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We introduce a new general iterative method for finding a common element of the set of solutions
of fixed point for nonexpansive mappings, the set of solution of generalized mixed equilibrium
problems, and the set of solutions of the variational inclusion for a p-inverse-strongly monotone
mapping in a real Hilbert space. We prove that the sequence converges strongly to a common
element of the above three sets under some mild conditions. Our results improve and extend the
corresponding results of Marino and Xu (2006), Su et al. (2008), Klin-eam and Suantai (2009), Tan
and Chang (2011), and some other authors.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product (-,-) and the
norm ||-||. Let F be a bifunction of Cx C into R, where R is the set of real numbers, ¥ : C - H
amapping, and ¢ : C — R areal-valued function. The generalized mixed equilibrium problem is
for finding x € C such that

F(x,y) +(¥x,y-x)+p(y) —p(x) >0, VyeC (1.1)

The set of solutions of (1.1) is denoted by GMEP(F, ¢, ¥), that is,

GMEP(F, ¢, ¥) = {x € C: F(x,y) + (¥x,y - x) + p(y) - 9(x) 2 0,Yy € C}. (1.2)
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If F = 0, the problem (1.1) is reduced into the mixed variational inequality of Browder type [1]
for finding x € C such that

(Px,y-x)+p(y) —p(x) >0, VyeC (1.3)

The set of solutions of (1.3) is denoted by MVI(C, ¢, ¥).
If ¥ =0 and ¢ = 0, the problem (1.1) is reduced into the equilibrium problem [2] for
finding x € C such that

F(x,y) >0, VyeC. (1.4)

The set of solutions of (1.4) is denoted by EP(F). This problem contains fixed point problems
and includes as special cases numerous problems in physics, optimization, and economics.
Some methods have been proposed to solve the equilibrium problem; see [3-5].

If F = 0and ¢ = 0, the problem (1.1) is reduced into the Hartmann-Stampacchia
variational inequality [6] for finding x € C such that

(¥x,y-x)>0, VYyeC. (1.5)

The set of solutions of (1.5) is denoted by VI(C,¥). The variational inequality has been
extensively studied in the literature [7].

If F=0and ¥ = 0, the problem (1.1) is reduced into the minimize problem for finding
x € C such that

o(y) —p(x) >0, VYyeC. (1.6)

The set of solutions of (1.6) is denoted by Arg min(¢p).

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems. Convex minimization problems have a great impact and
influence on the development of almost all branches of pure and applied sciences. A typical
problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

0(x) = %(Ax,x) -(x,y), Vx€F(S), (1.7)

where A is a linear bounded operator, F(S) is the fixed point set of a nonexpansive mapping
S, and y is a given point in H [8].
Recall that a mapping S : C — C is said to be nonexpansive if

l[Sx =Syl <llx-v

, (1.8)
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for all x,y € C. If C is bounded closed convex and S is a nonexpansive mapping of C into
itself, then F(S) is nonempty [9]. We denote weak convergence and strong convergence by
notations — and —, respectively. A mapping A of C into H is called monotone if

(Ax - Ay, x-y) >0, (1.9)

for all x, y € C. A mapping A of C into H is called a-inverse-strongly monotone if there exists a
positive real number a such that

(Ax = Ay,x—y) 2 al| Ax - Ay, (1.10)

for all x,y € C. It is obvious that any a-inverse-strongly monotone mapping A is monotone
and Lipschitz continuous mapping. A linear bounded operator A is strongly positive if there
exists a constant y > 0 with the property

(Ax,x) >yl|x|?, (1.11)

for all x € H. A self mapping f : C — C is a contractions on C if there exists a constant
a € (0,1) such that

17 ) = F W)l < allx = wll, (1.12)

for all x,iy € C. We use J] to denote the collection of all contraction on C. Note that each
f € T1c has a unique fixed point in C.

Let B: H — H be a single-valued nonlinear mapping and M : H — 2H a set-valued
mapping. The variational inclusion problem is to find x € H such that

0 € B(x) + M(x), (1.13)

where 0 is the zero vector in H. The set of solutions of problem (1.13) is denoted by I(B, M).
The variational inclusion has been extensively studied in the literature, see, for example, [10-
13] and the reference therein.

A set-valued mapping M : H — 2H is called monotone if for all x,y € H, f € M(x),
and g € M(y) imply (x -y, f — g) > 0. A monotone mapping M is maximal if its graph
G(M) = {(f,x) e Hx H : f € M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping M is maximal if and only
if, for (x, f)e Hx H,(x -y, f —g) >0forall (y,g) € G(M) imply f € M(x).

Let B be an inverse-strongly monotone mapping of C into H, and let Ncv be normal
cone to Catwv € C, thatis, Ncv={w e H: (v—u,w) >0,Yu € C}, and define

Tov = (1.14)

Bv+ Ncov, ifveC,
0, ifoé¢C.

Then, T is a maximal monotone and 6 € Tv if and only if v € VI(C, B) [14].
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Let M : H — 2H be a set-valued maximal monotone mapping; then the single-valued
mapping [y : H — H defined by

Tma(x) =T +AM) " (x), xeH (1.15)

is called the resolvent operator associated with M, where \ is any positive number and I is
the identity mapping. It is worth mentioning that the resolvent operator is nonexpansive,
l-inverse-strongly monotone and that a solution of problem (1.13) is a fixed point of the
operator Jar, (I — AB) forall A > 0 [15].

In 2000, Moudafi [16] introduced the viscosity approximation method for nonexpan-
sive mapping and proved that, if H is a real Hilbert space, the sequence {x,} defined by the
iterative method below, with the initial guess xy € C, is chosen arbitrarily,

xn+1 = anf(xn) + (1 - a‘r‘l)sxn/ n 2 0/ (116)

where {a,} C (0,1) satisfies certain conditions and converges strongly to a fixed point of S
(say X € C) which is the unique solution of the following variational inequality:

(I-f)%x-%)>0, V¥xeF(S). (1.17)

In 2006, Marino and Xu [8] introduced a general iterative method for nonexpansive
mapping. They defined the sequence {x,} generated by the algorithm x, € C:

Xn+1 = AnY f(x0) + (I — 2, A)Sx,, n2>0, (1.18)

where {a,} C (0,1) and A is a strongly positive linear bounded operator. They proved that,
if C = H and the sequence {a,} satisfies appropriate conditions, then the sequence {x,}
generated by (1.18) converges strongly to a fixed point of S (say x € H) which is the unique
solution of the following variational inequality:

((A-yf)%,x-X) >0, VYxeF(S), (1.19)

which is the optimality condition for the minimization problem

1
n —_—

A - .
xeF(%}%\EP(F)2< %,x) = h(x), (1:20)

where h is a potential function for yf (i.e., I'(x) = yf(x) for x € H).
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For finding a common element of the set of fixed points of nonexpansive mappings
and the set of solution of the variational inequalities, let Pc be the projection of H onto C. In
2005, Iiduka and Takahashi [17] introduced following iterative process for x; € C:

Xpi1 = apu + (1 = a,)SPe(x, — MyAxy), Yn>0, (1.21)

where u € C, {a,} C (0,1), and {A,} C [a, b] for some a,b with 0 < a < b < 2. They
proved that under certain appropriate conditions imposed on {a,} and {\,}, the sequence
{x,} generated by (1.21) converges strongly to a common element of the set of fixed points of
nonexpansive mapping and the set of solutions of the variational inequality for an inverse-
strongly monotone mapping (say x € C) which solve some variational inequality

(x-u,x-%)>0, VYxeF(S)nVIC, A). (1.22)

In 2008, Su et al. [18] introduced the following iterative scheme by the viscosity
approximation method in a real Hilbert space: x1,u, € H

F(uny) + l<y— Up, Up —Xn) 20, YyeC,
T (1.23)

Xn+1 = O f (xn) + (1 — a,) SPc(uy, — Ly Auy,),

for all n € N, where {a,} C [0,1) and {r,} C (0, 00) satisfy some appropriate conditions.
Furthermore, they proved that {x,} and {u,} converge strongly to the same point z € F(S) N
VI(C, A) NEP(F), where z = Pr(s)nvi(c,a)nEp(F) f (2)-

In 2011, Tan and Chang [12] introduced following iterative process for {T,, : C — C}
which is a sequence of nonexpansive mappings. Let {x,} be the sequence defined by

X1 = @y + (1= ) (SPe((1 = t) Jaaa (I = AA)T, (I - uB))x,,), Vn >0, (1.24)

where {a,} C (0,1), A € (0,2a], and p € (0,2f]. The sequence {x,} defined by (1.24)
converges strongly to a common element of the set of fixed points of nonexpansive mapping,
the set of solutions of the variational inequality, and the generalized equilibrium problem.

In this paper, we modify the iterative methods (1.18), (1.23), and (1.24) by proposing
the following new general viscosity iterative method: xo, u, € C,

F(un,y) +9(y) — @un) + (¥x,, y — uy) + l(y —Up,Up—Xy) 20, VyeC,
Tn (1.25)

Xn+1 = Pc [“an(xn) + (I - anA)S]M,)L(un - )LBun)]/

for all n € N, where {a,} C (0,1), {r,} C (0,20), and A € (0,2p) satisfy some appropriate
conditions. The purpose of this paper is to show that under some control conditions
the sequence {x,} strongly converges to a common element of the set of fixed points of
nonexpansive mapping, the solution of the generalized mixed equilibrium problems, and
the set of solutions of the variational inclusion in a real Hilbert space.
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2. Preliminaries

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Recall that the
(nearest point) projection Pc from H onto C assigns to each x € H the unique point in
Pcx € C satistying the property

e ~ Pex] = min]|x - y. 2.1)
The following characterizes the projection Pc. We recall some lemmas which will be needed
in the rest of this paper.

Lemma 2.1. The function u € C is a solution of the variational inequality (1.5) if and only ifu € C
satisfies the relation u = Pc(u — A\%u) for all A > 0.

Lemma 2.2. Foragivenz€ Hue C,u=Pez s (u—z,v-u) >0, forallv e C.
It is well known that Pc is a firmly nonexpansive mapping of H onto C and satisfies

|Pcx = Pcy|* < (Pcx - Pcy,x-y), VYx,y € H. (2.2)

Moreover, Pcx is characterized by the following properties: Pcx € C and, forall x € H, y € C,
(x = Pcx,y — Pcx) <0. (2.3)

Lemma 2.3 (see [19]). Let M : H — 2! be a maximal monotone mapping, and let B: H — H be
a monotone and Lipshitz continuous mapping. Then the mapping L = M+ B : H — 2H is a maximal
monotone mapping.

Lemma 2.4 (see [20]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{x,} ¢ H with x, — x, the inequality lim inf,, _, ||x, — x|| < lim inf, _, o ||x, — y/|| holds for each
y € Hwithy #x.

Lemma 2.5 (see [21]). Assume that {a,} is a sequence of nonnegative real numbers such that

Ans1 < (1 - Yn)an + 571/ Vn >0, (24)

where {y,} C (0,1) and {6,} is a sequence in R such that

() Xz Yn = 00,
(ii) limsup, _, (6n/yn) <0 0r 37721 |64 < 0.

Then lim,, _, xa, = 0.

Lemma 2.6 (see [22]). Let C be a closed convex subset of a real Hilbert space H, and let T : C — C
be a nonexpansive mapping. Then I — T is demiclosed at zero, that is,

Xy — X, Xp—Tx, — 0 (2.5)

implies x = Tx.
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For solving the generalized mixed equilibrium problem, let us assume that the
bifunction F : C x C — R, the nonlinear mapping ¥ : C — H is continuous monotone,
and ¢ : C — R satisfies the following conditions:

(A1) F(x,x) =0forallx € C;

(A2) F is monotone, that is, F(x,y) + F(y,x) <0 for any x,y € C;

(A3) for each fixed y € C, x — F(x,y) is weakly upper semicontinuous;
(A4) for each fixed x € C, y — F(x,y) is convex and lower semicontinuous;

(B1) for each x € C and r > 0, there exist a bounded subset D, C C and y, € C such that,
forany z € C\ D,,

F(z,yx) +9(yx) —(2) + %(yx ~z,2-x) <0; (2.6)

(B2) C is a bounded set.

Lemma 2.7 (see [23]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : CxC — R be a bifunction mapping satisfying (A1)—(A4), and let ¢ : C — R be convex and
lower semicontinuous such that C N dom ¢ # (. Assume that either (B1) or (B2) holds. For r > 0 and
x € H, there exists u € C such that

1
F(uy) +9(y) @) + (v -uu-x). 27)
Define a mapping K, : H — C as follows:
1
K, (x) = {u €eC:F(uy)+o(y) —p(u)+ ;(y —uu-x)>0,Vy e C} (2.8)

forall x € H. Then, the following hold:
(i) K, is single valued;
(i) K, is firmly nonexpansive, that is, for any x,y € H, ||K,x — K, y|* < (K,x-K,y, x-y);
(iii) F(K,) = MEP(F, p);
(iv) MEP(F, p) is closed and convex.

Lemma 2.8 (see [8]). Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A||"™*; then ||I — pA|| <1 - py.

3. Strong Convergence Theorems

In this section, we show a strong convergence theorem which solves the problem of finding
a common element of F(S), GMEP(F, ¢, ¥), and I(B, M) of an inverse-strongly monotone
mappings in a Hilbert space.
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Theorem 3.1. Let H be a real Hilbert space, C a closed convex subset of H, B, ¥ : C — H
be B, o-inverse-strongly monotone mappings, respectively. Let ¢ : C — R be a convex and lower
semicontinuous function, f : C — C a contraction with coefficient a (0 <a <1), M: H — 2H g
maximal monotone mapping, and A a strongly positive linear bounded operator of H into itself with
coefficient y > 0. Assume that 0 <y <y /a. Let S be a nonexpansive mapping of C into itself such that

Q := F(S) nGMEP(F, ¢, %) N I(B, M) #0. (3.1)

Suppose that {x,} is a sequences generated by the following algorithm for xo € C arbitrarily:

F(un,y) +9(y) — () + (¥x,y — up) + %(y —Up, Uy —Xn) 20, YyeC,
. (3.2)

Xni1 = Pc [aan(xn) + (- a,A)STma(un - )LBun)]
foralln=0,1,2,..., where
(C1) {a,} C(0,1), lim, oy =0, X2y ay = 00, and >y |ps1 — &ty < 0,
(C2) {rn} C lc,d] withc,d € (0,20) and 377 |Fus1 — Tn| < o0,
(C3) L € (0,2p).

Then {x,} converges strongly to q € Q, where q = Po(yf + 1 — A)(q) which solves the
following variational inequality:

((rf-A)gp-q)<0, VpeQ (3.3)

which is the optimality condition for the minimization problem
min—l(A ) —h(q) 3.4
qeQ 2 q’ q q 4 ( . )

where h is a potential function for yf (i.e., W' (q) = yf(q) for g € H).

Proof. Due to condition (C1), we may assume without loss of generality, then, that a, €
(0, ||AlI™Y) for all n. By Lemma 2.8, we have that ||I — a, A|| < 1 - a,y. Next, we will assume
that |1 - Al < [1 - ]|

Next, we will divide the proof into six steps.

Step 1. We will show that {x,}, {u,} are bounded.
Since B, ¥ are f3, o-inverse-strongly monotone mappings, we have that

|(I = AB)x — (I - AB)y||* = || (x - y) - A\(Bx - By)|*
= || = v||* - 2A(x - y, Bx - By) + A?||Bx - By||’ 65
< [lx=y|* + A(A ~2) || Bx - By|’

<lx-yl*.
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In a similar way, we can obtain
(T = ®)x = (1= ¥)y||* < [l - yI".

Itis clear thatif 0 < A < 26,0 <r, <20, thenI - AB, I — r,¥ are all nonexpansive.
Put y, = Jma(un — ABuy), n > 0. It follows that
llyn = all = [[Jasa(un = ABun) = Jma(q = ABq) |

< lun - 4l-
By Lemma 2.7, we have that u,, = K;, (x, — r,¥x,) for all n > 0. Then, we have that

= qll* = 1K, Gen = 72 %x0) = Ky (4 = 12 ¥ ||*
< ”(xn - rnlpxn) - (q - an’q) ”2
< ln = qll” + ru(ra = 20) ||, - ¥ |®

= |l - all*.
Hence, we have that
1y = qll < [l = 4.
From (3.2), we deduce that

%1 =gl = | Pe(any f (xn) + (I = 22 A)Syn) = Pe(q) ||
< lan(yf (xn) = Ag) + (I = 2, A) (Syn — 9) |
< aul|yf (xn) = Aql| + (1 - an¥) [|yn — 4|
< an|lyfGen) =y f (@) || + anllyf(q) = Aql| + (1 = @) [lya — 4]
< ayan|| 2 = gl + an|ly £ (q) = Aql| + (1 = a¥) |20 = ]|
= (1= (¥ —ya)an) | xn = ql| + au|lyf (9) - Aq||

llyf(q) - Aq|
Y

= (1= (7= ya)an) gl + (F = ya)an ==

g, /(@) - Aql }

Smax{”xn —
Y -ya

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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It follows by induction that

(3.11)

-A
@ -l
Y- ra

e —all < max{nxo _dl

Therefore {x,} is bounded, so are {y,}, {Sy.}, {Bun}, {f(x,)}, and {ASy,}.

Step 2. We claim that lim,, _, o, ||Xn+1 — X[ = 0. From (3.2), we have that

1Xne1 = Xl = || Pe(any f (x4) + (I = 20 A)Syn) — Pe(an-1y f (xp-1) + (I — an1.A)Syna) ||
< || = anA) (Syn = Syn-1) — (an — 1) ASYn
+yetn (f (n) = f (n-1)) + (@ = @n-1) f (o) |
< (U= an)) [[yn = yua || + lan = anal [ ASyna |

+yaoy||x, — Xpo1|| + yla, — an,1|||f(xn,1)||.

(3.12)
Since I — AB are nonexpansive, we also have that
lVn = Ynall = |Jma(un — ABuy) = Jar (n-1 — ABuy_q) ||
< |[(un — ABuy) = (-1 = ABup1) || (3.13)

< lun = wpal-

On the other hand, from u,; = K, , (xy-1 — rp-1¥x,-1) and u,, = K, (x, — r,¥x,), it follows
that

1
F(up-1,y) + (¥xn-1,y — ttn-1) + 9(y) — p(tn1) + ﬁ<y —Up-1,Up-1—Xn1) 20, VyeC,
(3.14)

F(un,y) + (¥xn,y —ttn) + () — p(un) + %(y — Uy, Uy —Xy) 20, VyeC. (3.15)

Substituting v = u, into (3.14) and y = u,; into (3.15), we get

F(up-1,un) + (¥xp_1, tpy — Upa) + @(Uy) — 9(tty—1) + (Up — Up-1,Up-1 — Xp1) 20,

Tn-1
(3.16)

1
F(un, un1) + (¥xy, pq — Up) + p(Up1) — p(uy) + r—<un_1 — Uy, Uy — Xp) 2 0.
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From (A2), we obtain

<un U1, U, — Px, + Und 7 Xnl _ Mn 7 x"> >0, (3.17)
Tn-1 Tn
and then
<un ~ U1, 1 (P — ¥x,) + Upg — X — r": (un — xn)> >0. (3.18)
So
(Un = Un1, T 1 W1 = 11 WXy + U1 — U + Uy — X1 = Tt (tn = x4)) 2 0. (3.19)

n

It follows that

Tn-1
<un = U1, I =101 W) xn = (I = 11 W) X1 + U1 — Up + Uy — Xy — : (un - xn)> >0,
n

Tn-1
(Up = Up1, Up-1 = Up) + (Up — Up_1, X — Xp1 + (1 - : >(un = xu)) 2 0.
n

(3.20)

Without loss of generality, let us assume that there exists a real number ¢ such that r,,.1 >c¢ >0,
for all n € N. Then, we have that

Tn-1
”un - un—l”2 < <un —Up-1,Xn — Xp-1 + <1 - = )(un - xn)>

Tn
(3.21)

1— Tn-1
n

|m—m@

ﬂm—wﬂ@m—wﬂ+

and hence

1
”un - un—ln < ||xn - xn—l” + r_lrn - rn—ll””n - xn“
n

(3.22)

M,
<l = x| + T|Tn = Tn-1l,
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where M; = sup{||lu, — x,|| : n € N}. Substituting (3.22) into (3.13), we have that
M
=yt Il < 1t = call + =7 = 7. (3.23)
Substituting (3.23) into (3.12), we get

a1 = %l < (1= ,7) (1 = 3l + 221 = 1] ) + i = [ A4Sy

+yaay|xy = x|l + ylan = an-al|| f (en-1) |

= (1 - an))|lxn — xnal + (1 - an?)%m = Tno1| + |an — a1 ||| ASyna ||
+yaay||x, = Xpa|l + ylan — anal|| f (a1 || (3.24)

< (1= (7~ y@)an) e = sl + 2t = el + o = | Ay |
+¥letn = ||| f () |

< (1= (¥~ ya)an)l1xn = xpal| + %Im — Tl + Malat, — a1,

where M, = sup{max{||ASyu-1||, | f (xs-1)|| : n € N}}. By conditions (C1)-(C2) and Lemma

2.5, we have that ||x,+1 — x,|| = 0asn — oo. From (3.23), we also have that ||y,+1 — ya|| — 0
asmn — co.

Step 3. We show the following;:
(i) limy, - || Bu, — Bq|| = 0;
(if) limy, o [|¥x, — Pg|| = 0.

Forg e Qand g = Jma(q - ABg), by (3.5) and (3.8), we get

|y — ‘1”2 = || Jma (n — ABuy,) — Jama (g — ABg) ||2
< || (un — ABuy) — (g~ ABg) ||’
(3.25)
< |un = q||* + A(A - 28) || Bun - Bq||*

< [|2n = q||* + X(X = 28) || Bun - Bq||*.
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It follows that

a1 = 4l1” = [|Pe(@ay f (xa) + (I = @2 2) Syn) = Pe(@) |
<l (y £ (xen) = Aq) + (T - @, A) Sy — ) |I°
< (@ullyf (o) = Agl| + (1= aa]) [y = )
< allyf(xn) = Ag||” + (1= &) |y - g’
+ 20 (1= Y ||y f (n) = Aq|| |y 4| (3.26)
< aulyf (xn) = Aq||* + 205 (1 = @) [y f (6a) = Adll[|yn - 4
+ (1= ) (Il = qlI2 + L(A - 2) || Bu - Bq]|*)

< au | f () ~ Aq||” + 200 (1 = aa?) || f () = Aq[ |y 4|
+ [l = gl + (1 = an¥) A (A = 2B) | Bun — Bql|*.

So, we obtain

(1- au¥)A(2B - ) || Bun - Bq||*
(3.27)

< [y f Gen) = Aql* + llxn = xnenl| ([0 = ]| + [lnr = q) + e,

where ¢, = 2a,(1-a,7) ||y f (xn) —Aq||llyn—4g||- By conditions (C1) and (C3) and lim,, _, o, || Xp+1—
Xn|| = 0, we obtain that ||[Bu, — Bg|| — 0Oasn — oo.
Substituting (3.8) into (3.25), we get

llya - all* < [|un - q||* + X(A - 28) || Bu, - Bq||®

) . . (3.28)
< (I =4l + s - 20) ¥, - ¥q][*) + A(A = 26) || B, - Ba]*

From (3.26), we have that

21 = ql* < ully £ (ea) = Aq||* + 20 (1 = aa¥) ||y £ (xa) = Aq|l [y — 4|
+(1-a.y) (len —q|)? + 7u(rn = 20) || Wx, — ¥a|* + A(X - 26) || Buy, - BqIIZ)

< ||y f(xn) = Aq||® + 20 (1 = ¥ [y £ n) = Aq|| ||y = | + || - 4]

+ (1= any)ra(rn — 20) || ¥x, — ‘Pq”z + (1= any)A(L=2B)||Buy — Bq||2.
(3.29)
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So, we also have that
(1 - U‘n?)rn(z‘7 - rn)”q’xn - 11"1”2

< ||y f (n) = Aq||* + 11260 = 2etll([| 00 = q] + |01 - 4l]) (3.30)
+en+ (1= i) L(A - 2p) | Bun ~ B,
where €, = 2a,(1-a,7)||y f (xn) —Aq|llyn—q||. By conditions (C1)—(C3), lim, —, oo || Xp+1—%n|| = 0

and lim,, _, .|| Bu,, — Bg|| = 0, we obtain that |¥x, - ¥g|| — 0Oasn — oo.

Step 4. We show the following;:

(i) imy, — o[ — un|| = 0;
(ii) limy, —, o [ty — yn” =0;

(iii) imy— eollyn — Syl = 0.

Since K, is firmly nonexpansive and by (2.2), we observe that
”un - ‘1”2 = ”Krn (xn =1 ¥xn) - Ky, (g — 2 ¥q) ”2
< {(xn =1 ¥xn) = (9 —12¥q), Uy — q)

1
= 5 (1 =7 ¥0) = (@ = ¥ |* + [0 - g

| e = W) = (g = 12 %3) = (n — D)) (331)

< 0= alP + i = = 150 = 1) = o, - ¥ )
1 2 2 2
= 5 (Il =l + lla = qlI” = I —
+21, (Wxty = ¥q, X — ) — 17| ¥xn — ‘Pq||2>.
Hence, we have that

lln = ql1”> < |20 = gl1” = 110 = teal|* + 27| ¥ — ¥q|[1xn — 1. (3.32)
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Since Jpr is 1-inverse-strongly monotone and by (2.2), we compute

Iy = all” = [1Taa (e — ABu) = T (g - ABa) |
< ((un = ABuy) = (9 - ABq), yu = q)

1
= 5 (164 = ABuy) = (g - 1Bg) |* + [|y» - 4’

|t = ABuy) ~ (9= ABq) = (yu - @) II*)

(3.33)
1 2
< 5 (len = all® + llyn = all” = 1| en = y) = A(Bun ~ Bg)||*)
1 2 2 2
= 5 (llen = all* + llya = all” = lfun =
+2X(ty — Yy, Bu, — Bq) — \*||Bu, - Bq||2>,
which implies that
lyn = all” < [l = all” = llun = yal* + 24|02 = yu|| | Bun ~ Bq. (3.34)
Substituting (3.32) into (3.34), we have that
1y = all* < (lln = qll” = e =10l + 27 [[ ¥ — Wl — ]
(3.35)

= llun = yull* + 2| t0x = yull| Butn ~ Bq.

Substituting (3.35) into (3.26), we get

st = ql* < @ally £ (ea) = Al + [y = ql* + 200 (1 = @) [y Cxn) = Aq|[[ya — ]
< an||yf(xn) - Aq||2 + <||xn - qIIZ —N1%n = ual® + 27 || ¥x = Pq]| [l 30 — 4]
2
4 = yull* + 22140 =yl || Bun - B

+ 20, (1= anY) ||y f (n) = Aq||||yn = 4l|-
(3.36)
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Then, we derive

1 = t4all? + (|2t = yul|* < @ully £ Cea) = Aq|* + |20 = q])* = |02 - g
+ 21, || ¥ — Wql|lxn — unll + 24||ttn — Y| || Bun — By
+ 20, (1= any) ||y f (xn) = Aqll ||y = 4|l
(3.37)

= ||y f (xn) = Aq|)* + l12tn = Xt I ([l — q| + || 1 = q])
+ 21, || W — Wql| 12 — unll + 24 ||1tn — yau| || Bun — Bg|

+ 2, (1 = a) lly f (x0) = Aqllllyn - qlI-

By condition (C1), lim,, _, oo ||x —Xps1]| = 0, limy, oo | ¥x,, —¥g|| = 0, and lim,, _, .|| Bu,,—Bg|| = 0.
So, we have that ||x, — u,|| — 0, ||t — yull — 0asn — oo. It follows that

|n = yu|l < llxn = wnll + ||ttn — yu|| — 0, as n— oo. (3.38)
From (3.2), we have that

%1 = Synl| < [|%n = Syn-1]l + | Syn-1 = Syl
< || Pe(an-1y f (n-1) + (I = an-14)Syn1) = Po(Syna) || + ||[yn1 — va||  (3.39)
< ana[lyfona = ASynaa || + | yn-1 = yull.

By condition (C1) and lim, —, o||yn-1 — ¥u|| = 0, we obtain that ||x, — Sy,|| — 0Oasn — oco.
Next, we observe that

26241 = Syl = || Pc(any f (xn) + (I = 2 A)Syn) = Pc(Sya) ||

< ”an}’f(xn) + (I - a,A)Sy, - Syn” (3.40)
= ||y f (x0) = ASy,||-

Since { ASy,} is bounded and by condition (C1), we have that [|x,.+1 — Sy,|| — Oasn — oo,
and

”xn - S]/n” < ”xn - xn+1|| + ||xn+1 - S]/n” (3~41)

Since limy, ., oo ||Xn — Xp41|| = 0 and limy, oo || X1 — Syxl| = 0, it implies that ||x, — Sy,|| — O as
n — oo. Hence, we have that

”xn - an“ < ”xn - S]/n” + ”Syn - an”
(3.42)
< lloen = Synll + lym = xa]]-
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By (3.38) and lim,, . ||x, — Syl = 0, we obtain ||x, — Sx,|| — 0asn — oco. Moreover, we
also have that

1= 59l < 1y =l + 10 = Sl (343)

By (3.38) and lim,,—, oo||x» — Syx|| = 0, we obtain |y, — Sy,|| — 0asn — oo.

Step 5. We show that g € Q = F(S) n GMEP(F, ¢, ¥) n I(B, M) and limsup, _,_((yf -
A)q,Syn —q) < 0. It is easy to see that Po(yf + (I — A)) is a contraction of H into itself.
Indeed, since 0 < y < y/a, we have that

[Pa(yf + (I -A)x=Pa(yf+T-A))y| < |lyf+T-Ax-yf-I-Ay|
<yllfG) = FW) + I - Allf|x - v
<yallx-yll+ A-D)llx -yl
< (-7 +ya)|lx -yl

(3.44)

Hence H is complete, and there exists a unique fixed point g € H such that g = Po(yf + (I -
A))(q). By Lemma 2.2, we obtain that ((yf - A)q,w —q) <0 forall w € Q.

Next, we show that limsup, ,_((yf - A)q, Sy, —q) <0, where g = Pa(yf +1- A)(q)
is the unique solution of the variational inequality ((yf - A)gq,p—q) 2 0, for all p € Q. We can
choose a subsequence {y,,} of {y,} such that

limsup((yf - A)q,Syn—q) = }H&«)’f —A)q,SYn, —q)- (3.45)

n— oo

As {yy,,} is bounded, there exists a subsequence {]/n,-/. } of {yx,} which converges weakly to w.
We may assume without loss of generality that y,, — w.

We claim that w € Q. Since ||y, — Sy.|| — O, [|x, — Sx,|| — 0, and ||x, — y,|| — 0 and
by Lemma 2.6, we have that w € F(S).

Next, we show that w € GMEP(F, ¢, ¥). Since u,, = K, (x, — r,¥x,,), we know that

F(un,y) +9(y) —@(un) + (Y20, y —up) + %(y — Up, U — x,) >0, YyeC. (3.46)
It follows by (A2) that
P(y) = o(un) + (¥, y — up) + %(y —Un,Un —Xn) > F(y,un), VyeC. (3.47)
Hence,

1
() = @) + (¥, y =) + =y = thny U, = X)) 2 F(y,u,), VyeC. (348)
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Forte (0,1]and y € H, let y; = ty + (1 — t)w. From (3.48), we have that

(Y — ), Pye) > (Yr =, Pyi) — 0 (yt) + () — (PX, Yt — ;)

1
= — (Yt — Un;, U, — X)) + F(yh”ni)

1y,
"* (3.49)
= (Yt — Un, Oyt — Ctty,) + (Yt — U, Ok, = ¥, — (1) + @(u,)
1
- I'_<yt — Un;, Un; — xni> + F(yt’uni)'

From ||u,, — x,,|| — 0, we have that |¥u,, - ¥x,,| — 0. Further, from (A4) and the weakly
lower semicontinuity of ¢,(u,, — x,,) /1, — 0and u,, — w, we have that

(yr =0, ¥y1) > =9 (y1) + ¢(w) + F(y, w). (3.50)
From (A1), (A4), and (3.50), we have that

0=F(yuyt) = o(ye) + ¢(y1)
<tF(yy) + (L -HF (yr,w) +to(y) + (1 - Hp(w) - o(yr)
=t[F(yey) + o) — o)) + A= H[F (s, w) + 9w) - ¢ (y1)] (3.51)
<tF(yuy) +o(v) —o(y)] + Q- )y —w, ¥y)
=t[F(y,y) +9(v) —¢(y)] + A -HKy —w, Fyr),

and hence
0<F(yey) +o(y) —o(ye) + - ) (y —w, ¥y). (3.52)
Letting t — 0, we have, for each i € C, that
F(w,y) +¢(y) - p(w) + (y - w, ¥w) > 0. (3.53)

This implies that w € GMEP(F, ¢, ¥).

Lastly, we show that w € I(B, M). In fact, since B is a f-inverse-strongly monotone, B
is monotone and Lipschitz continuous mapping. It follows from Lemma 2.3 that M + B is a
maximal monotone. Let (v, g) € G(M + B), since g — Bv € M(v). Again since ¥, = Ja1 (Un, —

ABuy,), we have that u,, — A\Bu,, € (I + AM)(yy,), thatis, (1/X) (4, — Yu, — ABuy,,) € M(yn,). By
virtue of the maximal monotonicity of M + B, we have that

<v - Yn,§ - Bv- %(uni - Yn, — )LBuni)> >0, (3.54)
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and hence

<U _yni’g> 2 <U _yni/Bv + Jl_\(uni ~—Yn _'/\'Buni)>
= (0 = Yn,, Bv = Byn,) + (0 = Yn,, By, — Bun, ) (3.55)

1
+ <U ~ Ynir X(”ni - y"i)>'
It follows from limy, —, ||ty — Yu|| = 0, lim,, . || Bu,, — By,|| = 0, and y,, — w that

lim sup(v - y,, g) = (v-w, g) > 0. (3.56)

n—oo

It follows from the maximal monotonicity of B+ M that 6 € (M + B)(w), thatis, w € I(B, M).
Therefore, w € Q. It follows that

limsup((yf = A)q,Syn = q) = im ((yf = A)q, Sy —q) = ((yf = A)qw-q) <0. (357)

n—oo

Step 6. We prove that x,, — g. By using (3.2) and together with Schwarz inequality, we have
that

ens1 = all” = [|Pe @y f (en) + (I = 20 A)Syn) = Pe(@)|”

< [lan(rf (xn) = Ag) + (I = a2 ) (Sya = q) |

< (L= aw || (Syn = @) |I* + aally f () -~ Aq]]®
+ 20, (I - anA) (Syn = q), Y f (xn) = Aq)

< (1-ad)’lyn = qll* + @l f (o) - Aq|”
+ 20, (Syn = q,Y f (xn) = Aq) = 20,(A(Syn = q), Y f (xn) = Aq)

< (1= a,7)?||2n = q||” + 2|y f (xn) = Aq||* + 204 (Syu — 4,7 f (xa) = Yf(q))
+20,(Syn — q,Yf (q) — Aq) = 205, ( A(Syn — q), Y f (xn) = Aq)

< (1= @)’ lxn = qll* + @b llyf Gen) = Aql|* + 20| Sy = all Iy f (x) = £ (@)
+20,(Syn — 4,Yf(9) — Aq) — 20, (A(Syn — q), v f (xn) = Aq)

< (1= an¥)’[l2n = qll” + a2 |ly £ Cea) = Aq||” + 2yaaa|ys - ql| || xx - 4
+2a(Syn = q,Yf (q) - Aq) = 20,(A(Syn — q), Y f (xa) = Aq)

< (1= any)?[lxn = qlf* + @Iy (xa) = Aq||* + 2yaa, || x, - q||*

+2a,(Syn = 4,7 (9) = Aq) = 20,(A(Syn = q), Y f (xn) — Aq)
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< (- @)’ + 2yaay) %, - g’
+an{ anllyf Cen) — Aq|l* + 2(Syn ~ 0,7/ (a) - Ag)
~2a, || A(Syn = @) | Iy f () - Aqll}
= (1-2(7 -~ ya)a)||xn - ]’
+an{ anllyf Cen) = Aq|l* + 2(Syn ~ 4,7 (a) - Ag)

~2a, || A(Syn = @) | Iy () = Aqll + ¥ ||, — ]|}

(3.58)

Since {x,} is bounded, where 1 > |lyf(xx) = Aqll* = 2|lA(Syn — )llllyf (xn) — Aqll +
72|12, — gl|* for all n > 0, it follows that

st =l < (1 =27 = y@)ao) [ = qll* + tusi, 359)

where ¢, = 2(Sy — q,Yf(q) - Aq) + nay. By limsup, _ ((yf - A)q,Syn — q) < 0, we get
limsup, , ¢» < 0. Applying Lemma 2.5, we can conclude that x, — g. This completes the
proof. O

Corollary 3.2. Let H be a real Hilbert space and C a closed convex subset of H. Let B,¥ : C — H
be B, o-inverse-strongly monotone mappings and ¢ : C — R a convex and lower semicontinuous
function. Let f : C — C be a contraction with coefficient a (0 < a < 1), M : H — 2H a maximal
monotone mapping, and S a nonexpansive mapping of C into itself such that

Q := F(S) N GMEP(F, ¢, %) N I(B, M) #0. (3.60)

Suppose that {x,} is a sequence generated by the following algorithm for xo, u, € C arbitrarily:

F(un,y) + o) = @un) + (¥xp, y — 1) + l(]/ —Un,Un —Xn) 20, Vy€eC,
Tn (3.61)

X1 = Pe[anf (xn) + (1 = ) SJa (un — ABuy,)]

foralln=0,1,2,..., by (C1)~(C3) in Theorem 3.1.
Then {x,} converges strongly to q € Q, where g = Po(f + I)(q) which solves the following
variational inequality:

(f-Dqp-q)<0, YpeQ. (3.62)

Proof. Putting A = I and y =1 in Theorem 3.1, we can obtain the desired conclusion immedi-
ately. O
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Corollary 3.3. Let H be a real Hilbert space and C a closed convex subset of H. Let B, ¥ : C — H be
B, o-inverse-strongly monotone mappings, ¢ : C — R a convex and lower semicontinuous function,
and M : H — 2H a maximal monotone mapping. Let S be a nonexpansive mapping of C into itself
such that

Q := F(S) nGMEP(F,,%) N I(B, M) #0. (3.63)

Suppose that {x,} is a sequence generated by the following algorithm for xo,u € C and u,, € C:

F(un,y) +9(y) — () + (Pxp, y — un) + l(y — Uy, Uy —Xy) >0, VyeC,
Tn (3.64)

Xni1 = Pc [“nu + (1 - an)S]M,)L(un - )LBun)]

foralln=0,1,2,..., by (C1)~(C3) in Theorem 3.1.
Then {x,} converges strongly to q € Q, where q = Pgq(q) which solves the following
variational inequality:

(u-q,p-q)<0, VpeQ. (3.65)

Proof. Putting f(x) = u, for all x € C, in Corollary 3.2, we can obtain the desired conclusion
immediately. O

Corollary 3.4. Let H be a real Hilbert space, C a closed convex subset of H, B : C — H be p-
inverse-strongly monotone mappings, and A a strongly positive linear bounded operator of H into
itself with coefficient y > 0. Assume that 0 < y < y/a. Let f : C — C be a contraction with
coefficient a(0 < a < 1) and S a nonexpansive mapping of C into itself such that

Q:= F(S)nVI(C,B) #0. (3.66)
Suppose that {x,} is a sequence generated by the following algorithm for xo € C arbitrarily:
X1 = Pe[any f(xn) + (I — anA)SPc(x, — ABxy)] (3.67)

foralln=0,1,2,..., by (C1)~(C3) in Theorem 3.1.
Then {x,} converges strongly to q € Q, where q = Po(yf + I — A)(q) which solves the
following variational inequality:

((rf-A)gp-q)<0, YpeQ. (3.68)

Proof. Taking F =0, ¥ =0, ¢ =0, u, = x,, and Jpy = Pc in Theorem 3.1, we can obtain the
desired conclusion immediately. O

Remark 3.5. In Corollary 3.4 we generalize and improve the result of Klin-eam and Suantai
[24].
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4. Applications

In this section, we apply the iterative scheme (1.25) for finding a common fixed point of
nonexpansive mapping and strictly pseudocontractive mapping and also apply Theorem 3.1
for finding a common fixed point of nonexpansive mappings and inverse-strongly monotone
mappings.

Definition 4.1. A mapping T : C — C is called strictly pseudocontraction if there exists a
constant 0 < x < 1 such that

ITx-Ty|* < ||x-y|* + x| T -T)x - I -T)y|]*>, Vx,yeC. (4.1)

If « = 0, then S is nonexpansive. In this case, we say that T : C — C is a «-strictly
pseudocontraction. Putting B = I — T. Then, we have that

(T-B)x-(I-B)y|’ < ||x-yl|*+x«|[Bx-By|?>, vx,yeC. (4.2)

Observe that
|- B)x - (I-B)y|* = ||x-y|* + ||Bx - By||> -2(x -y, Bx - By), Vx,yeC. (43)
Hence, we obtain

(x-y,Bx-By) > 1_TK |Bx - By||>, Vx,yeC. (4.4)

Then, B is ((1 — k) /2)-inverse-strongly monotone mapping.

Using Theorem 3.1, we first prove a strong convergence theorem for finding a common
fixed point of a nonexpansive mapping and a strict pseudocontraction.

Theorem 4.2. Let H be a real Hilbert space, C a closed convex subset of H, B, ¥ : C — H be p,
o-inverse-strongly monotone mappings, ¢ : C — R a convex and lower semicontinuous function,
f : C — C a contraction with coefficient a (0 < a < 1), and A a strongly positive linear bounded
operator of H into itself with coefficient y > 0. Assume that 0 < y < y/a. Let S be a nonexpansive
mapping of C into itself, and let T be a k-strictly pseudocontraction of C into itself such that

Q := F(S) N F(T) N GMEP(F, ¢, %) #0. (4.5)

Suppose that {x,} is a sequence generated by the following algorithm for xo, u, € C arbitrarily:

F(un,y) +9(y) — () + (¥xp, y — un) + %(y— U, U —Xn) 20, VyeC,
. (4.6)

Xns1 = Pelany f(xn) + (I — an A)S((1 = My + ATuy)]

foralln=0,1,2,..., by (C1)~(C3) in Theorem 3.1.
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Then {x,} converges strongly to q € Q, where q = Pq(y f+1-A)(q) which solves the following
variational inequality:

((rf-A)gp-q)<0, VpeQ (4.7)

which is the optimality condition for the minimization problem
m'nl(A ) —h(q) 4.8
qGIQ 2 79 1 ( ’ )

where h is a potential function for yf (i.e., h'(q) = yf(q) for g € H).

Proof. Put B = I — T, then B is ((1 — x)/2)-inverse-strongly monotone, F(T) = I(B, M), and
Jma(xy — ABx,) = (1 = A)x,, + ATx,. So by Theorem 3.1, we obtain the desired result. O

Corollary 4.3. Let H be a real Hilbert space, C a closed convex subset of H, B, ¥ : C — H be p, o-
inverse-strongly monotone mappings, and ¢ : C — R a convex and lower semicontinuous function.
Let f : C — C be a contraction with coefficient a (0 < a < 1) and S a nonexpansive mapping of C
into itself, and let T be a k-strictly pseudocontraction of C into itself such that

Q = F(S) N F(T) N GMEP(F, ¢, %) #0. (4.9)

Suppose that {x,} is a sequence generated by the following algorithm for xo € C arbitrarily:

F(un,y) +9(y) — o(un) + (¥xn, y — uy) + l(]/ —Un,Un—Xn) 20, VyeC,
n (4.10)

Xns1 = Pefanf(xn) + (I = az)S((1 = M)ty + ATuy)]

foralln=0,1,2,..., by (C1)~(C3) in Theorem 3.1.
Then {x,} converges strongly to q € Q, where g = Po(f + I)(q) which solves the following
variational inequality:

((f-Dgp-q) <0, ¥peQ (4.11)

which is the optimality COHditiOTlfOl’ the minimization problem
llll]ll<Aq 6]>-h(q> 4.12
qEQ 2 ! ! ( ’ )

where h is a potential function for yf (i.e., h'(q) = yf(q) for g € H).

Proof. Putting A = I and y =1 in Theorem 4.2, we obtain the desired result. O
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