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Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality
mapping from E to E∗. Let S = {T(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on E such
that Fix(S) :=

⋂
t≥0Fix(T(t))/= ∅, and f is a contraction on E with coefficient 0 < α < 1. Let

F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1 and γ a positive
real number such that γ < 1/α(1 −

√
1 − δ/λ). When the sequences of real numbers {αn} and

{tn} satisfy some appropriate conditions, the three iterative processes given as follows: xn+1 =
αnγf(xn) + (I − αnF)T(tn)xn, n ≥ 0, yn+1 = αnγf(T(tn)yn) + (I − αnF)T(tn)yn, n ≥ 0, and
zn+1 = T(tn)(αnγf(zn) + (I − αnF)zn), n ≥ 0 converge strongly to x̃, where x̃ is the unique solution
in Fix(S) of the variational inequality 〈(F − γf)x̃, j(x − x̃)〉 ≥ 0, x ∈ Fix(S). Our results extend and
improve corresponding ones of Li et al. (2009) Chen and He (2007), and many others.

1. Introduction

Let E be a real Banach space. A mapping T of E into itself is said to be nonexpansive if ‖Tx −
Ty‖ ≤ ‖x − y‖ for each x, y ∈ E. We denote by Fix(T) the set of fixed points of T . A mapping
f : E → E is called α-contraction if there exists a constant 0 < α < 1 such that ‖f(x) − f(y)‖ ≤
α‖x − y‖ for all x, y ∈ E. A family S = {T(t) : 0 ≤ t < ∞} of mappings of E into itself is called
a nonexpansive semigroup on E if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ E;

(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0;
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(iii) ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ E and t ≥ 0;

(iv) for all x ∈ E, the mapping t �→ T(t)x is continuous.

We denote by Fix(S) the set of all common fixed points of S, that is,

Fix(S) := {x ∈ E : T(t)x = x, 0 ≤ t < ∞} =
⋂

t≥0
Fix(T(t)). (1.1)

In [1], Shioji and Takahashi introduced the following implicit iteration in a Hilbert
space

xn = αnx + (1 − αn)
1
tn

∫ tn

0
T(s)xnds, ∀n ∈ �, (1.2)

where {αn} is a sequence in (0, 1) and {tn} is a sequence of positive real numbers which
diverges to ∞. Under certain restrictions on the sequence {αn}, Shioji and Takahashi [1]
proved strong convergence of the sequence {xn} to a member of F(S). In [2], Shimizu and
Takahashi studied the strong convergence of the sequence {xn} defined by

xn+1 = αnx + (1 − αn)
1
tn

∫ tn

0
T(s)xnds, ∀n ∈ � (1.3)

in a real Hilbert space where {T(t) : t ≥ 0} is a strongly continuous semigroup of nonex-
pansive mappings on a closed convex subset C of a Banach space E and limn→∞ tn = ∞.
Using viscosity method, Chen and Song [3] studied the strong convergence of the following
iterative method for a nonexpansive semigroup {T(t) : t ≥ 0} with Fix(S)/= ∅ in a Banach
space:

xn+1 = αnf(x) + (1 − αn)
1
tn

∫ tn

0
T(s)xnds, ∀n ∈ �, (1.4)

where f is a contraction. Note however that their iterate xn at step n is constructed through
the average of the semigroup over the interval (0, t). Suzuki [4] was the first to introduce
again in a Hilbert space the following implicit iteration process:

xn = αnu + (1 − αn)T(tn)xn, ∀n ∈ �, (1.5)

for the nonexpansive semigroup case. In 2002, Benavides et al. [5], in a uniformly smooth
Banach space, showed that if S satisfies an asymptotic regularity condition and {αn} fulfills
the control conditions limn→∞αn = 0,

∑∞
n=1 αn = ∞, and limn→∞αn/αn+1 = 0, then both the

implicit iteration process (1.5) and the explicit iteration process (1.6),

xn+1 = αnu + (1 − αn)T(tn)xn, ∀n ∈ �, (1.6)

converge to a same point of F(S). In 2005, Xu [6] studied the strong convergence of the
implicit iteration process (1.2) and (1.5) in a uniformly convex Banach space which admits a
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weakly sequentially continuous duality mapping. Recently, Chen and He [7] introduced the
viscosity approximation process:

xn+1 = αnf(xn) +
(
1 − βn

)
T(tn)xn, ∀n ∈ �, (1.7)

where f is a contraction and {αn} is a sequence in (0, 1) and a nonexpansive semigroup {T(t) :
t ≥ 0}. The strong convergence theorem of {xn} is proved in a reflexive Banach space which
admits a weakly sequentially continuous duality mapping. In [8], Chen et al. introduced and
studied modified Mann iteration for nonexpansive mapping in a uniformly convex Banach
space.

On the other hand, iterative approximation methods for nonexpansive mappings have
recently been applied to solve convex minimization problems; see, for example, [9–11] and
the references therein. Let H be a real Hilbert space, whose inner product and norm are
denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let A be a strongly positive bounded linear operator
on H ; that is, there is a constant γ > 0 with property

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.8)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert spaceH :

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.9)

where C is the fixed point set of a nonexpansive mapping T onH and b is a given point inH .
In 2003, Xu [10] proved that the sequence {xn} defined by the iterative method below, with
the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)Txn + αnu, n ≥ 0, (1.10)

converges strongly to the unique solution of the minimization problem (1.9) provided
the sequence {αn} satisfies certain conditions. Using the viscosity approximation method,
Moudafi [12] introduced the following iterative process for nonexpansive mappings (see [13]
for further developments in both Hilbert and Banach spaces). Let f be a contraction on H .
Starting with an arbitrary initial x0 ∈ H , define a sequence {xn} recursively by

xn+1 = (1 − αn)Txn + αnf(xn), n ≥ 0, (1.11)

where {αn} is a sequence in (0, 1). It is proved [12, 13] that, under certain appropriate con-
ditions imposed on {αn}, the sequence {xn} generated by (1.11) strongly converges to the
unique solution x∗ in C of the variational inequality

〈(
I − f

)
x∗, x − x∗〉 ≥ 0, x ∈ H. (1.12)
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Recently, Marino and Xu [14]mixed the iterative method (1.10) and the viscosity approxima-
tion method (1.11) and considered the following general iterative method:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0, (1.13)

where A is a strongly positive bounded linear operator on H . They proved that if the
sequence {αn} of parameters satisfies the certain conditions, then the sequence {xn} generated
by (1.13) converges strongly to the unique solution x∗ inH of the variational inequality

〈(
A − γf

)
x∗, x − x∗〉 ≥ 0, x ∈ H (1.14)

which is the optimality condition for the minimization problem, minx∈C(1/2)〈Ax, x〉 − h(x),
where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Very recently, Li et al. [15] introduced the following iterative procedures for the
approximation of common fixed points of a one-parameter nonexpansive semigroup on a
Hilbert spaceH :

x0 = x ∈ H, xn+1 = (I − αnA)
1
tn

∫ tn

0
T(s)xnds + αnγf(xn), n ≥ 0, (1.15)

where A is a strongly positive bounded linear operator onH .
Let δ and λ be two positive real numbers such that δ, λ < 1. Recall that a mapping F

with domain D(F) and range R(F) in E is called δ-strongly accretive if, for each x, y ∈ D(F),
there exists j(x − y) ∈ J(x − y) such that

〈
Fx − Fy, j

(
x − y

)〉 ≥ δ
∥
∥x − y

∥
∥2
, (1.16)

where J is the normalized duality mapping from E into the dual space E∗. Recall also that a
mapping F is called λ-strictly pseudocontractive if, for each x, y ∈ D(F), there exists j(x − y) ∈
J(x − y) such that

〈
Fx − Fy, j

(
x − y

)〉 ≤ ∥
∥x − y

∥
∥2 − λ

∥
∥
(
x − y

) − (
Fx − Fy

)∥
∥2
. (1.17)

It is easy to see that (1.17) can be rewritten as

〈
(I − F)x − (I − F)y, j

(
x − y

)〉 ≥ λ
∥
∥(I − F)x − (I − F)y

∥
∥2
, (1.18)

see [16].
In this paper, motivated by the above results, we introduce and study the strong con-

vergence theorems of the general iterative scheme {xn} defined by (1.19) in the framework of
a reflexive Banach space E which admits a weakly sequentially continuous duality mapping:

x0 = x ∈ E, xn+1 = αnγf(xn) + (I − αnF)T(tn)xn, n ≥ 0, (1.19)
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where F is δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f is a con-
traction on E with coefficient 0 < α < 1, γ is a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ), and S = {T(t) : 0 ≤ t < ∞} is a nonexpansive semigroup on E. The strong

convergence theorems are proved under some appropriate control conditions on parameters
{αn} and {tn}. Furthermore, by using these results, we obtain strong convergence theorems
of the following new general iterative schemes {yn} and {zn} defined by

y0 = y ∈ E, yn+1 = αnγf
(
T(tn)yn

)
+ (I − αnF)T(tn)yn, n ≥ 0, (1.20)

z0 = z ∈ E, zn+1 = T(tn)
(
αnγf(zn) + (I − αnF)zn

)
, n ≥ 0. (1.21)

The results presented in this paper extend and improve the main results in Li et al. [15], Chen
and He [7], and many others.

2. Preliminaries

Throughout this paper, it is assumed that E is a real Banach space with norm ‖ · ‖ and let J
denote the normalized duality mapping from E into E∗ given by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥

∥f
∥
∥2

}
(2.1)

for each x ∈ E, where E∗ denotes the dual space of E, 〈·, ·〉 denotes the generalized duality
pairing, and � denotes the set of all positive integers. In the sequel, we will denote the
single-valued duality mapping by j, and consider F(T) = {x ∈ C : Tx = x}. When {xn}
is a sequence in E, then xn → x (resp., xn ⇀ x, xn

∗
⇀ x ) will denote strong (resp.,

weak, weak∗) convergence of the sequence {xn} to x. In a Banach space E, the following
result (the subdifferential inequality) is well known [17, Theorem 4.2.1]: for all x, y ∈ E, for all
j(x + y) ∈ J(x + y), for all j(x) ∈ J(x),

‖x‖2 + 2
〈
y, j(x)

〉 ≤ ∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 〈

y, j
(
x + y

)〉
. (2.2)

A real Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x/=y. It is said to be uniformly convex if, for all ε ∈ [0, 2], there exits δε > 0
such that

‖x‖ =
∥
∥y

∥
∥ = 1 with

∥
∥x − y

∥
∥ ≥ ε implies

∥
∥x + y

∥
∥

2
< 1 − δε. (2.3)

The following results are well known and can be founded in [17]:

(i) a uniformly convex Banach space E is reflexive and strictly convex [17, Theorems
4.2.1 and 4.1.6],

(ii) if E is a strictly convex Banach space and T : E → E is a nonexpansive mapping,
then fixed point set F(T) of T is a closed convex subset of E [17, Theorem 4.5.3].
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If a Banach space E admits a sequentially continuous duality mapping J from weak
topology to weak star topology, then from Lemma 1 of [18], it follows that the duality
mapping J is single-valued and also E is smooth. In this case, duality mapping J is also said
to be weakly sequentially continuous, that is, for each {xn} ⊂ E with xn ⇀ x, then J(xn)

∗
⇀ J(x)

(see [18, 19]).
In the sequel, we will denote the single-valued duality mapping by j. A Banach space

E is said to satisfy Opial’s condition if, for any sequence {xn} in E, xn ⇀ x as n → ∞ implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥ ∀y ∈ E with x/=y. (2.4)

By Theorem 1 of [18], we know that if E admits a weakly sequentially continuous duality
mapping, then E satisfies Opial’s condition and E is smooth; for the details, see [18].

Now, we present the concept of uniformly asymptotically regular semigroup (also see
[20, 21]). Let C be a nonempty closed convex subset of a Banach space E, S = {T(t) : 0 ≤
t < ∞} a continuous operator semigroup on C. Then, S is said to be uniformly asymptotically
regular (in short, u.a.r.) on C if, for all h ≥ 0 and any bounded subset D of C,

lim
t→∞

sup
x∈D

‖T(h)(T(t)x) − T(t)x‖ = 0. (2.5)

The nonexpansive semigroup {σt : t > 0} defined by the following lemma is an example of
u.a.r. operator semigroup. Other examples of u.a.r. operator semigroup can be found in [20,
Examples 17 and 18].

Lemma 2.1 (see [3, Lemma 2.7]). Let C be a nonempty closed convex subset of a uniformly convex
Banach space E,D a bounded closed convex subset of C, and S = {T(s) : 0 ≤ s < ∞} a nonexpansive
semigroup on C such that F(S)/= ∅. For each h > 0, set σt(x) = (1/t)

∫ t
0 T(s)xds, then

lim
t→∞

sup
x∈D

‖σt(x) − T(h)σt(x)‖ = 0. (2.6)

Example 2.2. The set {σt : t > 0} defined by Lemma 2.1 is u.a.r. nonexpansive semigroup. In
fact, it is obvious that {σt : t > 0} is a nonexpansive semigroup. For each h > 0, we have

‖σt(x) − σhσt(x)‖ =

∥
∥
∥
∥
∥
σt(x) − 1

h

∫h

0
T(s)σt(x)ds

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

1
h

∫h

0
(σt(x) − T(s)σt(x))ds

∥
∥
∥
∥
∥

≤ 1
h

∫h

0
‖σt(x) − T(s)σt(x)‖ds.

(2.7)
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Applying Lemma 2.1, we have

lim
t→∞

sup
x∈D

‖σt(x) − σhσt(x)‖ ≤ 1
h

∫h

0
lim
t→∞

sup
x∈D

‖σt(x) − T(s)σt(x)‖ds = 0. (2.8)

Let C be a nonempty closed and convex subset of a Banach space E andD a nonempty
subset of C. A mapping Q : C → D is said to be sunny if

Q(Qx + t(x −Qx)) = Qx, (2.9)

wheneverQx+ t(x−Qx) ∈ C for x ∈ C and t = 0. A mappingQ : C → D is called a retraction
if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from C onto D
if Q is a retraction from C onto D which is also sunny and nonexpansive. A subset D of C is
called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive retraction
from C onto D. The following lemma concerns the sunny nonexpansive retraction.

Lemma 2.3 (see [22, 23]). Let C be a closed convex subset of a smooth Banach space E. Let D be a
nonempty subset of C and Q : C → D be a retraction. Then, Q is sunny and nonexpansive if and
only if

〈
u −Qu, j

(
y −Qu

)〉 ≤ 0 (2.10)

for all u ∈ C and y ∈ D.

Lemma 2.4 (see [24, Lemma 2.3]). Let {an} be a sequence of nonnegative real numbers satisfying
the property

an+1 ≤ (1 − tn)an + tncn + bn, ∀n ≥ 0, (2.11)

where {tn}, {bn}, and {cn} satisfy the restrictions
(i)

∑∞
n=1 tn = ∞;

(ii)
∑∞

n=1 bn < ∞;

(iii) lim supn→∞cn ≤ 0.

Then, limn→∞an = 0.

The following lemma will be frequently used throughout the paper and can be found
in [25].

Lemma 2.5 (see [25, Lemma 2.7]). Let E be a real smooth Banach space and F : E → E a mapping.

(i) If F is δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, then I − F is
contractive with constant

√
(1 − δ)/λ.

(i) If F is δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, then, for any
fixed number τ ∈ (0, 1), I − τF is contractive with constant 1 − τ(1 −

√
(1 − δ)/λ).
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3. Main Results

Now, we are in a position to state and prove our main results.

Theorem 3.1. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 ≤ t < ∞} be a u.a.r. nonexpansive semigroup on E such
that Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞) satisfy the conditions

lim
n→∞

αn = 0,
∞∑

n=0
αn = ∞, lim

n→∞
tn = ∞. (3.1)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {xn} defined by (1.19) converges strongly to x̃, where x̃ is the

unique solution in Fix(S) of the variational inequality

〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.2)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Proof. Note that Fix(S) is a nonempty closed convex set. We first show that {xn} is bounded.
Let q ∈ Fix(S). Thus, by Lemma 2.5, we have

∥
∥xn+1 − q

∥
∥ =

∥
∥αnγf(xn) + (I − αnF)T(tn)xn − (I − αnF)q − αnFq

∥
∥

≤ αn

∥
∥γf(xn) − Fq

∥
∥ + ‖I − αnF‖

∥
∥T(tn)xn − q

∥
∥

≤ αnγ
∥
∥f(xn) − f

(
q
)∥
∥ + αn

∥
∥γf

(
q
) − Fq

∥
∥ + ‖I − αnF‖

∥
∥xn − q

∥
∥

≤ αnαγ
∥
∥xn − q

∥
∥ + αn

∥
∥γf

(
q
) − Fq

∥
∥

+

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − q

∥
∥

=

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ
− αγ

⎞

⎠

⎞

⎠
∥
∥xn − q

∥
∥

+ αn

⎛

⎝1 −
√

1 − δ

λ
− αγ

⎞

⎠

∥
∥γf

(
q
) − Fq

∥
∥

1 −√
(1 − δ)/λ − αγ

≤ max

{
∥
∥xn − q

∥
∥,

1

1 −
√
(1 − δ)/λ − αγ

∥
∥γf

(
q
) − Fq

∥
∥

}

, ∀n ≥ 0.

(3.3)
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By induction, we get

∥
∥xn − q

∥
∥ ≤ max

{
∥
∥x0 − q

∥
∥,

1

1 − √
(1 − δ)/λ − αγ

∥
∥γf

(
q
) − Fq

∥
∥

}

, n ≥ 0. (3.4)

This implies that {xn} is bounded and, hence, so are {f(xn)} and {FT(tn)xn}. This implies
that

lim
n→∞

‖xn+1 − T(tn)xn‖ = lim
n→∞

αn

∥
∥γf(xn) − FT(tn)xn

∥
∥ = 0. (3.5)

Since {T(t)} is a u.a.r. nonexpansive semigroup and limn→∞ tn = ∞, we have, for all h > 0,

lim
n→∞

‖T(h)(T(tn)xn) − T(tn)xn‖ ≤ lim
n→∞

sup
x∈{xn}

‖T(h)(T(tn)x) − T(tn)x‖ = 0. (3.6)

Hence, for all h > 0,

‖xn+1 − T(h)xn+1‖ ≤ ‖xn+1 − T(tn)xn‖ + ‖T(tn)xn − T(h)T(tn)xn‖ + ‖T(h)T(tn)xn − T(h)xn+1‖
≤ 2‖xn+1 − T(tn)xn‖ + ‖T(tn)xn − T(h)T(tn)xn‖ −→ 0.

(3.7)

That is, for all h > 0,

lim
n→∞

‖xn − T(h)xn‖ = 0. (3.8)

LetΦ = QFix(S). Then, Φ(I −F − γf) is a contraction on E. In fact, from Lemma 2.5(i), we have

∥
∥Φ

(
I − F − γf

)
x −Φ

(
I − F − γf

)
y
∥
∥ ≤ ∥

∥
(
I − F − γf

)
x − (

I − F − γf
)
y
∥
∥

≤ ∥
∥(I − F)x − (I − F)y

∥
∥ + γ

∥
∥f(x) − f

(
y
)∥
∥

≤
√

1 − δ

λ

∥
∥x − y

∥
∥ + αγ

∥
∥x − y

∥
∥

=

⎛

⎝

√
1 − δ

λ
+ αγ

⎞

⎠
∥
∥x − y

∥
∥, ∀x, y ∈ E.

(3.9)

Therefore,Φ(I−F−γf) is a contraction on E due to (
√
(1 − δ)/λ+αγ) ∈ (0, 1). Thus, by Banach

contraction principle, QFix(S)(I − F − γf) has a unique fixed point x̃. Then, using Lemma 2.3,
x̃ is the unique solution in Fix(S) of the variational inequality (3.2). Next, we show that

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉 ≤ 0. (3.10)
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Indeed, we can take a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉
= lim

k→∞
〈
γf(x̃) − Fx̃, j(xnk − x̃)

〉
. (3.11)

Wemay assume that xnk ⇀ p ∈ E as k → ∞, since a Banach spaceE has aweakly sequentially
continuous duality mapping J satisfying Opial’s condition [13]. We will prove that p ∈
Fix(S). Suppose the contrary, p /∈ Fix(S), that is, T(h0)p /= p for some h0 > 0. It follows from
(3.8) and Opial’s condition that

lim inf
k→∞

∥
∥xnk − p

∥
∥ < lim inf

k→∞

∥
∥xnk − T(h0)p

∥
∥

≤ lim inf
k→∞

{‖xnk − T(h0)xnk‖ +
∥
∥T(h0)xnk − T(h0)p

∥
∥
}

≤ lim inf
k→∞

{‖xnk − T(h0)xnk‖ +
∥
∥xnk − p

∥
∥
}

= lim inf
k→∞

∥
∥xnk − p

∥
∥.

(3.12)

This is a contradiction, which shows that p ∈ F(T(h)) for all h > 0, that is, p ∈ Fix(S). In
view of the variational inequality (3.2) and the assumption that duality mapping J is weakly
sequentially continuous, we conclude

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉
= lim

k→∞
〈
γf(x̃) − Fx̃, j(xnk − x̃)

〉

≤ 〈
γf(x̃) − Fx̃, j

(
p − x̃

)〉 ≤ 0.
(3.13)

Finally, we will show that xn → x̃. For each n ≥ 0, we have

‖xn+1 − x̃‖2 = ∥
∥αnγf(xn) + (I − αnF)T(tn)xn − (I − αnF)x̃ − αnFx̃

∥
∥2

≤ ∥
∥αnγf(xn) − αnFx̃ + (I − αnF)T(tn)xn − (I − αnF)x̃

∥
∥2

= ‖(I − αnF)T(tn)xn − (I − αnF)x̃‖2 + 2αn

〈
γf(xn) − Fx̃, j(xn+1 − x̃)

〉

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x̃‖2 + 2αn

〈
γf(xn) − γf(x̃), j(xn+1 − x̃)

〉

+ 2αn

〈
γf(x̃) − Fx̃, j(xn+1 − x̃)

〉
.

(3.14)
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On the other hand,

〈
γf(xn) − γf(x̃), j(xn+1 − x̃)

〉

≤ γα‖xn − x̃‖‖xn+1 − x̃‖

≤ γα‖xn − x̃‖

⎡

⎢
⎢
⎣

√
√
√
√
√

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x̃‖2 + 2αn

∣
∣
〈
γf(xn) − Fx̃, j(xn+1 − x̃)

〉∣
∣

⎤

⎥
⎥
⎦

≤ γα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x̃‖2

+ γα‖xn − x̃‖
√
2
∣
∣
〈
γf(xn) − Fx̃, j(xn+1 − x̃)

〉∣
∣√αn

≤ γα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x̃‖2 +√
αnM0,

(3.15)

where M0 is a constant satisfying M0 ≥ γα‖xn − x̃‖
√
2|〈γf(xn) − Fx̃, j(xn+1 − x̃)〉|. Substitut-

ing (3.15) in (3.14), we obtain

‖xn+1 − x̃‖2 ≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

2

‖xn − x̃‖2 + 2αnγα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠

× ‖xn − x̃‖2 + 2αn
√
αnM0 + 2αn

〈
γf(x̃) − Fx̃, j(xn+1 − x̃)

〉

=

⎛

⎜
⎝1 − 2αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠ + α2
n

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

2
⎞

⎟
⎠‖xn − x̃‖2

+ 2αnγα

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠‖xn − x̃‖2

+ 2αn
√
αnM0 + 2αn

〈
γf(x̃) − Fx̃, j(xn+1 − x̃)

〉

=

⎛

⎝1 − 2αn

⎡

⎣

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠ − αγ + αnγα

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦

⎞

⎠‖xn − x̃‖2

+ αn

⎡

⎢
⎣αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

2

‖xn − x̃‖2 + 2M0
√
αn + 2

〈
γf(x̃) − Fx̃, j(xn+1 − x̃)

〉

⎤

⎥
⎦

=
(
1 − αnγn

)‖xn − x̃‖2 + αnγn
βn

γn
,

(3.16)
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where

γn = 2

⎡

⎣

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠ − αγ + αnγα

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎤

⎦,

βn =

⎡

⎢
⎣αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

2

‖xn − x̃‖2 + 2M0
√
αn + 2

〈
γf(x̃) − Fx̃, j(xn+1 − x̃)

〉

⎤

⎥
⎦.

(3.17)

It is easily seen that
∑∞

n=1 αnγn = ∞. Since {xn} is bounded and limn→∞ αn = 0, by (3.46), we
obtain lim supn→∞ βn/γn ≤ 0, applying Lemma 2.4 to (3.16) to conclude xn → x̃ as n → ∞.
This completes the proof.

Using Theorem 3.1, we obtain the following two strong convergence theorems of new
iterative approximation methods for a nonexpansive semigroup {T(t) : 0 ≤ t < ∞}.

Corollary 3.2. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 ≤ t < ∞} be a u.a.r. nonexpansive semigroup on E such that
Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞) satisfy the conditions

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞, lim
n→∞

tn = ∞. (3.18)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {yn} defined by (1.20) converges strongly to x̃, where x̃ is the

unique solution in Fix(S) of the variational inequality
〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.19)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Proof. Let {xn} be the sequence given by x0 = y0 and

xn+1 = αnγf(xn) + (I − αnF)T(tn)xn, ∀n ≥ 0. (3.20)

Form Theorem 3.1, xn → x̃. We claim that yn → x̃. Indeed, we estimate

∥
∥xn+1 − yn+1

∥
∥

≤ αnγ
∥
∥f

(
T(tn)yn

) − f(xn)
∥
∥ + ‖I − αnF‖

∥
∥T(tn)xn − T(tn)yn

∥
∥

≤ αnγα
∥
∥T(tn)yn − xn

∥
∥ +

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − yn

∥
∥
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≤ αnγα
∥
∥T(tn)yn − T(tn)x̃

∥
∥ + αnγα‖T(tn)x̃ − xn‖ +

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − yn

∥
∥

≤ αnγα
∥
∥yn − x̃

∥
∥ + αnγα‖x̃ − xn‖ +

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − yn

∥
∥

≤ αnγα
∥
∥yn − xn

∥
∥ + αnγα‖xn − x̃‖ + αnγα‖x̃ − xn‖ +

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥xn − yn

∥
∥

=

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠

⎞

⎠
∥
∥xn − yn

∥
∥

+ αn

⎛

⎝1 −
√

1 − δ

λ
− γα

⎞

⎠
2αγ

(
1 − √

(1 − δ)/λ − γα
)‖x̃ − xn‖.

(3.21)

It follows from
∑∞

n=1 αn = ∞, limn→∞‖xn − x̃‖ = 0, and Lemma 2.4 that ‖xn − yn‖ → 0.
Consequently, yn → x̃ as required.

Corollary 3.3. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 ≤ t < ∞} be a u.a.r. nonexpansive semigroup on E such that
Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞) satisfy the conditions

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞, lim
n→∞

tn = ∞. (3.22)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E acon-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {zn} defined by (1.21) converges strongly to x̃, where x̃ is the unique

solution in Fix(S) of the variational inequality

〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.23)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Proof. Define the sequences {yn} and {βn} by

yn = αnγf(zn) + (I − αnF)zn, βn = αn+1 ∀n ∈ �. (3.24)
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Taking p ∈ Fix(S), we have

∥
∥zn+1 − p

∥
∥ =

∥
∥T(tn)yn − T(tn)p

∥
∥ ≤ ∥

∥yn − p
∥
∥

=
∥
∥αnγf(zn) + (I − αnF)zn − (I − αnF)p − αnFp

∥
∥

≤
⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥zn − p

∥
∥ + αn

∥
∥γf(zn) − F

(
p
)∥
∥

=

⎛

⎝1 − αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

⎞

⎠
∥
∥zn − p

∥
∥ + αn

⎛

⎝1 −
√

1 − δ

λ

⎞

⎠

∥
∥γf(zn) − F

(
p
)∥
∥

(
1 −√

(1 − δ)/λ
) .

(3.25)

It follows from induction that

∥
∥zn+1 − p

∥
∥ ≤ max

{
∥
∥z0 − p

∥
∥,

∥
∥γf(z0) − F

(
p
)∥
∥

1 −
√
(1 − δ)/λ

}

, n ≥ 0. (3.26)

Thus, both {zn} and {yn} are bounded. We observe that

yn+1 = αn+1γf(zn+1) + (I − αn+1F)zn+1 = βnγf
(
T(tn)yn

)
+

(
I − βnF

)
T(tn)yn. (3.27)

Thus, Corollary 3.2 implies that {yn} converges strongly to some point x̃. In this case, we also
have

‖zn − x̃‖ ≤ ∥
∥zn − yn

∥
∥ +

∥
∥yn − x̃

∥
∥ = αn

∥
∥γf(zn) − Fzn

∥
∥ +

∥
∥yn − x̃

∥
∥ −→ 0. (3.28)

Hence, the sequence {zn} converges strongly to some point x̃. This complete the proof.

Using Theorem 3.1, Lemma 2.1, and Example 2.2, we have the following result.

Corollary 3.4. Let E be a uniformly convex Banach space which admits a weakly sequentially
continuous duality mapping J . Let S = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on E such
that Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞) satisfy the conditions

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞, lim
n→∞

tn = ∞. (3.29)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {xn} defined by

x0 = x ∈ E,

xn+1 = αnγf(xn) + (I − αnF)
1
tn

∫ tn

0
T(t)xnds, n ≥ 0

(3.30)
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converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality

〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.31)

or equivalently x̃ = QFix(S)((I − F + γf)x̃), where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Corollary 3.5. Let H be a real Hilbert space. Let S = {T(t) : 0 ≤ t < ∞} be a nonexpansive
semigroup on H such that Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞)
satisfy the conditions

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞, lim
n→∞

tn = ∞. (3.32)

Let f : E → E be a contraction mapping with coefficient α ∈ (0, 1) andA a strongly positive bounded

linear operator with coefficient γ > 1/2 and 0 < γ < (1 −
√
2 − 2γ)/α. Then, the sequence {xn}

defined by

x0 = x ∈ E,

xn+1 = αnγf(xn) + (I − αnA)
1
tn

∫ tn

0
T(t)xnds, n ≥ 0

(3.33)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality

〈(
A − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.34)

or equivalently x̃ = QFix(S)((I −A + γf)x̃), where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Proof. Since A is a strongly positive bounded linear operator with coefficient γ , we have

〈
Ax −Ay, x − y

〉 ≥ γ
∥
∥x − y

∥
∥2

. (3.35)

Therefore,A is γ-strongly accretive. On the other hand,

∥
∥(I −A)x − (I −A)y

∥
∥2 =

〈(
x − y

) − (
Ax −Ay

)
,
(
x − y

) − (
Ax −Ay

)〉

=
〈
x − y, x − y

〉 − 2
〈
Ax −Ay, x − y

〉
+

〈
Ax −Ay,Ax −Ay

〉

=
∥
∥x − y

∥
∥2 − 2

〈
Ax −Ay, x − y

〉
+

∥
∥Ax −Ay

∥
∥2

≤ ∥
∥x − y

∥
∥2 − 2

〈
Ax −Ay, x − y

〉
+ ‖A‖2∥∥x − y

∥
∥2
.

(3.36)
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Since A is strongly positive if and only if (1/‖A‖)A is strongly positive, we may assume,
without loss of generality, that ‖A‖ = 1, so that

〈
Ax −Ay, x − y

〉 ≤ ∥
∥x − y

∥
∥2 − 1

2
∥
∥(I −A)x − (I −A)y

∥
∥2

=
∥
∥x − y

∥
∥2 − 1

2
∥
∥
(
x − y

) − (
Ax −Ay

)∥
∥2
.

(3.37)

Hence, A is 12-strongly pseudocontractive. Applying Corollary 3.4, we conclude the result.

Theorem 3.6. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 < t < ∞} be a u.a.r. nonexpansive semigroup on E such
that Fix(S)/= ∅. Let {αn} and {tn} be sequences of real number satisfying

0 < αn < 1,
∞∑

n=0

αn = ∞, tn > 0, lim
n→∞

αn = lim
n→∞

αn

tn
= 0. (3.38)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {xn} defined by

x0 = x ∈ E,

xn+1 = αnγf(xn) + (I − αnF)T(tn)xn, n ≥ 0
(3.39)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality
〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.40)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Proof. By the same argument as in the proof of Theorem 3.1, we can obtain that {xn}, {f(xn)},
and {FT(tn)xn} are bounded and QFix(S)(I − F − γf) is a contraction on E. Thus, by Banach
contraction principle, QFix(S)(I − F − γf) has a unique fixed point x̃. Then, using Lemma 2.3,
x̃ is the unique solution in Fix(S) of the variational inequality (3.40). Next, we show that

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉 ≤ 0. (3.41)

Indeed, we can take a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉
= lim

k→∞
〈
γf(x̃) − Fx̃, j(xnk − x̃)

〉
. (3.42)
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We may assume that xnk ⇀ p ∈ E as k → ∞. Now, we show that p ∈ Fix(S). Put

xk = xnk , αk = αnk sk = tnk ∀k ∈ �. (3.43)

Fix t > 0, then we have

∥
∥xk − T(t)p

∥
∥ =

[t/si]−1∑

i=0
‖T((i + 1)sk)xk − T(isk)xk‖

+
∥
∥
∥
∥T

([
t

sk

]

sk

)

xk − T

([
t

sk

]

sk

)

p

∥
∥
∥
∥ +

∥
∥
∥
∥T

([
t

sk

]

sk

)

p − T(t)p
∥
∥
∥
∥

≤
[
t

sk

]

‖T(sk)xk − xk+1‖ +
∥
∥xk+1 − p

∥
∥ +

∥
∥
∥
∥T

(

t −
[
t

sk

]

sk

)

p − p

∥
∥
∥
∥

≤
[
t

sk

]

αk

∥
∥FT(sk)xk − f(xk)

∥
∥ +

∥
∥xk+1 − p

∥
∥ +

∥
∥
∥
∥T

(

t −
[
t

sk

]

sk

)

p − p

∥
∥
∥
∥

≤
(
tαk

sk

)
∥
∥FT(sk)xk − f(xk)

∥
∥ +

∥
∥xk+1 − p

∥
∥ +max

{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ sk

}
.

(3.44)

Thus, for all k ∈ �, we obtain

lim sup
k→∞

∥
∥xk − T(t)p

∥
∥ ≤ lim sup

k→∞

∥
∥xk+1 − p

∥
∥ = lim sup

k→∞

∥
∥xk − p

∥
∥. (3.45)

Since Banach space E has a weakly sequentially continuous duality mapping satisfying
Opial’s condition [13], we can conclude that T(t)p = p for all t > 0, that is, p ∈ Fix(S). In
view of the variational inequality (3.2) and the assumption that duality mapping J is weakly
sequentially continuous, we conclude

lim sup
n→∞

〈
γf(x̃) − Fx̃, j(xn − x̃)

〉
= lim

k→∞
〈
γf(x̃) − Fx̃, j(xnk − x̃)

〉

≤ 〈
γf(x̃) − Fx̃, J

(
p − x̃

)〉 ≤ 0.
(3.46)

By the same argument as in the proof of Theorem 3.1, we conclude that xn → x̃ as n → ∞.
This completes the proof.

Using Theorem 3.6 and the method as in the proof of Corollary 3.7, we have the
following result.

Corollary 3.7. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 < t < ∞} be a u.a.r. nonexpansive semigroup on E such that
Fix(S)/= ∅. Let {αn} and {tn} be sequences of real number satisfying

0 < αn < 1,
∞∑

n=0

αn = ∞, tn > 0, lim
n→∞

αn = lim
n→∞

αn

tn
= 0. (3.47)
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Let F be a δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a
contraction mapping with coefficient α ∈ (0, 1), and γ is a positive real number such that γ < 1/α(1−√
(1 − δ)/λ). Then, the sequence {yn} defined by

y0 = y ∈ E,

yn+1 = αnγf
(
T(tn)yn

)
+ (I − αnF)T(tn)yn, n ≥ 0

(3.48)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality

〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.49)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Using Theorem 3.6 and the method as in the proof of Corollary 3.8, we have the
following result.

Corollary 3.8. Let E be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J . Let S = {T(t) : 0 < t < ∞} be a u.a.r. nonexpansive semigroup on E such that
Fix(S)/= ∅. Let {αn} and {tn} be sequences of real number satisfying

0 < αn < 1,
∞∑

n=0

αn = ∞, tn > 0, lim
n→∞

αn = lim
n→∞

αn

tn
= 0. (3.50)

Let F be a δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ is a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {zn} defined by

z0 = z ∈ E,

zn+1 = T(tn)
(
αnγf(zn) + (I − αnF)zn

)
, n ≥ 0

(3.51)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality

〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.52)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Using Theorem 3.6, Lemma 2.1, and Example 2.2, we have the following result.
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Corollary 3.9. Let E be a uniformly convex Banach space which admits a weakly sequentially
continuous duality mapping J . Let S = {T(t) : 0 < t < ∞} be a nonexpansive semigroup on E such
that Fix(S)/= ∅. Let {αn} and {tn} be sequences of real numbers satisfying

0 < αn < 1,
∞∑

n=0

αn = ∞, tn > 0, lim
n→∞

αn = lim
n→∞

αn

tn
= 0. (3.53)

Let F be δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1, f : E → E a con-
traction mapping with coefficient α ∈ (0, 1), and γ a positive real number such that γ < (1/α)(1 −√
(1 − δ)/λ). Then, the sequence {xn} defined by

x0 = x ∈ E,

xn+1 = αnγf(xn) + (I − αnF)
1
tn

∫ tn

0
T(t)xnds, n ≥ 0

(3.54)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality
〈(
F − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.55)

or equivalently x̃ = QFix(S)(I − F + γf)x̃, where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).

Corollary 3.10. Let H be a real Hilbert space. Let S = {T(t) : 0 ≤ t < ∞} be a nonexpansive
semigroup on H such that Fix(S)/= ∅. Suppose that the real sequences {αn} ⊂ [0, 1], {tn} ⊂ (0,∞)
satisfy the conditions

0 < αn < 1,
∞∑

n=0

αn = ∞, tn > 0, lim
n→∞

αn = lim
n→∞

αn

tn
= 0. (3.56)

Let f : E → E be a contraction mapping with coefficient α ∈ (0, 1) andA a strongly positive bounded

linear operator with coefficient γ > 1/2 and 0 < γ < (1 −
√
2 − 2γ)/α. Then, the sequence {xn}

defined by

x0 = x ∈ E,

xn+1 = αnγf(xn) + (I − αnA)
1
tn

∫ tn

0
T(t)xnds, n ≥ 0

(3.57)

converges strongly to x̃, where x̃ is the unique solution in Fix(S) of the variational inequality
〈(
A − γf

)
x̃, j(x − x̃)

〉 ≥ 0, x ∈ Fix(S) (3.58)

or equivalently x̃ = QFix(S)((I −A + γf)x̃), where QFix(S) is the sunny nonexpansive retraction of E
onto Fix(S).



20 International Journal of Mathematics and Mathematical Sciences

Acknowledgment

The project was supported by the “Centre of Excellence in Mathematics” under the Commis-
sion on Higher Education, Ministry of Education, Thailand.

References

[1] N. Shioji and W. Takahashi, “Strong convergence theorems for asymptotically nonexpansive semi-
groups in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 34, no. 1, pp. 87–99,
1998.

[2] T. Shimizu and W. Takahashi, “Strong convergence to common fixed points of families of
nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 211, no. 1, pp. 71–83,
1997.

[3] R. Chen and Y. Song, “Convergence to common fixed point of nonexpansive semigroups,” Journal of
Computational and Applied Mathematics, vol. 200, no. 2, pp. 566–575, 2007.

[4] T. Suzuki, “On strong convergence to common fixed points of nonexpansive semigroups in Hilbert
spaces,” Proceedings of the American Mathematical Society, vol. 131, no. 7, pp. 2133–2136, 2003.
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