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We discuss global attractor for the generalized dissipative KDV equation with nonlinearity under
the initial condition u(x, 0) = u0(x). We prove existence of a global attractor in space H2(Ω), by
using decomposition method with cut-off function and Kuratowski α-measure in order to overcome
the noncompactness of the classical Sobolev embedding.

1. Introduction

In order to study the longtime behavior of a dissipative evolutionary equation, we generally
aim to show that the dynamics of the equation is finite dimensional for long time. In fact,
one possible way to express this fact is to prove that dynamical systems describing the
evolutional equation comprise the existence of the global attractor [1]. The KDV equation
without dissipative and forcing was initially derived as a model for one direction water
waves of small amplitude in shallow water, and it was later shown to model a number of
other physical stems. In recent years, the KDV equations has been always being an important
nonlinear model associated with the science of solids, liquids, and gases from different
perspectives both mathematics and physics. As for dissipative KDV equation, existence of
a global attractor is a significant feature. In [2], Ghidaglia proved that for the dissipative
KDV equation

ut + uxxx + γu = f − uux, x ∈ [0, L], (1.1)
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with periodic boundary condition u(x, t) = u(x + L, t), there exists a weak global attractor of
finite dimension. Later, there are many contributions to the global attractor of the dissipative
KDV equation (see [3–10]). In [3], Guo and Wu proved the existence of global attractors for
the generalized KDV equation

ut + uxxx − ηuxx + γu = f − g(u)x, u(x, 0) = u0. (1.2)

However, few efforts are devoted to the existence of global attractor for generalized
dissipative four-order KDV equation with nonlinearity in unbounded domains. In this paper,
we consider the existence of global attractor for generalized dissipative four-order KDV
equation with nonlinearity as follows:

ut − φ(u)x + uxxxx + βuxxx − αuxx + g(u) = f(x), (1.3)

u(x, 0) = u0, where α, β > 0, (x, t) ∈ Ω × [0, T], and Ω is unbounded domain.
As we all know, the solutions to the dissipative equation can be described by a

semigroup of solution operators. When the equation is defined in a bounded domain, if
the semigroup is asymptotically compact, then the classical theory of semiflow yields the
existence of a compact global attractor (see [11–13]). But, when the equation is defined in a
unbounded domain, which causesmore difficulties whenwe prove the existence of attractors.
Because, in this case, the Sobolev embedding is not compact. Hence, we cannot obtain a
compact global attractor using classical theory.

Fortunately, as far as we concerned, there are several methods which can be used to
show the existence of attractors in the standard Sobolev spaces even the equations are defined
in unbounded domains. One method is to show that the weak asymptotic compactness is
equivalent to the strong asymptotic compactness by an energy method (see [9, 10, 14]). A
second method is to decompose the solution operator into a compact part and asymptotically
small part (see [15–17]). A third method is to prove that the solutions uniformly small for
large space and time variables by a cut-off function (see [18, 19]) or by a weight function (see
[20]).

Generally speaking, the energy method proposed by Ball depends on the weak
continuity of relevant energy functions (see [21, 22]). However, for (1.3) in unbounded
domains, it seems that the energy method is not easy to use. Consequently, in this paper,
we will show the idea to obtain the existence of global attractor in unbounded domains
by showing the solutions are uniformly small for large space by a cut-off function or
weight function, and at the same time, we apply decomposition method and Kuratowski α-
measure to prove our result in order to overcome the noncompactness of the classical Sobolev
embedding.

This paper is organized as follows.
In Section 2, firstly, we recall some basic notations; secondly, we make precise

assumptions on the nonlinearity g(u) and φ(u); finally, we state our main result of the global
attractor for (1.3).

In Section 3, we show the existence of a absorbing set inH2(Ω).
In Section 4, we prove the existence of global attractor.
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2. Preliminaries and Main Result

We consider the generalized dissipative four-order KDV equation (1.3), where Ω ⊂ Rn is
unbounded domain and the initial data u0 ∈ H3(Ω), f ∈ H1(Ω), g(u) is nonlinearity.

Throughout the paper, we use the notation H = L2(Ω), Hs = Hs,2(Ω) with the scalar
product and norms given, respectively, by (·, ·), | · |, and ((·, ·)), ‖ · ‖. In the space H2, we

consider the scalar product ((u, v)) = (
∫
Ω ∇u · ∇v dx) and the norm ‖u‖ = (

∫
Ω |∇u|2dx)1/2.

While in the space H, we consider the scalar product (u, v) = (
∫
Ω u · v dx) and the norm

|u| = (
∫
Ω u

2dx)1/2.

Notice

Ei, C, c, ci denote for different positive constants.
First, we assume that f ∈ H, and φ(u), g(u) satisfy the following conditions:

(A1): φ(u) ∈ C3, |φ(u)| ≤ A|u|5−σ , (A > 0, 0 < σ ≤ 4),

(A2): |φ′′(u)| ≤ A|u|3−σ , |φ′′(u)| ≤ A|u|2−σ ,

(A3): g(u) ∈ C2, g(u) = g1(u) + g2(u), where g1(u) = γu, g2(u) = K|u|5(K > 0, γ > 0),

(A4): g(0) = 0, |g ′(u)| ≤ C.

Secondly, we can rewrite (1.3) as the following equation with the above assumption:

ut − φ(u)x + uxxxx + βuxxx − αuxx + γu + g2(u) = f(x), (2.1)

u(x, 0) = u0, where α, β > 0, (x, t) ∈ Ω × [0, T].
Finally, we state our main result is the following theorem.

Theorem 2.1. Let the generalized dissipative of four-order KDV equation with nonlinearity given by
(2.1). Assume that φ(u), g(u) satisfy conditions (A1)–(A4) and, moreover, u0 ∈ H2, f ∈ H1, then for
α, β, γ > 0, there exists a global attractor A of the problem (2.1), that is, there is a bounded absorbing
set B ∈ H2 in which sense the trajectories are attract toA, such that

A = ω(B) =
⋂

s≥0

⋃

t≥s
S(t)B, (2.2)

where S(t) is semigroup operator generated by the problem (2.1).

3. Existence of Absorbing Set in Space H2(Ω)

In this section, we will show the existence of an absorbing set in space H2(Ω) by obtaining
uniformly in time estimates. In order to do this, we start with the following lemmas.
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Lemma 3.1. Assume that g(u) satisfied (A4), furthermore, u0 ∈ H, f ∈ H, then for the solution u of
the problem (2.1), one has the estimates

‖u‖2 ≤ ‖u0‖2 exp(−ct) +
∥
∥f
∥
∥2

C
− exp(−ct), (3.1)

lim
t→∞

‖u‖2 ≤
∥
∥f
∥
∥2

C
= E0, (3.2)

lim
t→∞

1
t

∫ t

0
‖ux‖2dt ≤

∥
∥f
∥
∥2

2αC
. (3.3)

Proof. Taking the inner product of (2.1) with u, we have

(
ut − φ(u)x + uxxxx + βuxxx − αuxx + γu + g2(u), u

)
=
(
f, u
)
, (3.4)

where

(
u, φ(u)x

)
= 0,

(u, uxxx) = 0,
(
u, g(u)

) ≥ C‖u‖2,

∣∣(f, u
)
˜
∣∣ ≤
∥∥f
∥∥2

C
+
C‖u‖2

2
,

(3.5)

here, we apply Young’s inequality and the condition (A4).
Thus, from (3.4), we get

d

dt
‖u‖2 + 2α‖u‖ + 2C‖u‖2 ≤

∥∥f
∥∥2

C
. (3.6)

By virtue of Gronwall’s inequality and (3.6), one has (3.1) and which implies (3.2) and (3.3).

Lemma 3.2. In addition to the conditions of Lemma 3.1, one supposes that

φ(u) ∈ C2, g(u) ∈ C1,
∣∣φ(u)

∣∣ ≤ A|u|5−σ (A > 0, 0 < σ ≤ 4), (3.7)

then one has the estimate

‖ux‖2 ≤ 4 exp(−2c8t)ϕ(u0) + 2
c8

(

2

∥∥f
∥∥2

α
+ c7

)
(
1 − exp(−2c8t)

)
, (3.8)
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where

ϕ(u) = ‖ux‖2 − 1
β

∫

Ω
φ(u)dx. (3.9)

Proof. Taking the inner product of (2.1) with uxx, we have

(
ut − φ(u)x + uxxxx + βuxxx − αuxx + γu + g2(u), uxx

)
=
(
f, uxx

)
, (3.10)

where

(
uxx, φ(u)x

)
=

1
β

(
ut − φ(u)x + uxxxx − αuxx + g(u) − f

)
. (3.11)

Noticing that

1
β

(
φ(u), ut

)
=

1
β

∫

Ω
φ(u)utdx =

1
β

d

dt

∫

Ω
φ(u)dx,

(
φ(u), φ(u)x

)
= 0.

(3.12)

UsingNirberg’s interpolation inequality and the Sobolev embedding theory (see [11]),
we have

∣∣∣∣
1
β

(
φ(u), uxxxx

)
∣∣∣∣ ≤

α

2
‖uxx‖2 + c2,

∣
∣∣∣
1
β

(
φ(u),−αuxx

)
∣
∣∣∣ ≤

α

2
‖uxx‖2 + c3.

(3.13)

Due to Lemma 3.1 and conditions of Lemma 3.2, we get that

∣∣∣∣
1
β

(
φ(u), g(u)

)
∣∣∣∣ ≤

AK

β
‖u‖5−σ ≤ c4,

∣∣∣∣
1
β

(
φ(u), f

)
∣∣∣∣ ≤

A

β

∥∥f
∥∥‖u‖5−σ ≤ c5,

∣∣(g(u), uxx
)∣∣ ≤ C‖uxx‖2,

∣∣(f, uxx
)∣∣ ≤ α

2
‖uxx‖2 + 2

α

∥∥f
∥∥2.

(3.14)
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From (3.10) and above inequalities, we get

d

dt

(
‖ux‖2 − 2

α

∫

Ω
φ(u)dx

)
+
α

2
‖uxx‖2 +

(
C − γ)‖ux‖2 ≤ 2

α

∥
∥f
∥
∥2 + c6 = c7. (3.15)

Setting C − γ = c8, then we can obtain that

ϕ(u) =
1
2

∫

Ω
‖ux‖2dx − 1

β

∫

Ω

∫u

0
φ(s)dsdx ≥ 1

4
‖uxx‖2 − c9. (3.16)

Thus, by Gronwall’s inequality and (3.15), we get that

‖ux‖2 ≤ 4 exp(−2c8t)ϕ(u0) + 2
c8

(
1 − exp(−2c8t)

)
(

2
∥∥f
∥∥2

α
+ c7

)

, (3.17)

which implies

lim
t→∞

‖ux‖2 ≤ E1,

lim
t→∞

1
t

∫ t

0
‖uxx‖2dt ≤ C.

(3.18)

Therefore, we prove Lemma 3.2.

Lemma 3.3. Suppose that φ(u), g(u) satisfy (A2), (A3) and, moreover, the following conditions hold
true:

(1) φ(u) ∈ C3, g(u) ∈ C2,

(2) u0 ∈ H2, f ∈ H1,

then for the solution u of the problem of (2.1), one has the following estimate

‖uxx‖2 ≤ ‖uxx(0)‖2 exp(−2c13t) + c14
c13

(
1 − exp(−2c13t)

)
; (3.19)

furthermore,

lim
t→∞

‖uxx‖2 ≤ E2,

lim
t→∞

1
t

∫ t

0
‖uxxx‖2dt ≤ C.

(3.20)
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Proof. Taking the inner product of (2.1) with uxxxx, we have

(
ut − φ(u)x + uxxxx + βuxxx − αuxx + γu + g2(u), uxxxx

)
=
(
f, uxxxx

)
, (3.21)

where

(
uxxxx, φ(u)x

)
= −(φ(u)xx, uxxx

)
=
(
φ′′(u)u2x + φ

′(u)uxx, uxxxx
)

≤ A‖u‖3−σ‖uxx‖2‖uxxx‖ +A‖u‖4−σ‖uxx‖2‖uxxx‖.
(3.22)

By Young’s inequality and Lemmas 3.1 and 3.2, thus from (3.22), we have

∣∣(φ(u), uxxxx
)∣∣ ≤ c10u2xx + α‖uxxx‖2 + c11. (3.23)

Due to Lemmas 3.1 and 3.2 and (A3), we obtain

(
g(u), uxxxx

)
=
(
γu, uxxxx

)
+
(
g2(u), uxxxx

)

= γ‖uxx‖2 +
(
g2(u), uxxxx

)

= γ‖uxx‖2 +
(
g ′′
2(u)u

2
xx + g

′
2(u)uxx, uxx

)

≤ γ‖uxx‖2 +K‖u‖2‖ux‖2‖uxx‖ +K‖u‖3‖uxx‖2.

(3.24)

Using Young’s inequality, we have

∣∣(g(u), uxxxx
)∣∣ ≤ γ‖uxx‖2 + α

2
‖uxx‖2 + c12,

∣∣(f, uxxxx
)∣∣ =

∣∣(−fx, uxxx
)∣∣ ≤ α

2
‖uxxx‖2 + 2

α

∥∥fx
∥∥2.

(3.25)

By (3.21), (3.23) and (3.25), we get

1
2
d

dt
‖uxx‖2 + α

2
‖uxxx‖2 +

(
c10 − γ − α

2

)
‖uxx‖2 ≤ 2

α

∥∥fx
∥∥2 + c11 + c12, (3.26)

that is,

d

dt
‖uxx‖2 + α‖uxxx‖2 + c13‖uxx‖2 ≤ c14, (3.27)
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where

c13 = 2
(
c10 − γ − α

2

)
,

c14 = 2
(
2
α

∥
∥fx
∥
∥2 + c11 + c12

)
.

(3.28)

By virtue of Gronwall’s inequality, we have

‖uxx‖2 ≤ ‖uxx(0)‖2 exp(−2c13t) + c14
c13

(
1 − exp(−2c13t)

)
, (3.29)

and (3.27) implies

lim
t→∞

‖uxx‖2 ≤ E2,

lim
t→∞

1
t

∫ t

0
‖uxxx‖2dt ≤ C.

(3.30)

Therefore, we prove Lemma 3.3.

Lemma 3.4. Suppose that φ(u), g(u) satisfy (A2), (A3) and, moreover, the following conditions hold
true:

(1) φ(u) ∈ C3, g(u) ∈ C2,

(2) u0 ∈ H3, f ∈ H2,

then for the solution u of the problem of (2.1), we have the following estimates:

‖uxxx‖2 ≤ ‖uxxx(0)‖2 exp
(−2γt) + c17

γ

(
1 − exp

(−2γt)), (3.31)

where

c17 = 2
(
c16 +

2
α

∥∥fxx
∥∥2
)
; (3.32)

furthermore,

lim
t→∞

‖uxxx‖2 ≤ E3,

lim
t→∞

1
t

∫ t

0
‖uxxxx‖2dt ≤ C.

(3.33)

Proof. Taking the inner product of (2.1) with uxxxxxx, we have

(
ut − φ(u)x + uxxxx + βuxxx − αuxx + γu + g2(u), uxxxxxx

)
=
(
f, uxxxxxx

)
, (3.34)
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where

(ut, uxxxxxx) = −1
2
d

dt
‖uxxx‖2,

(uxxx, uxxxxxx) = 0,

(αuxx, uxxxxxx) = α‖uxxxx‖2,
∣∣(uxxxxxx, φ(u)x

)∣∣ =
(
φ(u)xxx, uxxxx

)
=
(
φ′′′(u)u3x + 3φ′′(u)uxuxx + φ′(u)uxxx, uxxxx

)

=
(
φ′′′(u)u3x

)
+ 3
(
φ′′(u)uxuxx, uxxxx

)
.

(3.35)
∣
∣(uxxxxxx, φ(u)x

)∣∣ =
(
φ(u)xxx, uxxxx

)
=
(
φ′′′(u)u3x + 3φ′′(u)uxuxx + φ′(u)uxxx, uxxxx

)

=
(
φ′′′(u)u3x

)
+ 3
(
φ′′(u)uxuxx, uxxxx

)
.

(3.36)

Using Nirberg’s interpolation inequality and Young’s inequality, from (3.36) and
Lemmas 3.1–3.3, we have

∣∣(uxxxxxx, φ(u)x
)∣∣ ≤ α‖uxxxx‖2 + c15. (3.37)

Due to the condition (4.3), we get

(
g(u), uxxxxxx

)
=
(
γu, uxxxxxx

)
+
(
g2(u), uxxxxxx

)
. (3.38)

By direct calculations, it is easy to get that

(
γu, uxxxxxx

)
= −γ‖uxxx‖2,

(
g2(u), uxxxxxx

)
=
(
g2(u)xx, uxxxx

)

=
(
g2(u)2x + g

′
2(u)xx, uxxxx

)

≤ α

2
‖uxxxx‖2 + c16,

∣∣(f, uxxxxxx
)∣∣ ≤ α

2
‖uxxxx‖2 + 2

α

∥∥fxx
∥∥2.

(3.39)

Due to (3.34)–(3.39), we have

1
2
d

dt
‖uxxx‖2 + α

4
‖uxxxx‖2 + γ‖uxxx‖2 ≤ 2

α

∥∥fxx
∥∥2 + c16, (3.40)

that is,

d

dt
‖uxxx‖2 + α

2
‖uxxxx‖2 + 2γ‖uxxx‖2 ≤ c17, (3.41)
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where

c17 = 2
(
2
α

∥
∥fxx

∥
∥2 + c16

)
. (3.42)

Using Gronwall’s inequality, we deduce that

‖uxxx‖2 ≤ ‖uxxx(0)‖2 exp
(−2γt) + c17

γ

(
1 − exp

(−2γt)), (3.43)

moreover, (3.41) implies

lim
t→∞

‖uxxx‖2 ≤ E3,

lim
t→∞

1
t

∫ t

0
‖uxxxx‖2dt ≤ C;

(3.44)

Therefore, we prove Lemma 3.4.

In a similar way as above, we can get the uniformly estimates of ‖uxxxx‖, ‖ut‖ and we
omit them here.

Next, we will show the existence of global solution for the problem (2.1) as follows.

Lemma 3.5. Suppose that the following conditions hold true:

(1) u0 ∈ Hm+1, f ∈ Hm,

(2) φ(u) ∈ Cm+1, ‖φ(u)‖ ≤ A|u|5−σ , (σ,A > 0),

(3) g(u) ∈ Cm, |g2(u)| ≤ K|u|5,
(4) g(u) satisfies (A3), (A4) and g(u) is Lipschitz continuous, that is,

∣∣g(u) − g(v)∣∣ ≤ C|u − v|, (3.45)

then there exists a unique global solution u for the problem (2.1) such that u ∈ L∞(0, T ;Hm(Ω)), and
furthermore,the semigroup operator S(t) associated with the problem of (2.1) is continuous and there
exists an absorbing set B ⊂ H2(Ω), where

B ∈
{
u | u ∈ H2(Ω), ‖u‖ ≤ E0, ‖ux‖ ≤ E1, ‖uxx‖ ≤ E2

}
. (3.46)

Proof. Similar to the proof of Lemmas 3.1–3.4, we have

‖u‖Hm ≤ C. (3.47)

At the same time, we use the Galerkin method (see [11]) and Lemmas 3.1–3.4 to prove the
existence of global solution for the problem (2.1). So, we omit them here.



International Journal of Mathematics and Mathematical Sciences 11

Next, we will prove the uniqueness of the global solution.
Assume that u, v are two solutions of the problem (2.1) and w = u − v, then we have

wt −
(
φ′(u) − φ′(v)

)
wx +wxxxx + βwxxx − αwxx + g(u) − g(v) = 0. (3.48)

Taking the inner product inH of (2.1) with w, we have

1
2
d

dt
‖w‖2 + ((φ′(u) − φ′(v)

)
wx,w

)
+ ‖wxx‖2 + β(wxxx,w) + α‖wx‖2 +

(
g(u) − g(v), w) = 0,

(3.49)

where

(w,wx) = 0,

(wxxx,w) = 0.
(3.50)

Due to the condition

∣∣g(u) − g(v)∣∣ ≤ C|u − v|, (3.51)

and from (3.49), we obtain

1
2
d

dt
‖w‖2 + ‖wxx‖2 + α‖wx‖2 + C‖w‖2 ≤ 0, (3.52)

that is,

1
2
d

dt
‖w‖2 + C‖w‖2 ≤ 0. (3.53)

By application of Gronwall’s inequality, we get w = 0.
Finally, we recall some basic results in [11, 23] and by Lemmas 3.1–3.3, it is easy to

prove that there exists an absorbing set

B ∈
{
u | u ∈ H2(Ω), ‖u‖ ≤ E0, ‖ux‖ ≤ E1, ‖uxx‖ ≤ E2

}
(3.54)

in H2(Ω). But as for the continuity of semigroup S(t), we can apply the following Lemmas
3.6, and 3.7 to prove the result.

Lemma 3.6. Suppose that u0 ∈ H2, f ∈ H1, and φ(u), g(u) satisfy (A1)–(A4), there exists constant
C > 0, such that

∥∥uη
∥∥2,
∥∥uηx

∥∥2,
∥∥uηxx

∥∥2,
∥∥uηxxx

∥∥2,
∥∥uηxxxx

∥∥2 ≤ C, ∀η ∈ (0, 1), t ≥ 0,
∥∥uη
∥∥2,
∥∥uηx

∥∥2,
∥∥uηxx

∥∥2 ≤ Cη, ∀η ∈ (0, 1), t ≥ t0 > 0.
(3.55)
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Now, we use the decomposition method to prove the continuity of S(t) for sake of
overcoming the difficult of noncompactness.

Set f ∈ H1(Ω), λL(x) ∈ C∞
0 (Ω), 0 ≤ λL ≤ 1, satisfies

λL(x) =

⎧
⎨

⎩

1 |x| ≤ L,
0 |x| ≤ L + 1,

(3.56)

then, for all η ∈ (0, 1), there exists Lη > 0, such that

∥
∥f − fη

∥
∥2
1,2 ≤ η, fη = f × λL

(
η
)
. (3.57)

Assume that uη is solution of the following equation:

uηt + φ
(
uη
)
x
+ uηxxxx + βuηxxx − αuηxx + g

(
uη
)
= f − fη,

uη(x, 0) = 0.
(3.58)

Setting

S1η(t)u0 = uη,

wη = S2η(t)u0 = S(t)u0 − S1η(t)u0
(3.59)

is a solution of the equation as follows:

wηt + φ
(
wη

)
x
+wηxxxx + βwηxxx − αwηxx + g

(
wη

)
= fη,

wη(x, 0) = 0.
(3.60)

Now, we prove the Lemma 3.6.

Proof. We take the scalar product in spaceH of (3.58) with uη, we get

1
2
d

dt

∥∥uη
∥∥2 + λ

∥∥uηxx
∥∥2 + α

∥∥uηx
∥∥2 + γ

∥∥uη
∥∥2 +

(
g2
(
uη
)
, uη
) ≤ ∥∥f − fη

∥∥∥∥uη
∥∥. (3.61)

Due to (A3) and Young’s inequality, we get

(
g2
(
uη
)
, uη
) ≤ γ

2
∥∥uη
∥∥2,

∥∥f − fη
∥∥∥∥uη

∥∥ ≤ γ

2
∥∥uη
∥∥2 +

η2

γ
.

(3.62)
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From (3.61), we obtain the following inequality:

d

dt

∥
∥uη
∥
∥2 + 2γ

∥
∥uη
∥
∥2 ≤ η2

γ
. (3.63)

By Gronwall’s inequality, one has

∥
∥uη
∥
∥2 ≤ ‖u0‖2 exp

(−2γt) + η2

2γ2
(
1 − exp

(−2γt)). (3.64)

Hence, there exists C > 0, such that

∥
∥uη
∥
∥2 ≤ C, (3.65)

and implies

∥∥uη
∥∥2 ≤ Cη, ∀t ≥ t0. (3.66)

We take the scalar product in space H of (3.58) with uηxx and similar to the proof of
Lemma 3.2, we have

d

dt

∥∥uηx
∥∥2 +

∥∥uηxxx
∥∥2 + 2γ

∥∥uηx
∥∥2 ≤ Cη. (3.67)

By application of Gronwall’s inequality, we deduce that

∥∥uηx
∥∥2 ≤ ‖ux(0)‖2 exp

(−2γt) + Cη2

2γ
(
1 − exp

(−2γt)). (3.68)

So, there exists C > 0, such that

∥∥uηx
∥∥2 ≤ C, (3.69)

and implies

∥∥uηx
∥∥2 ≤ Cη, ∀t ≥ t0. (3.70)

We take the scalar product in spaceH of (3.58) with uηxxxx and similar to the proof of
Lemma 3.3, we have

1
2
d

dt

∥∥uηxx
∥∥2 +

1
2
∥∥uηxxxx

∥∥2 + γ
∥∥uηxx

∥∥2 ≤ Cη. (3.71)
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It is easy to prove that

∥
∥uηxx

∥
∥2 ≤ C, ∥

∥uηxx
∥
∥2 ≤ Cη, ∀t ≥ t0. (3.72)

We take the scalar product in space H of (3.58) with uηxxxxxx and similar to the proof
of Lemma 3.4, we have

1
2
d

dt

∥
∥uηxxx

∥
∥2 +

1
2
∥
∥uηxxxx

∥
∥2 + γ

∥
∥uηxxx

∥
∥2 ≤ Cη

2
∥
∥f − fη

∥
∥2 (3.73)

that is,

d

dt

∥
∥uηxxx

∥
∥2 + 2γ

∥
∥uηxxx

∥
∥2 ≤ Cη. (3.74)

Hence, by Gronwall’s inequality, we get

∥∥uηxxx
∥∥2 ≤ C. (3.75)

At the same time, we have

∥∥uηxxxx
∥∥2 ≤ C (3.76)

and we omit them here.

Lemma 3.7. Under the conditions of Lemma 3.6, one has the following estimates

∥∥xwη

∥∥2 ≤ C1
(
η
)
,

∥∥xwηx

∥∥2 ≤ C2
(
η
)
,

∥∥xwηxx

∥∥2 ≤ C3
(
η
)
,

(3.77)

where Ci(η) > 0, (i = 1, 2, 3).

Proof. We take the scalar product in spaceH of (3.60) with x2wη and noticing that

(
wηxxxx, x

2wη

)
=
∥∥xwηxx

∥∥2 + 4
(
wηxx, xwηx

) − 2
∥∥wηx

∥∥2, (3.78)

it is easy to get that

d

dt

∥∥xwη

∥∥2 +
∥∥xwηxx

∥∥2 + γ
∥∥xwη

∥∥2 ≤ C(η). (3.79)
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By Gronwall’s inequality, we have

∥
∥xwη

∥
∥2 ≤ C1

(
η
)
. (3.80)

From (3.60), we obtain

wηtxx + φ
(
wη

)
xxx

+wηxxxxxxx + βwηxxxxxx − αwηxxxx + g
(
wη

)
xx

= fηxx (3.81)

We take the scalar product in spaceH of (3.61)with x2wηxx and noticing that

(
wηxxxxxx, x

2wηxxx

)
=
∥
∥xwηxxxx

∥
∥2 + 4

(
wηxx, xwηxxx

) − 2
∥
∥wηxxx

∥
∥2,

(
wηxxxxx, x

2wηxx

)
= −4(wηxx, xwηxxxx

)
,

(
fηxx, x

2wηxx

)
= −4

(
fη, x

2wηxxxx

)
,

(
φ
(
wη

)
xxx

, x2wηxx

)
=
(
φ
(
wη

)
xx
,
(
x2wηxx

)

xx

)

=
(
φ′(wη

)
wηx, 2wηxx + 4xwηxxx + x2wηxxxx

)

= 4
(
φ′(wη

)
wηx, xwηxxx

)
,

(
g
(
wη

)
xx
, x2wηxx

)
= −
(
g
(
wη

)
xx

)

x
, x2wηxx

)

x

)
,

= −
(
g
(
wη

)
xx

)

x
, 2xwηxx + x2wηxxx

=
(
−g ′(wη

)
wηx, x

2wηxxx

)
.

(3.82)

By Young’s inequality and the Sobolev embedding theory (see [11]) and (3.81)-(3.82),
we deduce that

d

dt

∥∥xwηxx

∥∥2 + 2γ
∥∥xwηxx

∥∥2 ≤ C(η). (3.83)

Using Gronwall’s inequality, we obtain

∥∥xwηxx

∥∥2 ≤ C3
(
η
)
,

∥∥xwηx

∥∥2 =
∫
Ω x

2w2
ηxdx − 2

∫
Ω xwηxdx − ∫Ω x2wηxxwηdx

≤ 2
∥∥xwη

∥∥∥∥wηx

∥∥ +
∥∥xwηxx

∥∥∥∥xwη

∥∥

≤ C2
(
η
)
.

(3.84)

The proof of Lemma 3.7 is completed.

Using Lemmas 3.6 and 3.7, we can prove that S(t) is continuous.
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4. Existence of Global Attractor in Space H2(Ω)

In this section, we prove that the semigroup operator S(t) associated with the problem (2.1)
possesses a global attractor in spaceH2(Ω).

In order to prove our result, we need the following results.

Lemma 4.1 (see [23]). Assume that s > s1, (s, s1 ∈ N), then the following embedding Hs(Rn) ∩
Hs1 (Rn, (1 + |x|2dx))intoHs1(Rn) is compact.

Proof. Let B ⊂ Hs(Rn) ∩Hs1(Rn, (1 + |x|2dx))be a bounded set. It suffices to prove that B has
a finite ε-net for any ε > 0. First, since

∫

Rn
|x|2
∑

l>s1

∣
∣
∣Dlu

∣
∣
∣
2
dx ≤ C, for u ∈ B, (4.1)

there exists an integer A > 0, such that

∫

|x|<A

∑

l>s1

∣∣∣Dlu
∣∣∣
2
dx ≤ 1

A2

∫

|x|<A
|x|2
∑

l>s1

∣∣∣Dlu
∣∣∣
2
dx ≤ C

A2
≤ ε2

2
. (4.2)

Let Ω = {x||x| < A|}, then the imbeddingHs(Ω) ↪→ Hs1(Ω) is compact. Thus,

B|Ω = {u | u = v|Ω, v ∈ B} ⊂ Hs(Ω) (4.3)

is relatively compact inHs1(Ω) and has a finite (ε/
√
2)-net B(ũk, (ε/

√
2)), k = 1, 2, . . . , mwith

ũk ∈ B|Ω,ũk = uk|Ω and uk ∈ B. We claim that {B(ũk, (ε/
√
2))} is an ε-net of B inHs1(Ω).

Indeed, for any u ∈ B, ũ = u|Ω, then there exists a ũk such that

‖ũk − ũ‖Hs1 (Ω) <
ε√
2
. (4.4)

Hence,

‖ũ − ũk‖2Hs1 (Rn) = ‖ũ − ũk‖2Hs1Ω + ‖ũ − ũk‖2HRn\Ω

≤ ε2

2
+
∫

|x|<A
|x|2
∑

l≤s1

∣∣∣Dlu
∣∣∣
2
dx

< ε2.

(4.5)

This completes the lemma.

Lemma 4.2 (see [7, 11]). Let E be Banach space and {S(t), t ≥ 0} a set of semigroup operators, that
is, S(t) : E → E satisfy

S(t)S(τ) = S(t + τ), S(0) = I, (4.6)
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where I is the identity operator and E is spaceH2(Ω). We also assume that

(1) S(t) is bounded, that is, for each R > 0, there exists a constant C > 0 such that ‖u‖E ≤ C
implies ‖S(t)u‖E ≤ R, (t ≥ 0),

(2) there is an bounded absorbing set B0 ⊂ E, that is, for any bounded set B ⊂ E, there exists a
constant T , such that S(t)B ⊂ B0, for t ≥ T ,

(3) S(t) is a continuous operator for t > 0, then S(t) has a compact global attractor

A = ω(B0) =
⋂

s≥0

⋃

t≥s
S(t)B0 (4.7)

in the space E0, such that

(1) S(t)A = A, t ≥ 0,

(2) dist(S(t)B,A)E → 0 as t → +∞, and dist(S(t)B,A)E denotes the Hausdorff
semidistance defined as

dist(S(t)B,A) = sup
x∈S(t)B

inf
y∈A

d
(
x, y
)
, (4.8)

for any bounded set B ⊂ H2(Ω) in which sense the trajectories are attracted to A (see[9,
24]), using Kuratowski α-measure in order to overcome the non-compactness of the classical
Sobolev embedding.

Firstly, we need the following definitions.

Definition 4.3 (see [11, 25]). Let {S(t)}t≥0 be a semigroup in complete metric space E. For any
subset B ⊂ E, the set ω(B) defined by ω(B) =

⋂
s≥0
⋃
t≥s S(t)B is called the ω-limit set of B.

Remark 4.4. (1) It is easy to see that ψ ∈ ω(B) if and only if there exists a sequence of element
ψn ∈ B and a sequence tn → ∞, such that

S(tn)ψn → ψ, as n −→ ∞. (4.9)

(2) If ω(B) is ω-limit compact set, then, for every bounded subset B of E and for any
ε > 0, there exists a t0 > 0, such that α(

⋃
t≥t0 S(t)B) ≤ ε.

Definition 4.5 (see [11, 26]). Let {S(t)}t≥0 be a semigroup in complete metric space E. A subset
B0 of E is called an absorbing set in E if, for any bounded subset B of E, there exists some
t0 ≥ 0, such that S(t)B ⊂ B0, for all t ≥ t0.

Definition 4.6 (see [11, 26]). Let {S(t)}t≥0 be a semigroup in complete metric space E. A subset
A of E is called global attractor for the semigroup if A is compact and enjoys the following
properties:

(1) A is a invariant set, that is, S(t)A = A, for any t ≥ t0,
(2) A attract all bounded set of E, that is, for any bounded subset B of E,

dist(S(t)B,A) → 0, as t → ∞, where dist(B,A) is Hausdorff semidistance of two
set B and A in space E: dist(B,A) = supx∈Binfy∈Ad(x, y).
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Definition 4.7 (see [12, 27]). Kuratowski α-measure of set B is defined by the formula

α(B) = inf{δ | B has a finite cover of diameter < δ}, (4.10)

for every bounded set B of a Banach space X.

Secondly, due to Definition 4.6, it is easy to see that Kuratowski α-measure of set B has
the following properties.

Remark 4.8. (1) IfA is compact set, then α(A) = 0;
(2) α(A + B) ≤ α(A) + α(B),
(3) α(A ∪ B) ≤ Max{α(A), α(B)},
(4) if A ≤ B, α(A) ≤ α(B),
(5) α(B) ≤ α(B).
Thirdly, we prove Theorem 2.1.

Proof. Using the result of [11], we have S(t) is ω-limit compact and B is bounded, for any
ε > 0, there exists t ≥ 0 such that

α

(
⋃

t≥t0
S(t)B

)

≤ ε. (4.11)

Taking ε = 1/n, (n = 1, 2, . . .), we can find a sequence {tn}, t1 < t2 < · · · tn < · · · , such that

α

(
⋃

t≥tn
S(t)B

)

≤ 1
n
. (4.12)

By α(B) ≤ α(B), we get

α

(
⋃

t≥tn
S(t)B

)

≤ 1
n
,

A = ω(B) =
⋂

s≥0

⋃

t≥s
S(t)B =

∞⋂

n=1

⋃

t≥tn
S(t)B.

(4.13)

First, we prove that A = ω(B) is variant. As a matter of fact, if ψ ∈ S(t)ω(B), then ψ = S(t)φ,
for some φ ∈ ω(B). So, there exists a sequence φn ∈ B and tn → ∞ such that S(t)φn → φ,
that is,

S(t)S(tn)φn = S(t + tn)φn −→ S(t)φ = ψ, (4.14)

which implies that ψ ∈ ω(B) and S(t)ω(B) ⊂ ω(B).
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Conversely, if ψ ∈ ω(B), by (4.9), we can find two sequences φn ∈ B and tn → ∞ such
that S(tn)φn → φ. We need to prove that {S(tn − t)φn} has a subsequence which converges in
E. For any ε > 0, there exists a tε such that

α

(
⋃

t′≥tε
S
(
t′
)
B

)

≤ ε, (4.15)

which implies that

α

(
⋃

t′≥t+tε
S
(
t′ − t)B

)

≤ ε. (4.16)

Hence, there exists an integerN, such that

⋃

n≥N
S(tn − t)φn ⊂

⋃

t′≥t+tε
S
(
t′ − t)B. (4.17)

Then, it follows that

α

(
⋃

n≥N
S(tn − t)φn

)

≤ ε. (4.18)

Notice that α(
⋃
n≥N S(tn − t)φn) ≤ ε contains only a finite number of elements, where N0 is

fixed such that tn − t ≥ 0, as n ≥N0.
By properties (1)–(4) in Remark 4.8, we have

α

(
⋃

n≥N0

S(tn − t)φn
)

= α

(
⋃

n≥N
S(tn − t)φn

)

≤ ε. (4.19)

Let ε → 0, then we get that

α

(
⋃

n≥N0

S(tn − t)φn
)

= 0. (4.20)

This implies that {S(tn − t)φn} is relatively compact. So, there exists a subsequence tnj → ∞
and ψ ∈ E, such that

S
(
tnj − t

)
φnj −→ ∞, as tnj −→ ∞. (4.21)

It is easy to see that ψ ∈ ω(B) and

φ = lim
j→∞

S
(
tnj − t

)
φnj = lim

j→∞
S(t)S

(
tnj − t

)
φnj = S(t)ψ (4.22)

furthermore, φ ∈ S(t)ω(B).
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Next, by virtue of Lemma 4.2 and the result of [11, 12], we prove that A = ω(B) is an
global attractor in E and attracts all bounded subsets of E.

Otherwise, then there exists a bounded subset B0 of E such that dist(S(t)B0,A) does
not tend to 0 as t → ∞. Thus, there exists a δ > 0 and a sequence tn → ∞ such that

dist(S(tn)B0,A) ≥ δ > 0, ∀n ∈N. (4.23)

For each n, there exist bn ∈ B0, (n = 1, 2, . . .) satisfying

dist(S(tn)bn,A) ≥ δ

2
> 0. (4.24)

Whereas B is an absorbing set, S(tn)B0 and S(tn)bn belong to B, for n sufficiently large. As in
the discussion above, we obtain that S(tn)bn is relatively compact admits at least one cluster
point γ ,

γ = lim
ni →∞

S(tni)bni = lim
ni →∞

S(tni − t1)S(t1)bni , (4.25)

where t1 follows S(t1)B0 ⊂ B. So, γ ∈ A = ω(B) and this contradicts (4.24). The proof is
complete.
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