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This paper is concerned with a common element of the set of common fixed points for two
infinite families of strictly pseudocontractive mappings and the set of solutions of a system
of cocoercive quasivariational inclusions problems in Hilbert spaces. The strong convergence
theorem for the above two sets is obtained by a novel general iterative scheme based on the
viscosity approximation method, and applicability of the results has shown difference with the
results of many others existing in the current literature.

1. Introduction

Throughout this paper, we always assume that C is a nonempty closed-convex subset of a
real Hilbert space H with inner product and norm denoted by (:,-) and || - ||, respectively, and
2H denotes the family of all the nonempty subsets of H.

Let B: H — H be a single-valued nonlinear mapping and M : H — 2H a set-valued
mapping. We consider the following quasivariational inclusion problem, which is to find a point
x € H such that

0 € Bx + Mx, (1.1)

where 0 is the zero vector in H. The set of solutions of the problem (1.1) is denoted by
VI(H, B, M). As special cases of the problem (1.1), we have the following.
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Q) M =0p: H — 2H where ¢ : H — R U {+oo} is a proper convex lower
semicontinuous function such that R is the set of real numbers, and 0¢ is the
subdifferential of ¢, then the quasivariational inclusion problem (1.1) is equivalent
to find x € H such that

(Bx,v-x)+¢(y) —p(x) >0, VYov,yeH, (1.2)

which is called the mixed quasivariational inequality problem (see [1]).

(ii) If M = 06¢, where 6¢ : H — {0, +oo} is the indicator function of C, that is,

0, x€C,
bc(x) = { (1.3)

+00, xéC,
then the quasivariational inclusion (1.1) is equivalent to find x € C such that
(Bx,v-x)>0, Vvec(, (1.4)

which is called Hartman-Stampacchia variational inequality problem (see [2—4]).

Recall that Pc is the metric projection of H onto C, that is, for each x € H, there exists
the unique point in Pcx € C such that

e = Peax|) = min||x - y]]. (1.5)
A mapping T : C — C is called nonexpansive if
ITx-Ty|| <|lx-y|, VYxyeC (1.6)

and the mapping f : C — Cis called a contraction if there exists a constant & € (0,1) such
that

Ifx) - fW <allx-y|, VxyeC (1.7)

A point x € Cis a fixed point of T provided Tx = x. We denote by F(T) the set of fixed
points of T, thatis, F(T) = {x € C : Tx = x}. If C ¢ H is bounded, closed, and convex and
T is a nonexpansive mapping of C into itself, then F(T) is nonempty (see [5]). Recall that a
mapping A : C — Cis said to be

(i) monotone if

(Ax - Ay,x-y) >0, VYx,yeC, (1.8)
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(ii) k-Lipschitz continuous if there exists a constant k > 0 such that

[ Ax - Ay|| < k[x -y

, Vx,yeC, (1.9)

if k = 1, then A is a nonexpansive,

(iii) pseudocontractive if

|Ax - Ay|* < |lx = y||> + ||(I - A)x - (I - A)y|]’, Vx,yeC (1.10)

(iv) k-strictly pseudocontractive if there exists a constant k € [0, 1) such that

|Ax - Ay|* < ||lx - y||> + k|| - Ax - (I - A)y|]>, Vx,yeC (1.11)

and it is obvious that A is a nonexpansive if and only if A is a O-strictly
pseudocontractive,

(v) a-strongly monotone if there exists a constant & > 0 such that

(Ax - Ay,x-y)>a|x-y|>, VxyeC (1.12)

(vi) a-inverse-strongly monotone (or a-cocoercive) if there exists a constant a > 0 such that
(Ax - Ay, x - y) 2a||Ax—Ay||2, Vx,y €C, (1.13)

if a = 1, then A is called that firmly nonexpansive; it is obvious that any a-inverse-
strongly monotone mapping A is monotone and (1/a)-Lipschitz continuous,

(vii) relaxed a-cocoercive if there exists a constant a > 0 such that

(Ax - Ay, x - y) > (-a)||Ax - Ay|]’, Vx,yeC, (1.14)

(viii) relaxed (a,r)-cocoercive if there exists two constants a, r > 0 such that

(Ax - Ay, x - y) > (—a) || Ax - Ay”2 +rlx-y ? Vx,y €C, (1.15)

and it is obvious that any r-strongly monotonicity implies to the relaxed (a,r)-
cocoercivity.

The existence common fixed points for a finite family of nonexpansive mappings have
been considered by many authors (see [6-9] and the references therein).
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In this paper, we study the mapping W, defined by

un,n+1 = I/
un,n = ,unsnun,nH + (1 - ,un)I/

un,n—l = HUn-1 Sn—l un,n + (1 - ,un—l)Ir

Ui = Skl geer + (1 - pe) I, (1.16)

U1 = pi-1SkcaUnpe + (1 — pie-1) 1,

Upp = p2Sol s+ (1 - )1,
Wy =Up1 = p1S1Unp + (1 - 1)1,

where {p;} is nonnegative real sequence in (0,1), for all i € N, S1,5,,... from a family of
infinitely nonexpansive mappings of C into itself. It is obvious that W,, is a nonexpansive
of C into itself, such a mapping W, is called a W-mapping generated by S;, S, ..., S, and
Hi, K2,/ Un-

A typical problem is to minimize a quadratic function over the set of fixed points of a
nonexpansive mapping in a real Hilbert space H,

rr&igr;{%(Ax,x} - (x,b)}, (1.17)

where A is a bounded linear operator on H, Q is the fixed-point set of a nonexpansive
mapping S on H, and b is a given point in H. Recall that A is a strongly positive bounded
linear operator on H if there exists a constant ¥ > 0 such that

(Ax,x) >¥||lx|>, VYxe€H. (1.18)

Marino and Xu [10] introduced the following iterative scheme based on the viscosity
approximation method introduced by Moudafi [11]:

Xns1 = oY f(xn) + (I — 2, A)Sx,, VneN, (1.19)

where x; € H, A is a strongly positive bounded linear operator on H, f is a contraction on
H, and S is a nonexpansive on H. They proved that under some appropriateness conditions
imposed on the parameters, if F(S) #0, then the sequence {x, } generated by (1.19) converges
strongly to the unique solution z = Prs)(I — A + yf)z of the variational inequality

((A-yf)z,x-2z) >0, VxeF(S), (1.20)
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which is the optimality condition for the minimization problem

xrgjig){%(Ax,x) —h(x)}, (1.21)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

liduka and Takahashi [12] introduced an iterative scheme for finding a common
element of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality (1.4) as in the following theorem.

Theorem IT. Let C be a nonempty closed-convex subset of a real Hilbert space H. Let B be an a-
inverse-strongly monotone mapping of C into H, and let S be a nonexpansive mapping of C into itself
such that F(S) N VI(C, B) # 0. Suppose that x; = x € C and {x,} is the sequence defined by

Xni1 = apX + (1 — a,)SPc(x, — A,Bxy,), (1.22)

foralln € N, where {a,} C (0,1) and {\,} C [a,b] such that 0 < a < b < 2a satisfying the following
conditions:
(C1) limy,—, ity = 0and 377, a = 00,

(C2) Sy lane —ay| < ooand 3571 A1 — Ayl < oo,
then {x,} converges strongly to Pr(s)nvi(c,B)X.

Definition 1.1 (see [13]). Let M : H — 2H be a multivalued maximal monotone mapping,
then the single-valued mapping Japy : H — H defined by Jaa (1) = (I + AM) ! (w), for all
u € H, is called the resolvent operator associated with M, where 1 is any positive number, and I
is the identity mapping.

Recently, Zhang et al. [13] considered the problem (1.1). To be more precise, they
proved the following theorem.

Theorem ZLC. Let H be a real Hilbert space, let B : H — H be an a-inverse-strongly monotone
mapping, let M : H — 2H be a maximal monotone mapping, and let S : H — H be a nonexpansive
mapping. Suppose that the set F(S) N VI(H, B, M) #0, where VI(H, B, M) is the set of solutions of
quastvariational inclusion (1.1). Suppose that x1 = x € H and {x,} is the sequence defined by

Yn = Jma(xn — ABxy),
(1.23)
X1 = anX + (1 = an) Syn,

forall n € N, where A € (0,2a) and {a,} C (0,1) satisfying the following conditions:

(C1) limy—, oty = 0and >77 1 ay = oo,
(CZ) Z;.lozl |an+1 - anl <00,

then {x,} converges strongly to Pr(s)nvi(H,B,m)X-
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Peng et al. [14] introduced an iterative scheme

O(un, y) + %(y — U, Uy —Xn) 20, Yy e€H,

Yn = Ima(un — ABuy,), (1.24)

Xn+l = anf(xn) + (1 - an)Synr

for all n € N, where x; € H, B is an a-cocoercive mapping on H, f is a contractionon H, Sisa
nonexpansive on H, M is a maximal monotone mapping of H into 2, and @ is a bifunction
from H x H into R.

We note that their iteration is well defined if we let C = H, and the appropriateness of
the control conditions a,, and A of their iteration should be {a,} C (0,1) and A € (0,2a) (see
Theorem 3.1 in [14]). They proved that under some appropriateness imposed on the other
parameters, if Q = F(S) N VI(H, B, M) N EP(®) #0, then the sequences {x,}, {y,}, and {u,}
generated by (1.24) converge strongly to z = Pg f (z) of the variational inequality

(z-f(z),x-2)>0, VxeQ, (1.25)
where EP(®) is the set of solutions of equilibrium problem defined by
EP(®) = {xe H: ®D(x,y) >0, Yy € H}. (1.26)

Moreover, Plubtieng and Sriprad [15] introduced an iterative scheme

O(un, y) + %(y —Up, Uy —Xn) 20, Yy €H,

Yn = Jma(un — ABuy,), (1.27)

Xn+l = ‘Xan(xn) + (- unA)Snynr

foralln € N, where x; € H, Ais a strongly bounded linear operator on H, B is an a-cocoercive
mapping on H, f is a contraction on H, S, is a nonexpansive on H, M is a maximal monotone
mapping of H into 2H ‘and @ is a bifunction from H x H into R.

We note that the appropriateness of the control conditions a, and A of their iteration
should be {a,} C (0,1) and A € (0,2a) (see Theorem 3.2 in [15]). They proved that under
some appropriateness imposed on the other parameters, if Q = (2, F(S,) N VI(H, B, M) N
EP(®) #0, then the sequences {x,}, {y,}, and {u,} generated by (1.27) converge strongly to
z=Po(I-A+yf)z

On the other hand, Li and Wu [16] introduced an iterative scheme for finding a
common element of the set of fixed points of a k-strictly pseudocontractive mapping with
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a fixed point and the set of solutions of relaxed cocoercive quasivariational inclusions as
follows:

Yn = ]M,)L(xn - -)Lan)/

(1.28)
Xn+1 = lanf(xn) + ﬂnxn + ((1 - ﬂn)I - a"A) (#Skx" + (1 - ﬂ)y”)’

for all n € N, where x; € H, A is a strongly positive bounded linear operator on H, f is a
contraction on H, S is a mapping on H defined by Sxx = kx+(1-k)Sx forall x € H, such that
S is a k-strictly pseudocontractive mapping on H with a fixed point, B is relaxed cocoercive
and Lipschitz continuous mappings on H, and M is a maximal monotone mapping of H into
2H,

They proved that under the missing condition of y, which should be 0 < y < 1 (see
Theorem 2.1 in [16]) and some appropriateness imposed on the other parameters, if Q =
F(S) N VI(H, B, M) #0, then the sequence {x,} generated by (1.28) converges strongly to
z=Po(I-A+7yf)z.

Very recently, Tianchai and Wangkeeree [17] introduced an implicit iterative scheme
for finding a common element of the set of common fixed points of an infinite family of
a k,-strictly pseudocontractive mapping and the set of solutions of the system of generalized
relaxed cocoercive quasivariational inclusions as follows:

Zn = ]Mzw\z (xn - -)‘Z(BZ + CZ)xn)/
Yn = I, (2o — M (B1 + Ci)zy), (1.29)
X1 = QY f(Wixn) + Buxtn + ((1 = fu) I = anA) (aWaxn + (1 = ¥) Yn),

for all n € N, where x; € H, A is a strongly positive bounded linear operator on H, f is a
contraction on H, W, is a W-mapping on H generated by {S,} and {u,} such that S,x =
Onx + (1 = 6,)Tyx for all x € H, T}, is a ky-strictly pseudocontractive mapping on H with a
fixed point, M; is a maximal monotone mapping of H into 2, and B;, C; are two mappings
of relaxed cocoercive and Lipschitz continuous mappings on H for eachi =1,2.

They proved that under some appropriateness imposed on the parameters, if Q =
Nyeq F(T,) N F(D) # @ such that the mapping D : H — H defined by

Dx = ]Ml,Al((I_ M (B + Cl))]Mz,)Lz(I - (B, +Cy))x), VxeH, (1.30)

then the sequence {x,} generated by (1.29) converges strongly to z = Po(I - A+ yf)z.

In this paper, we introduce a novel general iterative scheme (1.32) below by the
viscosity approximation method to find a common element of the set of common fixed points
for two infinite families of strictly pseudocontractive mappings and the set of solutions of
a system of cocoercive quasivariational inclusions problems in Hilbert spaces. Firstly, we
introduce a mapping W,, where W, is a W-mapping generated by {R,} and {u,} for solving
a common fixed point for two infinite families of strictly pseudocontractive mappings by
iteration such that the mapping R, : H — H defined by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYxeH, (1.31)
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forallm € N, where {S,, : H — H} and {T,, : H — H} are two infinite families of k; and
ky-strictly pseudocontractive mappings with a fixed point, respectively, and {u,} C (0, 4] for
some yu € (0,1). It follows that a linear general iterative scheme of the mappings W,, and
I, (I = X;C;) is obtained as follows:

N
Yn = annxn + (1 - Yn)Zpi]M,-,)L,-(xn - )ticixn)r
i=1 (1.32)

Xn+l = aan(xn) + ﬂan‘rl + ((1 - €71)I - ﬂﬂB - aﬂA)y"’

foralln € N, wherex; =u € H, M; : H — 2H is a maximal monotone mapping, C; : H — H
is a cocoercive mapping for eachi =1,2,...,N, f : H — H is a contraction mapping, and
A,B: H — H aretwo mappings of the strongly positive linear bounded self-adjoint operator

mappings.
As special cases of the iterative scheme (1.32), we have the following.

(i) If e, =0 for all n € N, then (1.32) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)Zpi]Mi,)n' (xn - -)Licixn)/
i=1 (1.33)

X1 = AnY f (Xn) + PuBxy + (I - puB — 2, A)y,, VYneN.
(ii) If B = I, then (1.32) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)ZPi]M,-,A,-(xn - )Licixn)/
i=1 (1.34)

X1 = Y f (Xn) + Puxn + (1 — €4 — )] — @A)y, YneN.

(iii) If €, = 0 for all n € N, then (1.34) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)ZPi]M,-,)Li(xn - ~)‘icixn)/
i=1 (1.35)

X1 = Y f (Xn) + Puxn + (1= ) — 2, A)y,, YneN.

(iv) If B, = 0 for all n € N, then (1.34) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - )Licix‘r‘l)l
i=1 (1.36)

Xpe1 = Y f(Xn) + (1 =€) — 2, A)y,, VneN.
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(v) If €, =0 for all n € N, then (1.36) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)ZPi]M,-,)Li(xn - ~)‘icixn)/
i=1 (1.37)

Xne1 = oY f(xn) + (I — 2y A)yn, VYneN.
(vi) If y =1 and A = I, then (1.37) is reduced to the iterative scheme

N
Yn = Yanxn + (1 - Yn)Zpi]Mi,)Li(xn - )‘icixn)r
i=1 (1.38)

Xne1 = Onf (X)) + (1 —an)yn, VYn €N,

(vil) If M; =C; =0 foreachi=1,2,...,N and zfﬁl pi = 1, then (1.32) is reduced to the
iterative scheme

Yn = Yanxn + (1 - Yn)xnl

(1.39)
Xni1 = 0} f (Xn) + PuBxy + (1 — €4)I — puB — ayA)y,, VneN.

Furthermore, if S, = T, for all n € N, then the mapping R, : H — H in (1.31) is
reduced to

Ryx=ax+(1-a)T,x, Vx€H, (1.40)

for all n € N. It follows that the iterative scheme (1.32) is reduced to find a common element of
the set of common fixed points for an infinite family of strictly pseudocontractive mappings
and the set of solutions of a system of cocoercive quasivariational inclusions problems in
Hilbert spaces.

It is well known that the class of strictly pseudocontractive mappings contains the
class of nonexpansive mappings; it follows that if the mapping R, is defined as (1.31) and
ki = ky = 0, then the iterative scheme (1.32) is reduced to find a common element of the
set of common fixed points for two infinite families of nonexpansive mappings and the set
of solutions of a system of cocoercive quasivariational inclusions problems in Hilbert spaces,
and if the mapping R, is defined as (1.40) and k; = k, = 0, then the iterative scheme (1.32)
is reduced to find a common element of the set of common fixed points for an infinite family
of nonexpansive mappings and the set of solutions of a system of cocoercive quasivariational
inclusions problems in Hilbert spaces.

We suggest and analyze the iterative scheme (1.32) above under some appropriateness
conditions imposed on the parameters, the strong convergence theorem for the above two sets
is obtained, and applicability of the results has shown difference with the results of many
others existing in the current literature.
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2. Preliminaries

We collect the following lemmas which are used in the proof for the main results in the next
section.

Lemma 2.1. Let C be a nonempty closed-convex subset of a Hilbert space H then the following
inequalities hold:

(1) (x=Pcx,Pcx-y)>0,Yxe HyeC,
@) lle+ylI* < Ixl* +2(y, x + y),¥x,y € H.

Lemma 2.2 (see [10]). Let H be a Hilbert space, let f : H — H be a contraction with coefficient
O<a<1l,andlet A: H — H be a strongly positive linear bounded operator with coefficient y > 0,
then

(1) if0<y <y/a, then

> Vx,yeH, 2.1)

(x=y,(A-yN)x-(A-yfly) 2 (¥ —ya)||x -y

(2) if 0 < p <||AII"Y, then | - pA <1 pF.

Lemma 2.3 (see [18]). Assume that {a,} is a sequence of nonnegative real numbers such that

ans1 < (1 - 7ln)an + 611/ n2 1/ (22)

where {1, } is a sequence in (0,1) and {6, } is a sequence in R such that
(1) imy o1 = 0 and 3071 1 = oo,
(2) limsup, _,_ (6,/1n) <007 377 |64] < o0,

then lim,, _, ,a, = 0.

Lemma 2.4 (see [9]). Let C be a nonempty closed-convex subset of a Hilbert space H, define mapping
Wy, as (1.16), let S; : C — C be a family of infinitely nonexpansive mappings with (2 F(S;) #90,
and let {p;} be a sequence such that 0 < p; < p <1, forall i > 1, then

(1) W, is nonexpansive and F(W,,) = L, F(Si) for eachn > 1,

(2) for each x € C and for each positive integer k, lim,, _, ooU,, kX exists,

(3) the mapping W : C — C defined by

Wx:= limWyx = limU,1x, x€C, (2.3)
n—oo

n—oo

is a nonexpansive mapping satisfying F(W) = N2, F(S;), and it is called the W-mapping
generated by S1,Ss,...and py, o, . . ..

Lemma 2.5 (see [13]). The resolvent operator Japy associated with M is single-valued and
nonexpansive for all A > 0.
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Lemma 2.6 (see [13]). u € H is a solution of quasivariational inclusion (1.1) if and only if u =
Jma(u— ABu), for all X > 0, that is,

VI(H,B, M) = F(Jpa(I - AB)), ¥A>0. (2.4)

Lemma 2.7 (see [19]). Let C be a nonempty closed-convex subset of a strictly convex Banach space
X. Let {T,, : n € N} be a sequence of nonexpansive mappings on C. Suppose that ;- F(T,) #0.
Let {a,} be a sequence of positive real numbers such that >,  a, = 1, then a mapping S on C

defined by

Sx = ZanTnx, (2.5)

n=1

for x € C, is well defined, nonexpansive, and F(S) = (-, F(Ty) holds.

Lemma 2.8 (see [2]). Let C be a nonempty closed-convex subset of a Hilbert space H and S : C — C
a nonexpansive mapping, then I — S is demiclosed at zero. That is, whenever {x,} is a sequence in
C weakly converging to some x € C and the sequence {(I — S)x,} strongly converges to some vy, it
follows that (I - S)x = y.

Lemma 2.9 (see [20]). Let C be a nonempty closed-convex subset of a real Hilbert space H and

T :C — Ca k-strict pseudocontraction. Define S : C — C by Sx = ax + (1 — a)Tx for each x € C,
then, as a € [k, 1), S is a nonexpansive such that F(S) = F(T).

3. Main Results

Lemma 3.1. Let C be a nonempty closed-convex subset of a real Hilbert space H, and let S,T : C —
C be two mappings of ki and ky-strictly pseudocontractive mappings with a fixed point, respectively.
Suppose that F(S) N F(T) # @ and define a mapping R: C — C by

Rx=ax+(1-a)(aSx+(1-a)Tx), VxeC(C, (3.1)

where a € [k,1) \ {0} such that k = max{k, ky}, then R is well defined, nonexpansive, and F(R) =
F(S) N F(T).

Proof. Define the mappings Si,T1 : C — C as follows:

Six=ax+(1-a)Sx, Tix=ax+(1-a)Tx, (3.2)

for all x € C. By Lemma 2.9, we have S; and T; as nonexpansive such that F(S;) = F(S) and
F(Ty) = F(T). Therefore, for all x € C, we have

Rx=ax+(1-a)(aSx+ (1 -a)Tx)

=ax+a(l-a)Sx+ (1-a)*Tx
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=a®x+a(l-a)Sx+ (1 -a)ax+ (1-a)*Tx
=afax+(1-a)Sx)+ (1 -a)(ax+ (1 -a)Tx)
=aSix+ (1-a)Tix.

(3.3)

It follows from Lemma 2.7 that R is well defined, nonexpansive, and F(R) = F(S1) N F(T1) =
F(S)NF(T). O

Theorem 3.2. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,
and let C; : H — H be a ¢;-cocoercive mapping for eachi = 1,2,...,N. Let A,B: H — H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
5,5 € (0,1] such that 6 < ||Al| < 1 and ||B| = ﬁ, respectively, and let f : H — H be a contraction
mapping with coefficient 6 € (0,1). Let {S, : H — H} and {T,, : H — H} be two infinite
families of ki and ky-strictly pseudocontractive mappings with a fixed point such that ki, k, € [0,1),
respectively. Define a mapping R, : H — H by

Ryx=ax+(1-a)(aS,x+(1-a)T,x), VYxeH, (3.4)

forall n € N, where a € [k, 1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {u,} C (0,u], for some p € (0,1). Assume that
Q == (N2, F(Sn)) N (N2 F(Tw) N (NN, VI(H, C;, My)) #@ and 0 < y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - 1iCixy),
i=1 (3.5)

X1 = Y f (Xn) + BuBxn + (1 - €4)I = BuB — 2y, A) Yy,

for all n € N, where {a,}, {y,} C (0,1), {Ba}, {€en} C [0,1) such that €, < a,, pi € (0,1), and
Ai € (0,2¢] foreachi=1,2,..., N satisfying the following conditions:

(C1) lim,, _, uax, = limy, ., (€, /) =0,

(C2) 0 <limy ., oyn < land limsup, _,_fn <1,

(C3) Sqan=coand T pi =1,

(C4) 3521 lan — anl < 00, 3521 [Pt — Pul < 00, and 3532, l€ni1 — €x| < oo,

(C5) Xt lyner = yul < 00 and 352 TTiq pi < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+yflwisa
unique solution of the variational inequality

((A-ylwy-w) 20, VyeQ. (3.6)

Proof. From ||B|| = B € (0,1], €, < ay forallnm € N, (C1) and (C2), we have a, — 0,¢, — 0
asn — oo and limsup,_, p, < 1. Thus, we may assume without loss of generality that
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ay < (1—€, = BullBIIIA|I"! for all n € N. For any x,y € H and for eachi=1,2,..., N, by the
¢i-cocoercivity of C;, we have

0= 1€~ (=2 = - 9) - (G- )P
= ||x - y|I* - 2Xi{x - y, Cix - Ciyy) + A2||Cix - Ciyy ||
i 2 (3.7)
< lx=ylI” - & - A)Ai||Cix - Ciy ||

<Jlx-yll*

which implies that I — 1;C; is a nonexpansive. Since A and B are two mappings of the linear
bounded self-adjoint operators, we have

[All = sup{[(Ax, x)| : x € H, |[x]| =1},

(3.8)
Bl = sup{[(Bx,x)|: x € H,|lx|| =1}.
Observe that
<((1 —en)l _,BnB - anA)x/x> =(1-en)(x,x)— ﬂn(Bx/x> —an(Ax, x)
21— en = Pull Bl — anllAll (3.9)

> 0.

Therefore, we obtain that (1 -e€,)I — ,B — a, A is positive. Thus, by the strong positivity of A
and B, we get

(1= )T = BuB — ayA|| = sup{{((1 - )] ~ fuB — ayA)x, x) : x € H, |lx]| = 1)
= sup{(1 - en)(x, x) = u(Bx, x) — an(Ax,x) : x € H,|Ix|| =1}
<1-én—Puf - and
<1-puf - a,b.

(3.10)

Define the sequences of mappings {P,: H — H} and {Q, : H — H} as follows:

Pyx = ayy f(x) + puBx + (1 - €,)I = BB - a,A)Qux, Vx € H,

N (3.11)
Qux = YaWax + (1= yu) > piJmn, (I - LiCi)x, Vx € H,

i=1
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for all n € N. Firstly, we prove that P, has a unique fixed point in H. Note that forall x,y € H,
by (3.11), (C3), the nonexpansiveness of Wy, Ja, 1, and I — 1;C;, we have

1Qnx = Quyll < ¥ [[Wax = Way ||

N
+ (1 - Yn)ZPi”]Mi,/\i (I - ')Lici)x - ]Mi,/\i(I - )chl)]/“

i=1

N
<Yallxe =yl + (1= 1) 2pill (T = LCo)x = (T = LCy || (3.12)
i=1

N
<hullx-yll+ —m(Zm) =]
i=1

= [lx =yl

Therefore, Q, is a nonexpansive. It follows from (3.10), (3.11), (3.12), the contraction of f,
and the linearity of A and B that

[1Pux = Pay || < any || £ () = £ ()| + BullBll [l = v|

+ (0= €] = uB - an Al | Qux - Quy|

_ _ (3.13)
< a6l - yl| + fubllx -yl + (1~ fu - 2,8) - v

= (1- (6-v6)an)|lx -yl

Hence, P, is a contraction with coefficient 1— (5—y6)an € (0,1). Therefore, Banach contraction

principle guarantees that P, has a unique fixed point in H, and so the iteration (3.5) is well
defined.

Next, we prove that {x,} is bounded. Pick p € Q. Therefore, by Lemma 2.6, we have
p=JmI - XCip, (3.14)
foreachi=1,2,..., N. By (3.14), the nonexpansiveness of [y, ), and I — \;C;, we have

[l 7m0 (e = 1iCixn) = p| = [[ T vt 0 (30 = 1iCixn) = T, (p = iCip) ||
< [en = XiCixy) = (p = LiCip) || (3.15)

< [l = p
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Lett, = Zf\:jl pil M, (xn — XiCixy,). By (3.14), (C3), the nonexpansiveness of Juy, ), and
I - \,C;, we have

N N
e = ol = |3 T (en = 1iCia) - zpmH
i=1 i1

N N
> pila, (xn = XiCix) = D pim o, (p = LiCip) “
i=1 P

N
< ZP:’”]Mi,)Li (xn = XiCix) = T, 0, (p — LiCip) ||
i=1 (3.16)

N
< > pill (en = XiCixa) = (p = Cip) |

N
< <Zpl~) 0=l
i=1

= [lxn = pll-

Since Ryx = ax + (1 — a)(aS,x + (1 — a)T,x), where a € [k, 1) \ {0}, {S,} and {T,} are
two infinite families of k; and k»-strict pseudocontractions with a fixed point, respectively,
such that k = max{ky, k»}; therefore, by Lemma 3.1, we have that R, is a nonexpansive and
F(R,) = F(S,) N F(T,) for all n € N. It follows from Lemma 2.4(1) that we get F(W,,) =
Ny F(Ri) = (NZ, F(S) N (N, F(T;)), which implies that W,p = p. Hence, by (3.16) and the
nonexpansiveness of W,, we have

lyn =PIl = VaWaxn + (1= 1)t —p|
= Iy (Waxta =p) + (1= 1) (t = p) |
<Yl [Watw = Wap || + (1= ya) ||t = | (317)
<Yallxn = pll + @ =yu) [lxa = |l
= [|lxa - pll-

By (3.10), (3.17), the contraction of f, and the linearity of A and B, we have

%1 =PIl = llany f (xn) + BuBxn + (1 = €2)] = BuB — an Ay — p||
= |lan(yf (xn) = Ap) + PuB(xn — p)
+((1 - en)I = PuB — 4y A) (yn — p) — enp |
< anlly f(xn) = Apl| + BullBl[ln — |
+ |1 = en)I = puB - anA||[|yn — p| + ex|p|l
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<any||f(xn) = F(P) || + anlly f () — Ap|| + Bub|xn - p||
+ (1= BuB = @B [lxn — pl| + el

< (1= (8-y8)an)llxw=pll + anllvf (p) - Apll + P )

-A
. {”xn g, @) =l + o] }
6—-y6
(3.18)
It follows from induction that
- Ap|| +
o ] < { o - W21 I } 519
-Y

for all n € N. Hence, {x,} is bounded, and so are {y,}, {W,x,}, {ta}, {f(x0)}, {Ayn}, {Bxn},
and {By,}.

Next, we prove that ||x,11 — x,|| — 0Oasn — oo. By (C3), the nonexpansiveness of
I, and I — A;C;, we have

N N
ZPJM,-,)L,- (%41 = LiCixpe1) — Z,OJMi,)Li(xn - LiCixy)

i=1 i=1

”tn+1 - tn” =

N
< ZPi||]Mi,j\i (%ns1 = XiCixpi1) = I n (0 — LiCixey) ||
in1

N (3.20)
< Zpi||(xn+1 = LiCixpi1) — (xn — XiCixy) ||
i1
N
< <Zpi> 12¢n+1 — Xn]|
i1
= ||2xne1 = xnl|-

By the nonexpansiveness of R; and U, ;, we have

”Wn+1xn - ann” = ||un+1,1xn - un,lxn”
= || Rili1020 + (1 = p1) xp = (1 RiU 0, + (1= pr) x) ||
< Hl”un+1,2xn - un,an”

= p1 || 2 RoU a1 350 + (1 = p2) 2 — (M2 RoU 3% + (1= o) ) ||
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< Hl,u2||un+1,3xn - un,3xn”

n
< <H/11> ||un+1,n+1xn - un,n+1xn||

i=1

< MH‘ui/
i=1
(3.21)

for some constant M such that M > ||U11,441%n — Upn1Xn|| > 0. Therefore, from (3.21), by
the nonexpansiveness of W,,1, we have

||Wn+1xn+1 - ann” < ||Wn+1xn+1 - Wn+1xn|| + ”Wn+1xn - ann”
n (3.22)
< wss - xall + M T
i-1
Since
Yni1 = Yn = (Yn+1Wn+1xn+1 + (1 - Yn+1)tn+1) - (annxn + (1 - Yn)tn)

= Yn+1 (Wn+1xn+1 - ann) + (Yn+1 - Yn) (ann - tn) (323)

+ (1 - Yn+1) (tne1 — tn),

combining (3.20), (3.22), and (3.23), we have

||yn+1 - yn|| < Yn+1||Wn+1xn+1 - Whxull + |Yn+1 - Yn|||ann — tal|
+ (1 - Yn+1)||tn+l - tn”

< Yn+1 <||xn+1 - xn” + MH#1> + |Yn+1 - Yn“lwnxn - tn”

i1 (3.24)

+ (1 - Yn+1)||xn+1 - xn“

n
< ||xn+l - xn” + MH#z + |Yn+1 - Yn“lwnxn - tn”-
i=1

By the linearity of A and B, we have

Xn2 — Xp+l1 = (an+1Yf(xn+1) + ﬁn+1an+1 + ((1 - €n+1)I - ,Bn+1B - “n+1A)]/n+l)
— (anyf(xn) + BuBxyn + (1 — €4)I — BuB — anA) )

= ((1 —€n1)] - ,ﬁn+1B - an+1A) (yn+1 - yn) + (ﬁn - ﬁn+1)Byn
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+(an = Ans1) AYn + (€n = €n1)Yn + A1y (f (Xni1) = f(xn))
+ Y(“n+1 - an)f(xn) + ﬂn+1B(xn+1 - Xp)

+ (ﬁn+l - ﬂn)an-

(3.25)
Therefore, by (3.10), (3.24), (3.25), and the contraction of f, we have
|xns2 = Xpia]] < ”(1 —€ns1)] = BB - an+1A” ”yn+1 - yn” + |ﬁn - ﬁn+1|”Byn”
+|ay, - an+1|”Ayn” +|en — €nai] ”]/n” + “n+1Y||f(xn+1) - f(xn) ”
+ Ylania = anl[| £ Gen) | + Buat I BIlllxnss = xull + [Busr = Pu] | Baxull
< (1= st P = @018 [yner = vl + Bu = Broa || By (3.26)
+ |y — an+1|||Ayn” +|€n — €nsl ”yn” + lxn+1y6”xn+1 = x|
+ Ylan+1 - anl ”f(xn) ” + ﬂn+1ﬁ”xn+1 - xn” + |ﬁn+1 - ﬁnl ||an||
< (1 - T'In)”xnﬂ = Xp|| + 64,
where 71, := 6 - yY&)au+ € (0,1) and
Oy = MHﬂi + N(l}’n - Yn+1| +|en — epi| + |ﬂn - ﬂmll +lay, - an+1|)r (3.27)
i=1

such that

n>1

sup (v +Y||f(xn)||)}-
§ (3.28)

N = max{supHann —tall, SUP(“B%” + ||an||)/ SUP”yn
n>1 n>1

By (C1), (C3), (C4), and (C5), we can find that lim,, _, .77, =0, 3,721 #1n = o0, and X721 6, < 00;
therefore, by (3.26) and Lemma 2.3, we obtain

[[xpt1 — x4 — 0 as 1 — oo. (3.29)

Next, we prove that ||x, — y,|| — 0as n — oo. By the linearity of B, we have

| %n1 = Yl = || @ny f (cn) + BuBxn + (1 = €a)I = fuB = anA) Y — yu|
= [|etn (v f (xn) = Ayn) + BB (X0 = Xns1) + BuB(Xns1 = Yn) — €nlnl| (330
< “n”)’f(xn) - Ay‘rl” + ﬂn”B””xn - xn+1“ +ﬂn”B””xn+l - yn” + en”yn” .

< an([|vf (en) = Ayall + [lyall) + BuBllacn = ool + Pufl| X1 =y
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It follows that
(1= uB) %01 = yull < @n(lly fGea) = Ayull + [[yall) + Bubllxn = Xl (3.31)
Hence, by (C1), (C2), (3.29), and (3.31), we have
|1 = yu|| — 0 as n — oo. (3.32)
Since
| = vl < llxn = Xt ll + ||xne1 = ||, (3.33)
therefore, by (3.29) and (3.32), we obtain
|xn = yu]| — 0 as n — oo. (3.34)

For all x,y € H, by Lemma 2.2(2), the nonexpansiveness of Pg, the contraction of f,
and the linearity of A, we have

[Pa(I-A+yf)x-Po(I-A+yf)y|[ <|[(I-A+yf)x-(T-A+yf)y|l
<yllf o) = fF@) + I = Allffx - vl

<yéllx -y + (1-8)llx -yl
= (1-(8-76))llx-vl.

Therefore, Po(I-A+y f) is a contraction with coefficient 1—- (3—}/6) € (0,1); Banach contraction
principle guarantees that Po(I — A + y f) has a unique fixed point, say w € H, that is, w =
Po(I - A+yf)w. Hence, by Lemma 2.1(1), we obtain

(3.35)

(A-yflw,y-w) >0, YyeQ. (3.36)
Next, we claim that
lim sup(y f (w) - Aw, x, —w) < 0. (3.37)

To show this inequality, we choose a subsequence {x,,} of {x,} such that

limsup(y f (w) - Aw, x, - w) = lim (yf(w) - Aw, x,, — w). (3.38)

n—oo

Since {x,,} is bounded, there exists a subsequence {xn,.]_ } of {x,,} which converges weakly to
w. Without loss of generality, we can assume that x,,, = w asi — oo.



20 International Journal of Mathematics and Mathematical Sciences

Next, we prove that w € Q. Define the sequence of mappings {Q, : H — H} and the
mapping Q: H — H by

N
Qnx = YuWax + (1 - Yn)ZPi]M,-,)l,-(I -1C)x, VxeH,
i=1

(3.39)
Qx = lim Q,x,
for all n € N. Therefore, by (C2) and Lemma 2.4(3), we have
N
Qx=aWx+ (1 - a)ZPi]Mi,)q (I -XCi))x, VxeH, (3.40)

i=1

where 0 < a = lim, _,,,}, < 1. From (C3), Lemma 2.4(3), we have that W and 3N, piJa, 1, (I -
AiC;) are nonexpansive. Therefore, by (C3), Lemmas 2.4(3), 2.6, 2.7, and 3.1, we have

N
F(Q =FW)NF <ZPJM,-,A,- (I- x@-))

i=1

o) N
= <ﬂF(Ri>> n <ﬂF(JM,,M<I - Aicn)) (3.41)
i=1

i=1

= <ﬁF(Si)> N <ﬁP(Ti)> n ((Aﬁ VI(H, G;, Mi)>,
i=1 i=1 i=1

that is, F(Q) = Q. From (3.34), we have ||y, — x| — 0asi — oo. Thus, from (3.5) and
(3.39), we get ||Qxy, — xp,|| — 0 asi — oo. It follows from x,, — w and by Lemma 2.8 that
w € F(Q), that is, w € Q. Therefore, from (3.36) and (3.38), we obtain

lim sup(y f (w) — Aw, x, - w) = lim (yf (w) = Aw, x,, — w)

e (3.42)
= {(rf - A)w, B -w) <0.

Next, we prove that x, — wasn — oo. Since w € Q, the same as in (3.17), we have
lyn = w|| < ll2xn =]l (3.43)

Therefore, by (3.10), (3.43), Lemma 2.1(2), the contraction of f, and the linearity of A and B,
we have

Xps1 — w|* = |etny f () + BuBxn + ((1 = €n)I = PuB — 2 A)yy — w||2
= ”an (Yf(xn) - Aw) + PnB(xy — w)

+((1-en)I - puB - a,A) (yn - w) - enw”2
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< [1BuB(xn = w) + (1 =€) = BB = A) (yn — ) ||
+ 2(an (yf(xn) = Aw) — €4, X1 — W)
< (BalBl|llxn — w|| + || (1-en)I-p,B- anA” ”yn - w||)2
+ 2“nY<f(xn) - f(w), Xn+l — w>
+ 20, (Y f (W) = AW, Xpy1 — W) = 264 (W, Xps1 — W)
_ _ 2
< (BuBllxw = wll + (1= Bu - @, ) I — wll)
+ 20, Y6 xn — w|||xns1 — |
+2a,(y f (W) = Aw, Xpi1 — W) — 26, (W, Xps1 — W)
\2
< (1~ @8) llxn = wll* + ay6 ([l = 20 + w1 201

+ 20, (y f (W) = AW, Xps1 — W) = 265 (W, Xps1 — W).

(3.44)
If follows that
1 Zan5+an ls)
s =0l < =~ o~ wl 4,
2(8-y6)a, (3.45)
= T T 1-aye 1%, = wl|* + 6,

< (1=1,) 1|0 = wl* + 6,
where 77, := (6 - y&)an/ (1 - a,yd) € (0,1) and

8, = — <a$,52||xn —w|* + 2a,(y f (W) — AW, Xps1 — W) — 2€,{W, Xps1 — w)>. (3.46)

By (3.29), (3.42), (C1), and (C3), we can found that lim,_, .7, = 0, >, 7, = oo, and
limsup, _(6,/1,) < 0. Therefore, by Lemma 2.3, we obtain that {x,} converges strongly
to w, and so is {y,}. This completes the proof. O

Remark 3.3. The iteration (3.5) is the difference with many others as follows.

(1) Two mappings A and B of the strongly positive linear bounded self-adjoint operator
mappings are used in the iteration of {x,}, which used only one mapping A by
many others.

(2) Three parameters ay,, ,, and €, are used in the iteration of {x,}, which used only
two parameters a, and f, by many others.
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(3) The parameter f3, can be chosen to be , = 0 for all n € N, because the condition
liminf, -, B, > 0 of Suzuki’s Lemma (see [21]) is ignored in the control conditions
of the iteration, which is used by many others.

(4) A solving of a common fixed point for two infinite families of strictly pseudocon-
tractive mappings by iteration is obtained by the mapping W,, where W,, is a W-
mapping generated by {R,} and {u,} such that R, is defined as in Theorem 3.2.

4. Applications

Theorem 4.1. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,
and let C; : H — H be a é-cocoercive mapping for eachi = 1,2,...,N. Let A, B: H — H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
S,E € (0,1] such that 6 < ||A|| < 1 and ||B| = ﬁ, respectively, and let f : H — H be a contraction
mapping with coefficient 6 € (0,1). Let {S, : H — H} and {T,, : H — H} be two infinite
families of ki and ko-strictly pseudocontractive mappings with a fixed point such that ki, k, € [0, 1),
respectively. Define a mapping R, : H — H by

Ryx=ax+(1-a)(aS,x+(1-a)T,x), VYxeH, (4.1)

forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {p,} C (0,p], for some p € (0,1). Assume that
Q == (N2, F(Sw) N (N2, F(T) N (NN, VI(H, C;, My)) #@ and 0 < y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - 1iCixy),
i1 (4.2)

Xn+l = aan(xn) + ,Bann + (I - ,BnB - anA)yn/

forall n € N, where {a,}, {y.} C (0,1), {f.} C [0,1), pi € (0,1), and \; € (0,2¢;] for each
i=1,2,...,N satisfying the following conditions:

(C1) lim,, , ox,, =0,

(C2) 0 <limy oyn < landlimsup, B, <1,

(C3) X2 a, =coand XN, pi =1,

(C4) 3520 lann — an| < oo and 377 |Brs1 — Pl < oo,

(C5) 302 lyns1 = Yul < 00 and 307, TTit i < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yf)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, VyeQ. (4.3)

Proof. 1t is concluded from Theorem 3.2 immediately, by putting €, = 0 for all n € N. O
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Theorem 4.2. Let H be a real Hilbert space, let M; : H — 21 be a maximal monotone mapping,
and let C; : H — H be a &-cocoercive mapping for eachi = 1,2,...,N. Let A: H — H bea
strongly positive linear bounded self-adjoint operator mapping with coefficient 6 € (0,1] such that
6 < ||A|l < 1, and let f + H — H be a contraction mapping with coefficient 6 € (0,1). Let
{Sw:H — H}and {T,, : H — H} be two infinite families of ky and ky-strictly pseudocontractive
mappings with a fixed point such that ki, k, € [0,1), respectively. Define a mapping R, : H — H
by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYxeH, (4.4)

forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {p,} C (0,p], for some p € (0,1). Assume that

= (N2, F(Sa)) N (N2, F(T) N (NN, VI(H, Ci, M) #@ and 0 < y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)Zpi]Mi,)»i(xn - )‘icixn)/
= (4.5)

Xn+l = “an(xn) + ﬂnxn + ((1 —€n— ﬁn)l - “nA>]/n/

forall n € N, where {a}, {y,} C (0,1), {Bn}, {€en} C [0,1) such that €, < ay,, pi € (0,1), and
i €(0,2¢] foreachi=1,2,..., N satisfying the following conditions:

(C1) lim,, ., ot = lim,, o (€, /) =

(C2) 0 <limy—oyn < 1land thUPnHwﬂn <1,

(C3) X2 a,=coand TN, pi =1,

(C4) 350 lana — an| < 00, 3521 [Pus1 — Pul < 00, and 357, |€nsn — €x] < oo,

(C5) X2 [Ynr1 = yul < 0o amd 332, [T pi < o0,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yfl)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, YyeQ. (4.6)

Proof. It is concluded from Theorem 3.2 immediately, by putting B = I. O

Theorem 4.3. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,
and let C; : H — H be a &i-cocoercive mapping for eachi = 1,2,...,N. Let A: H — H bea
strongly positive linear bounded self-adjoint operator mapping with coefficient 6 € (0,1] such that
6 < ||A||l < 1, and let f + H — H be a contraction mapping with coefficient 6 € (0,1). Let
{Sw:H — H}and {T,, : H — H} be two infinite families of ky and ky-strictly pseudocontractive
mappings with a fixed point such that ki, k, € [0,1), respectively. Define a mapping R, : H — H
by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYxeH, (4.7)
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forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {u,} C (0,u], for some p € (0,1). Assume that
Q= (N2, F(Sw) N (N2, F(Tw) N (NN, VI(H, Ci, My)) #0 and 0 < y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]M,-,)Li(xn - LiCixy),
i=1 (4.8)

Xn+l = “an(xn) + ﬁnxn + ((1 - ﬁn)l - anA)yn/

forall n € N, where {a,},{y.} C (0,1), {f.} € [0,1), pi € (0,1), and \; € (0,2¢;] for each
i=1,2,...,N satisfying the following conditions:

(C1) lim,, ., ox,, =0,

(C2) 0 <limy ., yn < land limsup, _,_fn <1,

(C3) X2, a, =coand XN, pi =1,

(C4) 3520 lann — an| < oo and 3577 |Brst — Pl < oo,

(C5) Xt Wns1 = Yul < coand 307 TTiL i < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yfl)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, VyeQ. (4.9)

Proof. It is concluded from Theorem 4.2 immediately, by putting €, = 0 for all n € N. O

Theorem 4.4. Let H be a real Hilbert space, let M; : H — 21 be a maximal monotone mapping,
and let C; : H — H be a ¢;-cocoercive mapping for each i = 1,2,...,N. Let A: H — H bea

strongly positive linear bounded self-adjoint operator mapping with coefficient 6 € (0,1] such that
6 < ||All < 1,andlet f : H — H be a contraction mapping with coefficient & € (0,1). Let
{Sn:H — H}and {T,, : H — HY} be two infinite families of ki and ky-strictly pseudocontractive
mappings with a fixed point such that ki, ko € [0,1), respectively. Define a mapping R, : H — H
by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYxeH, (4.10)

forall n € N, where a € [k, 1) \ {0} such that k = max{ky, kp}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {u,} C (0,u], for some p € (0,1). Assume that
Q == (N2, F(Sw) N (N2, F(T) N (NN, VI(H, C;, M;)) #@ and 0 < y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - )Licix‘r‘l)l
i=1 (4.11)

Xn+1 = aan(xn) + (1 -en)I - ‘an)yn/
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forall n € N, where {a,}, {y,} C (0,1), {€x} C [0,1) such that €, < a, pi € (0,1), and X; € (0,2¢;]
foreachi=1,2,..., N satisfying the following conditions:

(C1) limy, -, oty = limy, oo (€1/n) =0,

(C2) 0 <limyooyn <1,

(C3) 32, a,=coand XN pi =1,

(C4) > |ane — ay| < ooand 371 |€ns1 — €n] < o0,

(C5) Xt [Yns1 = Yl < ooand 372 TTis i < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+yflwisa
unique solution of the variational inequality

(A-yflw,y-w) >0, VYyeQ. (4.12)

Proof. 1t is concluded from Theorem 4.2 immediately, by putting 8, = 0 for all n € N. O

Theorem 4.5. Let H be a real Hilbert space, let M; : H — 21 be a maximal monotone mapping,
and let C; : H — H be a ¢;-cocoercive mapping for eachi = 1,2,...,N. Let A: H — H bea
strongly positive linear bounded self-adjoint operator mapping with coefficient 6 € (0,1] such that
6 < ||Al < 1,and let f : H — H be a contraction mapping with coefficient 5 € (0,1). Let
{(Sn:H — H}and {T,, : H — HY} be two infinite families of ki and ky-strictly pseudocontractive
mappings with a fixed point such that ki, ko € [0,1), respectively. Define a mapping R, : H — H
by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYxeH, (4.13)

forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {u,} C (0,u], for some p € (0,1). Assume that
Q = (N1 F(Sw) N (N2 F(Tw) N (N2, VI(H, Ci, My) #B and 0 <y < 6/6. For x; = u € H,
suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)izzlpi]Mi,)q(xn - 1iCixy), (4.14)
Xn+l = aan(xn) +(I- “nA)yn/

forall n € N, where {a,},{y.} C (0,1), pi € (0,1), and \; € (0,2¢] for eachi = 1,2,...,N
satisfying the following conditions:
(C1) lim,, , oax,, =0,
(C2) 0 <limyooyn <1,
(C3) S an = oo and I, pi =1,
(C4) 3521 lan — an| < oo,
)

(C5) Xt [Yns1 = Yul <00 and 372 TTis i < oo,
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then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yfl)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, YyeQ. (4.15)

Proof. 1t is concluded from Theorem 4.4 immediately, by putting €, = 0 for all n € N. O

Theorem 4.6. Let H be a real Hilbert space, let M; : H — 2 be a maximal monotone mapping, and
let C; : H — H be a ¢;-cocoercive mapping for eachi=1,2,...,N. Let f : H — H be a contraction
mapping with coefficient 6 € (0,1), and let {S, : H — H} and {T,, : H — H} be two infinite
families of ki and ko-strictly pseudocontractive mappings with a fixed point such that ki, k, € [0, 1),
respectively. Define a mapping R, : H — H by

Rix=ax+(1-a)(aSy,x+(1-a)T,x), VYx€H, (4.16)

forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H be a W-
mapping generated by {R,} and {p,} such that {u,} C (0,u], for some p € (0,1). Assume that
Q= (N=, F(Sy) N (NZ, F(Ty) n (NY, VI(H, C;, M;)) #0. For x; = u € H, suppose that {x,)
is generated iteratively by

N
Yn = YaWnxn + (1 - Yn)ZPi]M,-,A,-(xn - LiCixy),
i=1 (4.17)

Xn+l = anf(xn) +(1- “n)]/nz

forall n € N, where {a,},{y.} C (0,1), pi € (0,1), and A; € (0,2¢] for eachi = 1,2,...,N
satisfying the following conditions:

(C1) lim,, _, oax,, =0,

(C2) 0 <limy, 0yn < 1,

(C3) X2y an = 0 and Y pi =1,

(C4) 3% lan —ay| < oo,

(C5) X5 nrt = Yul < c0and 352, TTi pi < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Pqf(w) is a unique
solution of the variational inequality

(I-flw,y-w)>0, YyeQ. (4.18)

Proof. Tt is concluded from Theorem 4.5 immediately, by puttingy =6 =1and A=1. O

Theorem 4.7. Let H be a real Hilbert space. Let A,B : H — H be two mappings of the strongly
positive linear bounded self-adjoint operator mappings with coefficients 6, € (0,1] such that & <
Al < 1and ||B|| = B, respectively, and let f : H — H be a contraction mapping with coefficient
6€(0,1). Let {S,: H — H}and {T,, : H — H} be two infinite families of ki and kp-strictly
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pseudocontractive mappings with a fixed point such that k1, k, € [0, 1), respectively. Define a mapping
R,:H — Hby

Ryx=ax+(1-a)(aS,x+(1-a)T,x), VYxeH, (4.19)

forall n € N, where a € [k,1) \ {0} such that k = max{ky, ky}. Let W,, : H — H bea W-
mapping generated by {R,} and {p,} such that {p,} C (0,p], for some p € (0,1). Assume that
Q= (" FSEN)N (M F(Th)#0and 0 < y < 6/6.Forx; = u € H, suppose that {x,} is
generated iteratively by

Yn = Yanxn + (1 - Yn)xn/

(4.20)
Xn+l = “an(xn) + ﬁann + ((1 —en)l - ﬂnB - aﬂA)y"’

forall n € N, where {a,},{y.} C (0,1) and {B,}, {€ex} C [0,1) such that ¢, < a, satisfying the
following conditions:

(C1) lim,, _, oax, = lim, . o (€, /) =0,

(C2) 0 <limy oyn < landlimsup, ,_ p, <1,

(C3) X1 an = o,

(C4) 32 lana — an| <00, 202 |Brat — Pul < 00, and 3771 |€ns1 — €] < o0,

(C5) 32 [yne1 = yul < oo amd 357, TTiLqpi < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yf)w is
a unique solution of the variational inequality

(A-yflw,y-w) >0, YyeQ. (4.21)

Proof. It is concluded from Theorem 3.2 immediately, by putting M; = C; = 0 for each i =
1,2,...,N. O

Theorem 4.8. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,

and let C; : H — H be a ¢;-cocoercive mapping for eachi =1,2,...,N. Let A,B: H — H be two
mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients 5, p €
(0,1] such that 6 < ||A|| < 1and ||B|| = B, respectively, and let f : H — H be a contraction mapping
with coefficient 6 € (0,1). Let {T,, : H — H} be an infinite family of k-strictly pseudocontractive
mappings with a fixed point such that k € [0, 1). Define a mapping R, : H — H by

Ryx=ax+(1-a)T,x, Vxe€H, (4.22)
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foralln € N, where a € [k,1). Let W,, : H — H be a W-mapping generated by {R,,} and {p,} such
that {p,} C (0, ul, for some p € (0,1). Assume that Q := (N F(T)) N (ﬂg1 VI(H,C;, M;))#0
and 0 <y < 6/6. For x1 = u € H, suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - )Licix‘r‘l)l
i=1 (4.23)

X1 = Y f (Xn) + PuBxn + (1 - €4)I = BuB — 2y A) Y,

forall n € N, where {a,}, {y.} C (0,1) and {B,}, {€n} C [0,1) such that ¢, < ay, pi € (0,1), and
Ai € (0,2¢] foreachi=1,2,..., N satisfying the following conditions:

(C1) lim,, _, oax, = limy, (€, /) =0,

(C2) 0 <lim, Yy < land limsup, ,_ p, <1,

(C3) Sy an = o and 3, pi =1,

(C4) 3y e — anl < 00, 3521 |Bust = Pl < o0, and 357, lens1 — €| < 00,

(C5) X [Ynr1 = yul < 0o amd 332 TTiL pi < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yf)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, VYyeQ. (4.24)

Proof. 1t is concluded from Theorem 3.2 immediately, by putting S,, = T, for all n € N, and
note that a € [k, 1) by Lemma 2.9. O

Theorem 4.9. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,
and let C; : H — H be a é-cocoercive mapping for eachi = 1,2,...,N. Let A,B: H — H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
E,E € (0,1] such that 6< |A|l < 1and ||B| = E, respectively, and let f : H — H be a contraction
mapping with coefficient 6 € (0,1). Let {S,, : H — H} and {T,, : H — HY} be two infinite families
of nonexpansive mappings. Define a mapping R,, : H — H by

Rix=ax+(1-a)(aS,x+(1-a)T,x), VYx€H, (4.25)

foralln € N, where a € (0,1). Let W,, : H — H be a W-mapping generated by {R,} and {p,}
such that {p,} C (0, u], for some p € (0,1). Assume that Q = ((N;ey F(S,)) N (Nrey F(Tn)) N
(ﬂfﬁ1 VI(H,Ci, M;))#0 and 0 < y < 6/6. For x1 = u € H, suppose that {x,} is generated
iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]Mi,)Li(xn - )Licix‘r‘l)l
i=1 (4.26)

X1 = Y f (Xn) + PuBxn + (1 - €4)I = BuB — 0y A) Y,
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forall n € N, where {a,}, {y.} C (0,1) and {f,}, {e,} C [0,1) such that €, < ay, p; € (0,1), and
i €(0,2¢] foreachi=1,2,..., N satisfying the following conditions:

(C1) lim,, _, uax, = lim,, . (€, /) =0,

(C2) 0 <limy yn < landlimsup, , f, <1,

(C3) X5l an = oo and Zgl pi=1,

(C4) X |aner — an| < 00, 52y [Bust = Pul < 00, and 357 [€nsn — €x] < 00,

(C5) 32 [yne1 = yal < o0 and 357 TTiLqpi < oo,

then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yf)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, YyeQ. (4.27)

Proof. 1t is concluded from Theorem 3.2 immediately, by putting k; = k = 0. O

Theorem 4.10. Let H be a real Hilbert space, let M; : H — 2H be a maximal monotone mapping,
and let C; : H — H be a ¢;-cocoercive mapping for each i = 1,2,...,N. Let A,B: H — H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
E,B € (0,1] such that 6< |A|| < 1and ||B| = B, respectively, and let f : H — H be a contraction
mapping with coefficient 6 € (0,1). Let {T,, : H — H} be an infinite family of nonexpansive
mappings. Define a mapping R, : H — H by

Ryx=ax+(1-a)T,x, Vx€H, (4.28)

foralln € N, where a € [0,1). Let W,, : H — H be a W-mapping generated by {R,,} and {p,} such
that {pn} C (0, u], for some p € (0,1). Assume that Q = (N2, F(Ty)) N (N2, VI(H, Ci, M;)) #0
and 0 <y < 6/6. For x1 = u € H, suppose that {x,} is generated iteratively by

N
Yn = Yanxn + (1 - Yn)ZPi]M,-,)L,-(xn - )Licixn)/
i=1 (4.29)

X1 = Y f (Xn) + PuBxn + (1 — €)I = BuB — 2y A) Y,

forall n € N, where {a,}, {y.} C (0,1) and {f,}, {en} C [0,1) such that e, < a,, p; € (0,1), and
Xi € (0,2¢] foreachi=1,2,..., N satisfying the following conditions:

(C1) limy,, oaxy, = limy, o5 (€ /) =0,

(C2) 0 <limy ., ooyn < land limsup,_, p, <1,

(C3) Sy an = coand 3, pi =1,

(C4) 2021 i — anl < 00, 3524 |Bna1 — Pul < 00, and 357, ens1 — €| < oo,
)

(C5) Xt [Yns1 = Yul <00 and 372 TTis i < oo,
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then the sequences {x,} and {y,} converge strongly to w € Q where w = Po(I - A+ yfl)w isa
unique solution of the variational inequality

(A-yflw,y-w) >0, YyeQ. (4.30)

Proof. It is concluded from Theorem 4.8 immediately, by putting k = 0. O

Theorem 4.11. Let H be a real Hilbert space. Let A,B : H — H be two mappings of the strongly
positive linear bounded self-adjoint operator mappings with coefficients 6, € (0,1] such that & <
[JA|l < 1and ||B| = B, respectively, and let f : H — H be a contraction mapping with coefficient
5€(0,1). Let T : H — H be a nonexpansive mapping. Assume that F(T) #@ and 0 < y < 6/6. For

x1 =u € H, suppose that {x,} is generated iteratively by
X1 = 0 f (Xn) + PuBxy + (1 — €)I = BuB — a4 A) (0nTxy + (1 — 0p)xn), (4.31)

forall n € N, where {a,}, {on,} C (0,1) and {B,}, {en} C [0,1) such that e, < a, satisfying the
following conditions:

(C1) lim,, _, ot = limy, (€, /) =0,

(C2) 0 <limy 0, < landlimsup, B, <1,

(C3) 372y oy = o0,

(C4) 302 lan — an| < 00 and 3574 [Pri1 — Pl < oo,

(C5) >q l€ns1 — €n] < 00 and 3521 |Ons1 — On| < o0,

then the sequences {x,} and {y,.} converge strongly to w € F(T) where w = Prery(I — A+ yf)w is
a unique solution of the variational inequality

((A-yf)w,y—w) >0, VyeF(T). (4.32)

Proof. From Theorem 4.10, puttinga = 0and M; =C;=0foralli=1,2,...,N. Setting Ty =T,
T,=1foralln=23,...,and let y, C (0, u] for some p € (0,1) such that 3,7 [T pi < oo.
Therefore, from the definition of R, in Theorem 4.10, we have Ry = T; = Tand R, = I
foralln = 2,3,.... Since W, is a W-mapping generated by {R,} and {,}, therefore by the
definition of U,; and W, in (1.16), we have U,,; = I for alli = 2,3,... and W,, = U1 =
wiRUpp + (1 — p1)I = inT + (1 — p1)1. Hence, by Theorem 4.10, we obtain

N
Yn = annxn + (1 - Yn)ZPi]Mi,M (xn = XiCixy)
i=1

N
=Y (1 Txn + (1= p1)xs) + (1= y2) <Zpi> Xn (4.33)
i1

Ya(paTotn + (1= 1)) + (1 = ) X

0nTxy + (1 —0y)xy,

where 0, := y,p1. This completes the proof. O
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