ and F = (l∞)′, we note that each positive almost Dunford-Pettis operator
T from l∞ into (l∞)′ has an adjoint T ′ from (l∞)′′ into (l∞)′ which is Dunford-Pettis
(see assertion 2 of Theorem 4.1), but E = l∞ does not have the AM-compactness
property,

(2) F does not necessarily have the AM-compactness property. In fact, if we take E = c0
and F = l∞, we observe that each operator T from c0 into l∞ has an adjoint T ′ from
(l∞)′ into l1 which is Dunford-Pettis (because l1 has the Schur property), but F = l∞

does not have the AM-compactness property.

Finally, we note that there exists a positiveweakDunford-Pettis (resp., Dunford-Pettis)
operator T : E → F whose adjoint T ′ : F ′ → E′ is not almost Dunford-Pettis. In fact,
the identity operator of the Banach lattice l1 is weak Dunford-Pettis (resp., Dunford-Pettis)
operator but its adjoint, which is the identity of the Banach lattice l∞, is not almost Dunford-
Pettis.

Now, we give a characterization on the duality between weak Dunford-Pettis opera-
tors and almost Dunford-Pettis operators.

Theorem 4.5. Let E and F be two Banach lattices. Then the following assertions are equivalent:

(1) each positive weak Dunford-Pettis (resp., Dunford-Pettis, almost Dunford-Pettis) operator
T : E → F has an adjoint T ′ : F ′ → E′ which is almost Dunford-Pettis,

(2) one of the following assertions is valid:

(a) the norm of E′ is order continuous,
(b) F ′ has the positive Schur property.

Proof. (1)⇒(2). Assume by way of contradiction that the norm of E′ is not order continuous
and F ′ does not have the positive Schur property. We have to construct a positive weak
Dunford-Pettis (resp., Dunford-Pettis, almost Dunford-Pettis) operator T : E → F such that
its adjoint T ′ : F ′ → E′ is not almost Dunford-Pettis.

Since the norm of E′ is not order continuous, it follows from the proof of Theorem 1 of
Wickstead [9] the existence of a sublattice H of E, which is isomorphic to l1, and a positive
projection P : E → l1.

On the other hand, since F ′ does not have the positive Schur property, it follows from
Theorem 3.1 of [10] the existence of a disjoint weakly null sequence (fn) ⊂ (F ′)+ such that
(fn) does not converge to zero for the norm. Moreover, there exists a sequence (yn) ⊂ F+ with
‖yn‖ ≤ 1, and some ε > 0, a subsequence (gn) of (fn) such that gn(yn) ≥ ε for all n.
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Now, we consider the composed operator

T = S ◦ P : E −→ l1 −→ F, (4.2)

where S is defined by

S : l1 → F, (λn) 
−→
∑

n

λnyn. (4.3)

Since l1 has the Schur property, the operator T is weak Dunford-Pettis (resp. Dunford-
Pettis, almost Dunford-Pettis), but its adjoint T ′ : F ′ → E′ is not almost Dunford-Pettis.
Indeed, (gn) is a disjoint weakly null sequence in F ′. And since the operator P : E → l1

is surjective, there exist δ > 0 such that δ · Bl1 ⊂ P(BE) where BH is the closed unit ball of
H = E, l1. Hence

∥∥T ′(gn
)∥∥ = sup

x∈BE

∣∣T ′(gn
)
(x)

∣∣ = sup
x∈BE

∣∣gn(T(x))
∣∣ = sup

x∈BE

∣∣gn ◦ S
(
p(x)

)∣∣

≥ δ · sup
(λi)i∈Bl1

∣∣gn ◦ S((λi))
∣∣ ≥ δ · ∣∣gn ◦ S((en))

∣∣ ≥ δ · ∣∣gn
(
yn

)∣∣ > δ.ε0,
(4.4)

where (ei)
∞
i=1 is the canonical bases of l

1.
Then ‖T ′(gn)‖ > δ ·ε0 for every n, and we conclude that T ′ is not almost Dunford-Pettis.

This presents a contradiction.
(2), (a)⇒(1). Let (fn) be a disjoint sequence of F ′ such that fn → 0 in σ(F ′, F ′′). We

have to prove that (T ′(fn)) converges to 0 for the norm of E′. By using Corollary 2.7 of Dodds-
Fremlin [8], it suffices to prove that |T ′(fn)| → 0 in σ(E′, E) and [T ′(fn)](xn) → 0 for every
norm-bounded disjoint sequence (xn) ⊂ E+. In fact, as (fn) is a weakly null sequence with
pairwise disjoint terms, it follows from Remark 1 of Wnuk [11] that |fn| → 0 in σ(F ′, F ′′), and
then T ′(|fn|) → 0 for σ(E′, E′′). Now, since |T ′(fn)| ≤ T ′(|fn|) for each n, then |T ′(fn)| → 0 in
σ(E′, E′′), and hence |T ′(fn)| → 0 in σ(E′, E).

On the other hand, since the norm of E′ is order continuous, it follows from Corollary
2.9 of Dodds and Fremlin [8] that xn → 0 in σ(E, E′). Hence, as T is a weak Dunford-
Pettis (resp., Dunford-Pettis, almost Dunford-Pettis) operator, we obtain [T ′(fn)](xn) =
fn(T(xn)) → 0, and this proves that T ′ is almost Dunford-Pettis.

(2), (b)⇒(1). Obvious.
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