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We introduce a new iterative scheme by hybrid method for finding a common element of the set
of common fixed points of infinite family of nonexpansive mappings, the set of common solutions
to a system of generalized mixed equilibrium problems, and the set of solutions to a variational
inequality problem in a real Hilbert space. We then prove strong convergence of the scheme to a

common element of the three sets. We give some applications of our results. Our results extend
important recent results.

1. Introduction

Let K be a nonempty closed and convex subset of a real Hilbert space H. A mapping A :
K — H is called monotone if

(Ax-Ay,x-y) >0, Vx,yeKk. (1.1)
The variational inequality problem is to find an x* € K such that
(y-x",Ax*) >0, VyeK (1.2)

(see, e.g., [1]). We will denote the set of solutions to the variational inequality problem (1.2)
by VI(K, A).
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A mapping A : K — H is called inverse-strongly monotone (see, e.g., [2, 3]) if there
exists a positive real number a such that (Ax — Ay, x - y) > a||Ax — Ay|]?, forall x,y € K.
For such a case, A is called a-inverse-strongly monotone.

A mapping T : K — K is said to be nonexpansive if

ITx =Tyl < [lx -y

, (1.3)

for all x,y € K. A point x € K is called a fixed point of T if Tx = x. The set of fixed points of T
istheset F(T) := {x € K : Tx = x}.

Let ¢ : K — R be a real-valued function and A : K — H a nonlinear mapping.
Suppose that F : K x K into R is an equilibrium bifunction. That is, F(u,u) =0, for all u € K.
The generalized mixed equilibrium problem is to find x € K (see, e.g., [4-6]) such that

F(x,y) +¢(y) —9(x) + (Ax,y - x) >0, (1.4)

for all y € K. We will denote the set of solutions of this generalized mixed equilibrium prob-
lem by GMEP(F, A, ). Thus

GMEP(F, A, p) := {x* €e K: F(x*,y) +9(y) —op(x*) + (Ax*, y —x*) >0, Vy e K}. (1.5)

If ¢ =0, A =0, then problem (1.4) reduces to equilibrium problem studied by many authors
(see, e.g., [7-14]), which is to find x* € K such that

F(x",y) 20, (1.6)

for all y € K. The set of solutions of (1.6) is denoted by EP(F).
If ¢ = 0, then problem (1.4) reduces to generalized equilibrium problem studied by
many authors (see, e.g., [15-18]), which is to find x* € K such that

F(x*,y) + (Ax*,y —x*) >0, (1.7)

for all y € K. The set of solutions of (1.7) is denoted by GEP(F, A).
If A = 0, then problem (1.4) reduces to mixed equilibrium problem considered by
many authors (see, e.g., [19-21]), which is to find x* € K such that

F(x',y) +9(y) —p(x*) 20, (1.8)

for all y € K. The set of solutions of (1.8) is denoted by MEP(F, ¢).

The generalized mixed equilibrium problems include fixed point problems, optimiza-
tion problems, variational inequality problems, Nash equilibrium problems, and equilibrium
problems as special cases (see, e.g., [22]). Numerous problems in physics, optimization, and
economics reduce to find a solution of problem (1.4). Several methods have been proposed
to solve the fixed point problems, variational inequality problems, and equilibrium problems
in the literature. See, for example, [23-33].
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One of the iterative processes (see Halpern [34]) which is often used to approximate a
fixed point of a nonexpansive mapping T is defined as follows. Take an initial guess xp € K
arbitrarily and define {x,} recursively by

Xpi1 = apxo+ (1 —a,)Tx,, n>0, (1.9)

where {a,} is a sequence in [0, 1]. The iteration process (1.9) has been proved to be strongly
convergent both in Hilbert spaces [34-36] and uniformly smooth Banach spaces [37, 38] when
the sequence {a,} satisfies the conditions

(i) limy oot = 0,
(ii) X2 an = oo,

(iii) either X774 |1 — ay| < 00 Or limy, o0ty / Ays1 = 1.

Motivated by (1.9), Martinez-Yanes and Xu [39] introduced the following iterative
scheme for a single nonexpansive mapping T in a Hilbert space:

xo € K,

Yn = XpXo + (1-a,)Txy,,
Cu={zeK: |lya=2l < I~ =l + au (ol + 2030 - x0,2)) |, (1.10)
Qn={zeK:{xy—2z,x,—x0) <0},

Xn+1 = Pc,n0, X0,

where Pk denotes the metric projection of H onto a closed and convex subset K of H. They
proved that if {a,} C (0,1) and lim,,_, ,a, = 0, then the sequence {x,} converges strongly to
PF(T)X().

Furthermore, algorithm (1.10) has been modified by many authors for relatively non-
expansive mappings and quasi-¢-nonexpansive mappings in Banach spaces (see, e.g., [40-
43]).

Recently, Ceng and Yao [44] introduced a new iterative scheme of approximating a
common element of the set of solutions to mixed equilibrium problem and set of common
fixed points of finite family of nonexpansive mappings in a real Hilbert space H. In the proof
process of their results, they imposed the following condition on a nonempty closed and
convex subset K of H:

(E) A: K — Ris 7-strongly convex and its derivative A’ is sequentially continuous
from weak topology to the strong topology.

We remark here that this condition (E) has been used by many authors for approxi-
mation of solution to mixed equilibrium problem in a real Hilbert space (see, e.g., [45, 46]).
However, it is observed that condition (E) does not include the case A(x) = ||x|?>/2 and
1(x,y) = x —y. Furthermore, Peng and Yao [19], Wangkeeree and Wangkeeree [47], and other
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authors replaced condition (E) with these conditions:

(B1) foreachx € H and r > 0, there exist a bounded subset D, C K and y, € K such that,
for any z € K \ Dy,

F(z,yx) +¢(yx) — p(z) + %(yx—z,z—x> <0, (1.11)

or
(B2) K is a bounded set.

Consequently, conditions (B1) and (B2) have been used by many authors in approx-
imating solution to generalized mixed equilibrium (mixed equilibrium) problems in a real
Hilbert space (see, e.g., [19, 47]).

In [48], Takahashi et al. proved the following convergence theorem using hybrid
method.

Theorem 1.1 (Takahashi et al. [48]). Let K be a nonempty closed and convex subset of a real Hilbert
space H. Let T be a nonexpansive mapping of K into itself such that F(T)#@. For C; = K, x1 =
P, xo, define sequences {x, 5o and {yn } ey of K as follows:

Yn=anXn+ (1 —an)Tx,, n21,
Con={z€Cp:|lyn—z|<lxn—-2l}, n>1, (1.12)

X1 = Pe,,,x0, m2>1.

n+l

Assume that {ay, };-1 C [0,1) satisfies 0 < a, < a < 1. Then, {x,};- converges strongly to Pr(r)xo.

Motivated by the results of Takahashi et al. [48], Kumam [49] studied the problem
of approximating a common element of set of solutions to an equilibrium problem, set
of solutions to variational inequality problem, and set of fixed points of a nonexpansive
mapping in a real Hilbert space. In particular, he proved the following theorem.

Theorem 1.2 (Kumam [49]). Let K be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from K x K satisfying (A1)-(A4), and let B be a B-inverse-strongly monotone
mapping of K into H. Let T be a nonexpansive mapping of K into H such that F(T) N EP(F) N
VI(K, B) #@. For C1 = K, x1 = Pc, xo, define sequences {x, },— and {z, };.; of K as follows:

F(zy,y) + %(y—zn,zn—xﬁ >0, Vyek,
n

Yn = anXxy + (1 — ) TPk (2 — \yBz,), n>1, (1.13)
Cn+1={ZECnI ”yn_Z” S”xn_Z”}/ n>1,
xn+1 = PCM xOI n 2 1

Assume that {a, )54 C [0,1), {rn}eq C (0, 00), and {A,},eq C [0,2p] satisfy

liminfr, >0, O<c<A, < f<2B, lim «a,, = 0. (1.14)
n—oo

n—oo

Then, {xn},q converges strongly to Pr(r)~Ep(F)nvi(K,B)X0-
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Quite recently, Chantarangsi et al. [50] proved the following convergence theorem for
approximation of fixed point of a nonexpansive mapping which is also a common solution to
a system of generalized mixed equilibrium problems and variational inequality problem in a
real Hilbert space.

Theorem 1.3 (Chantarangsi et al. [50]). Let K be a nonempty closed and convex subset of a real
Hilbert space H. Let 61, 02 be bifunctions from K x K satisfying (A1)-(A4), ¥ an ¢-inverse-
strongly monotone mapping of K into H, ¥, a p-inverse-strongly monotone mapping of K into H
with assumption (B1) or (B2), and T: K — K a nonexpansive mapping. Let B be an w-Lipschitz
continuous and relaxed (v, v) co-coercive mapping of K into H, f : K — K a contraction mapping
with coefficient 11 € (0,1), and A a strongly positive linear bounded selfadjoint operator with coefficient
Y > 0and 0 < y < y/n. Suppose that F := F(T) N GMEP(61, ¢, ¥1) N GMEP(0;, 9, ¥>) N
VI(K, B) #0. Let {zy } 5oy, {ttn} o1, {Yn )y, and {x,},eq be generated by

01,
Uy = T,(n1 W(xn -, ¥Yix,),

-

zn = Px(vy, — ay,BSvy,), (1.15)
Yn = EnYf(Xn) + Puxn + (1= Pu)] — €4A) 20,
Xni1 = YuXn + (L= Yn)Yn, Yn 21,

(un - Snlpl un)/

Where {rn} C [a/b] C [Olzé]/ {Sn} C [Cld] C [Olzﬂ]/ {Yn} C [h'l]] C (O/]-)/ {Yn}/ {Sn}/ {ﬁn} are
three sequences in (0, 1) satisfying the following conditions:

(C1) limy—, & =0and 357 €, = 0,

(C2) 0 < liminf, . p, <limsup, ,_p. <1,

(C3) 0 <liminf, 1, <limsup, | 1, <2¢and limy, . |tn1 — 14| =0,

(C4) 0 < liminf, . s, <limsup, s, <2pand lim, . |Su+1 — x| = 0,

(C5) {an} C[e,g] C (0, (2(v —vw?))/w?), v > vw? and limy, _, o |11 — ay| = 0.
Then, {x,} converges strongly to z = Pr(y f + (I = A))(z2).

Motivated by the ongoing research and the above-mentioned results, we modify algo-
rithm (1.10) and introduce a new iterative scheme for finding a common element of the set of fixed
points of an infinite family of nonexpansive mappings, the set of common solutions to a system of
generalized mixed equilibrium problems, and the set of solutions to a variational inequality problem in
a real Hilbert space. Furthermore, we show that our new iterative scheme converges strongly
to a common element of the three sets. In the proof process of our results, we use conditions

(B1) and (B2) mentioned above. Our result extends many important recent results. Finally,
we give some applications of our results.

2. Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, and let K be a nonempty
closed and convex subset of H. The strong convergence of {x,},.; to x is written x, — x as
n — oo.
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For any point u € H, there exists a unique point Pxu € K such that

lu—Pxu| < ||lu-vyl|, Yyek. (2.1)

P is called the metric projection of H onto K. We know that Px is a nonexpansive mapping of
H onto K. It is also known that Px satisfies

(x -y, Pxx - Pxy) > || Pex - Pey®, (2.2)
for all x, y € H. Furthermore, Pxx is characterized by the properties Pxx € K and
(x — Pxx, Pkx —y) >0, (2.3)
forall y € K and

>, VxeH, yeKk. (2.4)

lIx = Pecx|]” < [lx = y||* - ||y - Pxx

In the context of the variational inequality problem, (2.3) implies that

x* € VI(K, A) &= x* = Px(x* — LAx"), VA>0. (2.5)

If A is an a-inverse-strongly monotone mapping of K into H, then it is obvious that A is a
(1/a)-Lipschitz continuous. We also have that, for all x,y € K and r > 0,

|[(I-rA)x - (I—rA)y”2 = ||x—y—r(Ax—Ay)||2
= lx -y’ ~2r(Ax - Ay, x-y) + Pl Ax - Ay[|”  (26)
< |lx =yl +r(r - 20) || Ax - Ay||*.

So, if r < 2a, then I — r A is a nonexpansive mapping of K into H.
For solving the generalized mixed equilibrium problem for a bifunction F : KxK — R,
let us assume that F, ¢, and K satisfy the following conditions:

(A1) F(x,x) =0forall x € K,

(A2) F is monotone, thatis, F(x,y) + F(y,x) < 0forall x,y,€ K,

(A3) foreach x,y,z € K, lim; oF(tz+ (1 - t)x,y) < F(x,y),

(A4) for each x € K, y — F(x,y) is convex and lower semicontinuous,

(B1) for each x € H and r > 0 there exist a bounded subset D, C K and y, € K such that
forany z € K\ Dy,

F(z,yx) + ¢(yx) — ¢(z) + %<yx ~z,z-x) <0, (2.7)

(B2) K is a bounded set.

Then, we have the following lemma.
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Lemma 2.1 (Wangkeeree and Wangkeeree [47]). Assume that F : K x K — R satisfies (A1)-
(A4), and let ¢ : K — R be a proper lower semicontinuous and convex function. Assume that either

(B1) or (B2) holds. For r > 0 and x € H, define a mapping T H - K as follows:
T (x) = {z €eK:F(z,y)+o¢(y) —o(z)+ %(y -z,z-x)>0, Vy e K}, (2.8)

forall z € H. Then, the following hold:

(1) for each x € H, Tr(F’q’) 0,
(2) Tr(F’(‘a) is single-valued,

(3) T,(F’(‘a) is firmly nonexpansive, that is, for any x,y € H,

2
T -y | < (1% - Ty, x -y ), (2.9)

(4) F(T;"") = GMEP(F),
(5) GMEP(F) is closed and convex.

We will also use the following lemma in our results.

Lemma 2.2 (Baillon and Haddad [51]). Let E be a Banach space, let f be a continuously Fréchet
differentiable convex functional on E, and let V f be the gradient of f. If Vf is (1/a)-Lipschitz
continuous, then V f is a-inverse-strongly monotone.

3. Main Results

Theorem 3.1. Let K be a nonempty closed and convex subset of a real Hilbert space H. For each
m = 1,2, let Fy, be a bifunction from K x K satisfying (A1)—(A4), ¢, : K — R U {400} a proper
lower semicontinuous and convex function with assumption (B1) or (B2), A be an a-inverse-strongly
monotone mapping of K into H, and B a B-inverse-strongly monotone mapping of K into H, and, for
eachi=1,2,... let T; : K — K be a nonexpansive mapping such that (\;2, F(T;) # 0. Let D be a y-
inverse-strongly monotone mapping of K into H. Suppose that F := (2, F(T;) N\GMEP(F1, A, ¢1) N
GMEP(F,, B, p2)N\VI(K, D) #0. Let {2}, ()20, (200}, (Y ioa (1= 1,2,...), and {x,) 2
be generated by xop € K, C1; = K, C1 = N2, C1i, x1 = Pc, X0,

Fy,
Zp = Trg,, ! (pl)(xn — mAXy),
F,
Up = Tinz %) (2, — A,Bz,),
wy, = Px(u, — syDuy,),

Yni = dnixo + (1 — ) Tiwy,
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2
Cuori = {2 € Cui t [lyms = 2l < lw = 217 + ans (oI + 203 = x0,2)) |,

[oo]
Cue1 = \Crsviv
i=1

Xni1 = Pc,,,x0, n2>1.
(3.1)
Assume that {ay;}q € (0,1) (i=1,2,...), {rn};eq C[0,2a], and {A,};2, C [0,2p] satisfy
(i)0<a<r,<b<2a
(i) 0<c<A, < f<2p,
(iii) limy, — oatni =0,
(iv) 0<h<s,<j<2y.
Then, {x,},q converges strongly to Ppxo.
Proof. Let x* € F. Then,
llewn = x*|* = | P (ttn = $uDitt) — P (x* = 5, Dx") ||
< |I(n = $nD1ty) = (x* = 5,Dx") || 52)

< |t = x*|* + 50 (50 — 27) || Dy, — Dx*||?

< [l = x|

Since both I — r, A and I — A,,B are nonexpansive for each n > 1 and x* = Tr(fl’(‘al) (x* — r, Ax*),
x* = Tifz"m) (x* = 1,,Bx*), from (2.6), we have that

2
4 = %I = || 737 (20 = AuBza) - x°

2
= ||ij ) (2, = Bzy) ~ Ty % (x* ~ A, Bx”")

<|I(I = A,B)z, — (I = A,B)x*|?
< 1zn = 2** + Xa (A = 2B)||Bz,, — Bx*|*

<|lzn —x*|*  (since A, <28, Yn>1),
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2
Tr(fl"’”)(xn -1 Axy) — X ”

I12s —x|1* =

2
Tffl"pl) (xn — ThAxy) — Tr(fl"pl) (x* - 1, Ax™)

<A =raA)xn = (I = ru A)x"|?
< lxn = X7 + 1u(rn = 20) | A, — Ax"|?
< [lxn = X717
(3.3)
Therefore,

[l = x*|| < [l = 7. (3.4)

Letn =1, then C;; = K is closed convex for eachi = 1,2,.... Now assume that C,,; is closed
convex for some n > 1. Then, from definition of C,.1,;, we know that C,,1,; is closed convex
for the same n > 1. Hence, C,,; is closed convex for n > 1 and for eachi =1,2,.... This implies
that C,, is closed convex for n > 1. Furthermore, we show that F ¢ C,. Forn =1, F ¢ K = Cy;.
Forn > 2,let x* € F. Then,

[ = %" |17 = w0 = x*) + (1 = ) (Tiewy, — ) |

< anillxo = I + (1= an)llw, - x|
(3.5)
< My = x| + e (Jlxo = x| = ewow = °|1°)

2
< 1t = 2" + i ([0l + 243 = x0, %)),

which shows that x* € C,,;, foralln > 2, foralli =1,2,.... Thus, F ¢ C,;, forall n > 1, for
alli=1,2,.... Hence, it follows that F ¢ C,, for all n > 1. Since x, = Pc,xo, for alln > 1, and
Xps1 € Cuy1 C Cy, for all m > 1, we have that

llxn = x0l| < llxn+1 — x0ll, Yn>1. (3.6)

Also, as F ¢ C,, by (2.1), it follows that
lxn —x0ll < llz=x0ll, z€F Yn>1. (3.7)
From (3.6) and (3.7), we have that lim,_, .,||x,, — xol| exists. Hence, {x,},-, is bounded and
so are {z,};21, {Axu )iy, {tn)izr, {Dun)iiy, {Bzn oot {wn)y, {Tiwn )2, and {yn,i};?;p i=

1,2,.... For m > n > 1, we have that x,, = Pc, xo € C,, C C,,. By (2.4), we obtain

1% = xall? < [1%n = xol| = |2m = X0 (3.8)
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Letting m,n — oo and taking the limit in (3.8), we have that x,, —x, — 0, m,n — oo, which
shows that {x,} - is Cauchy. In particular, im, _, o ||Xns1 — x,|| = 0. Since, {x, };-, is Cauchy,

we assume that x, — z € K.
Since x,,.1 = Pc_ xo € Cp41, then

n+l

i = 2wt I < W = 2t I + s (0] + 2000 = %0, %11} ) — 0, (3.9)
and it follows that
s = xall < [[Ymi = x| + 120 = X (3.10)
Thus,

Um [y —xal =0, i=1,2,.... (3.11)

Furthermore,

2
”yn,i -x" ” < an,i“xO - X*Hz + (1 - “n,i)“Tiwn - x*”2
< ayillxo = x7|P + (1= ani) lwn — x*||

2 2
< anillxo = x*[7 + (1= ani)[[un = 7|

*112 2
< apjillxo = X7+ (1 - an,i)

|T§f (2, — \uBzy) = T (x* ~ 1,,Bx")

< ayillxo = x| + (1 = )| (zn = AuBzn) = (x* = AuBx")||”
< tillx0 = 1P + (1= i) [0 = %I + Au (An — 28) 1Bz, - Bx"|’]

2 2 2
< atpiflxo = x| + (130 = X"[I7 + Xn (An = 2B) Bz — Bx"||".

(3.12)
Since 0 < ¢ < A, < f <2, we have that
%112 %112 x 12 *1(2
C(Zﬂ _f)”BZn - Bx ” < ”xn - X ” - ”yn,i - X ” + “n,i”xO - X ”
(3.13)
* * *112
< Nymi = x| (len = 2N + |y = x7||) + @nillxo — x|,
Hence, lim,, _, ,||Bz,, — Bx*|| = 0. From (3.1), we have that
112 %112 *112
[y = x* (1 < anillxo = 21" + (1 = an,) | Toewn — x°|
= anifloo = 27 + (1= atw)l|en = 7 (3.14)

2 2
< anillxo = X7+ [fun — 7|7
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On the other hand,

« Fa, P, « Nk
[t — x| < ||Tjn“"2’(zn ~ AuBzy) = T (x" — 1, Bx") |

<{((zn — AyBzy) — (X" = AyBx™), up — X*)
1 * *\ 12 *112
= 5[z = 2uBza) = (x* = 1B P + s - x|
~ 11z = AuBzZ2) = (" = 1,Bx") = (un = x|

< o[l = 212+l = 21 = (20 = AnB2) = (¢ = LuBx") = (1t — ")

N

1 2 2
= 5 [Ilzn = %I+l = 21 = 1t = 2P

+ 20, (zy — Uy, Bz, — Bx™) — )Lfl||an - Bx*||2],
(3.15)

and, hence,

lttn = x*|* < N1z = X*|* = llttn = Zl|* + 240 (2z0 — Un, Bzy, — Bx*) — A2||Bz,, — Bx*||?
(3.16)
<|lzn = x*|* = lttn = Zal* + 2Aul|Z = 2 ||| Bz = Bx"||.

Putting (3.16) into (3.14), we have that

2
< Nlzn = x°|* = llttn = zall* + 20nllzn = 1Bz = Bx*|| + twillxo — x7|%. (3.17)

| yni —x*
It follows that

1z = wnl® < llzn = 1% = |y = x*||* + 20ullzn = nll| Bz — Bx*|| + anillx0 — x*|
< ey — x*|* - |yni — X*llz + 201 Zn — ||| Bzn = Bx"|| + ail| 0 — x*|1>
(3.18)
< lymi = 2xul| (1xn = 2"l + [[yni = x*||) + 24nllzn = unlll| Bz - Bx"||

2
+ayi|lxo — x*||°.
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Therefore, lim,, _, ||z — uy|| = 0. Furthermore,
* 112 *112 %12
”yn,i - X ” < an,i“xO - X || + (1 - “n,i)“Tiwn - X ”
|2 |2
< apjillxo — x| + (1 = ani) [|un — x7||

2 2
< anillxo = X7+ (1= ani) |20 — X7

2
<agyillxo — x"||2 + (1 =) T,(fl"pl)(xn - 1 AXy) — Tr(fl’(‘al)(x* - 1 AXY)
< aillxo = 7|7 + (1= )| (2en — 1 An) — (x* = 1 Ax")||?
< anllxo = X + (1 = ) [l = 1P + 70 (0 = 20) | Ay = Ax* P
*112 %112 *112
< ayillxo = X7+ ||xn — X7 + 10 (rn — 2a) || Axy, — AXT|7.
(3.19)
Since 0 < a < r, < b < 2a, we have that
* * * 2 *
a(2a - b)[|Axy = AX| < [|xn = X[ = ||y = x7[|” + @nllco - x|
(3.20)
* * %112
< ymi = x| (loen = 211+ [y = x"||) + amillxo = x7|I".
Hence, lim,, _, ,||Ax;, — Ax*|| = 0. From (3.1), we have that
¥ 2 * *
i = x*||” < amillxo = x*[1> + (1 = @) | Trwn — x*|I?
< ayillx = x°|P + (1= an,i)[fun — x*|° (3.21)

< ayillxo = |7 + [|zn — x*|

On the other hand,

2

|z — x*||* < | Tr(fl"pl)(xn —1WAXy) — T,(fl"pl)(x* — 1 AXY)

< {(@n — TwAXy) = (X" = 10 AX), 2 = x°)
- %[Il(xn — 1w AXy) = (& = 1 Ax*)|2 + ||z, — x|
1~ rnAz) — (x° = 1aAX") = (2~ )]
< %[len 2P iz = P = [ = aAX) = (0 = 1y AXY) = (20— x|
- %[len = x|+ llzn = X" |17 = |20 — xal®

+ 21Xy — 2, Axy — Ax*)—rﬁHAxn - Ax*||2],
(3.22)
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and, hence,

2 2 2
lzn = x*||I° < |0 = X*||I” = llz0 = xn||2 + 21y Xy — Zy, Axy — AX™) — rﬁ||Ax,1 — AxY|

(3.23)
< laen — X*”z —lzn - xn”2 + 21| %0 = Zn||[| Axy — Ax7|.

Putting (3.23) into (3.21), we have that

2
<l = %71 = 1120 = 2al® + 27llxn = Zall[| A2t = AX"|| + tyillxo — 2|7 (3.24)

llym,i = x*
It follows that

*

2
+ 27| %0 — Zu || A%y — Ax*|| + a |20 — x*||?

26w = Zull® < 1200 = X" |1 = || ymsi — x

< Nymi = xall Qlan = 21+ [y = x7|1) + 27lln = ZallllAxen = Ax*|] + atnillo = 7.

(3.25)
Therefore, lim,, . o ||x, — z,|| = 0. But y,,; = ayixo + (1 — ay,;) Tiw, implies that
l|yn,i = Trwn || = atn,illc0 = Tiwyl| — 0. (3.26)
Furthermore, we have that
%0 = Tiwnl| < ||Yni — Tiwn|| + ||Yni — xn|| — 0. (3.27)
Furthermore,
lymi = x| < anillxo = 217 + (1= 1) [ Tiwwn — 2
< anillx0 = X717 + (1= ) [y = x|
< ayillxo = x*|I* + (1 = ctn) | P (ttn — $xDtt) = P (x* = 5,Dx*)||?
(3.28)

< ayillxo = x> + (1 = ) || (stn — 5nDun) — (x* = 5,Dx")||?
< * (12 %12 * (12
<t llx0 = |7 + (1= ) [l = "I + 50 (5 = 21) | D — Dx* |

2 2 2
< ayillxo = x| + |len — x| + (1 = ani)Sn(Sn — 2y)||Du, — Dx*||".
Thus,

(1-d)h(2y - j)|Dun - Dx*||* < (1 = @n)sn(2y = $) || Dty — Dx*|?

2

*

2 2
< anillxo = x*|° + [lxn = X7 = || ymi — x

< atyilloco = %I + | i = x| (2n = %71 + (| ymi = x7])-
(3.29)
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Since 0 < h <'s, < j < 2y, condition (iii) and ||y,; — x4]| — 0 asn — oo, we have that
lim, -, o||Du,, — Dx*|| = 0. Now, using (2.2), we obtain

@y = x*|* < || Pk (it = $yDity) — Pic(x* = 5, Dx*)||?

< {(uy - syDuy) — (x* — s,Dx*), wy, — x*)
]- * %\ (12 *112
= 5[40 = $0D1s) = (x* = 5, D)+ [, - x|
— [(un — snDuy) — (x* = 3,Dx*) — (wy, — x*)||2]
]' * * % * *
< 5 [ltn = 1P + llewn = I = 11 ttn = suDi) = (" = 5uDx") = (20 = x|
1 *112 *112 2 *
= 5 [Ilen = 21 + llewn = "I = llewn = wnll® + 25114 = w0, Duty = Dx*)

— &2||Duy, - Dx*||2].

(3.30)
Thus,
[0, = x*|[* < llotw = x[* = llw0n — ]| + 25pl|0n — tun||[| Duty, - Dx*|). (3.31)
Using this last inequality, we obtain from (3.1)
[ = x*||* < anilloco = x> + (1 = at,i) [ Tizwn — x|
< anillxo = x°|2 + (1= ) [ewn — 7|
(3.32)
< anillxo = x| + 10 = % |17 = (1 = @) [ewn - wal)?
+25,(1 — api)||wn — uy|||| Dy, — Dx*||.
This implies that
* * * 2
(1= ) lwn = unll® < ctnillxo = x| + [|200 = x*|* = || ymi — x
+ 25, (1 — ai)||wn — uyl|||Duy — Dx*||
(3.33)

< anillxo = %17 + | Yni — x| (120 = || + || i — x*|)

+28,(1 = ani)|[wy — unl||| Duy, - Dx*||.

Since limy, oo pi = 0, ||Yni — Xu|]| = Oasn — oo, and ||Du, — Dx*|| — 0asn — oo, we have
that lim,, —, o ||lwy, — uy|| = 0. Also since lim,, , o ||wy, — x4 || = 0 and limy, —, o || x, — z|| = 0, we have
that lim,, _, o ||wy, — z|| = 0. Now,

lwon — Tiwn|| < || — Tiwon|| + ||won — x4l (3.34)
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Hence, lim, . ||w, —Tiw,|| = 0,i=1,2,.... By lim, o [|[w, —z|| = 0 and lim,, _, o ||w, — Tyw,|| =
0,i=1,2,..., wehave that z € N2, F(T}).
Since z, := T,(fl’(‘al) (xn — 1, Axy), n > 1, we have, for any y € K, that

1
Fi(zn,y) +91(y) — 91(zn) + (Axn, Y — 2Zu) + r—(y — Zn, Zn — Xp) > 0. (3.35)
Furthermore, replacing n by n; in the last inequality and using (A2), we obtain

»1(y) - (zn,-) + <Axn,-, Y= Zn, > + ri <y ~ Znj, Zn; = Xn, > > F (y, zn,-). (3.36)

n;
Let z; :=ty + (1 -t)z forallt € (0,1] and y € K. This implies that z; € K. Then, we have that

<zt zn],Azt> 1 zn > gol(zt)+<zt an-/Azt>_<Zt_an-/Axnl->

< Z"/ Emy Ty > + F <zt, znj>

=1 (Zn/> 1(z) + <zt Zn;, Azt — Azn/,>

Zn; — X
+ <zt Zn;, AZn, Axn >— Zt = Zn;, - +F1<zt,znj>.

nj

(3.37)

Since |lxn; = zn;|| — 0, j — oo, we obtain ||Ax,, — Azy|| — 0,j — oco. Furthermore, by the
monotonicity of A, we obtain (z; — Zn;, Azt — Azy, ) > 0. Then, by (A4), we obtain (noting that

Zle - Z)

(zt — 2, Azt) 2 p1(2) —1(z¢) + Fi(z1,2), j— oo. (3.38)
Using (A1), (A4), and (3.38), we also obtain

0= Fi(z,z¢) + 1(2¢) — p1(zr)
<tFi(z,y) + (1 -t)Fi(z, 2) + to1(y) + (1 = )1 (2) — ¢1(z1)
(3.39)
<t[Fi(zo,y) +91(y) —o1(z0)] + (1= t)(z — 2, Az)

=t[F1(ze,y) + 91(y) — p1(z0)] + (1 - Dy - 2, Az),
and, hence,

0<Fi(zo,y) +91(y) —1(z)) + A -1)(y — z, Az;). (3.40)
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Letting t — 0, we have, for each y € K, that
0<Fi(zy) +¢1(y) —p1(z) + (y — 2z, Az). (3.41)

This implies that z € GMEP(Fy, A, ¢1). By following the same arguments, we can show that
z e GMEP(Fz, B, ()02)

Following the arguments of [3, Theorem 3.1, pages 346-347], we can show that z €
VI(K, D). Therefore, z € 2, F(T;) N GMEP(F;, A, ¢1) N GMEP(F;, B, ¢2) N VI(K, D).

Noting that x,, = Pc,xo, we have by (2.3),

(x0 = Xn, y — xn) <0, (3.42)

forall y € C,. Since F C C,, and by the continuity of inner product, we obtain, from the above
inequality,

(xo-z,y-2z)<0, (3.43)

for all y € F. By (2.3) again, we conclude that z = Prxy. This completes the proof. O

Corollary 3.2. Let K be a nonempty closed and convex subset of a real Hilbert space H. Let T : K —
K be a nonexpansive mapping such that F(T) # 0. Let {x, }; be generated by

xo € K,
Yn =X+ (1 —a,)Txy,
(3.44)
Cni1 = {Z €Cy: ”]/n - Z||2 < lxn — Z”z + “n(”x()”z +2(xy — xO/Z>> }/

Xni1 = P, %0, n21.

n+l

Assume that {a, },-; C (0,1) such that im,, _, a0, = 0. Then, {x, },—, converges strongly to Pr(r)Xy.

Remark 3.3. Corollary 3.2 can be viewed as an improvement of Theorem 3.1 of Martinez-Yanes
and Xu [39] because we relax the iterative step Q,, in the algorithm of Theorem 3.1 of [39].

4. Applications

Let C be a nonempty closed and convex cone in H and D an operator of C into H. We define
the polar of C in H to be the set

K*={y*eH:(x,y*) >0, Vx e C}. 4.1)
Then, the element u € C is called a solution of the complementarity problem if

Du e K*,(u,Du) =0. (4.2)
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The set of solutions of the complementarity problem is denoted by C(C, D). We will assume
that D satisfies the following conditions:

(E1) D is y-inverse strongly monotone,
(E2) C(C,D) #0.
Also, we replace conditions (B1) and (B2) with

(D1) for each x € H and r > 0, there exist a bounded subset D, € C and y, € C such
that, forany z € C \ Dy,

F(z,yx) + ¢(yx) — p(z) + %<yx ~z,z-x) <0, (4.3)

(D2) C is a bounded set.

Theorem 4.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. For each
m = 1,2, let Fy, be a bifunction from C x C satisfying (A1)—(A4), ¢,, : C — R U {+o0} a proper
lower semicontinuous and convex function with assumption (B1) or (B2), A an a-inverse-strongly
monotone mapping of C into H, and B a f-inverse-strongly monotone mapping of C into H, and, for
eachi=1,2,...,1letT; : C — C be a nonexpansive mapping such that (2, F(T;) #0. Let D be a y-
inverse-strongly monotone mapping of K into H. Suppose that F := (2 F(T;) N\GMEP(F1, A, 1) N
GMEP(Fy, B, p2) NC(C, D) # . Let {zn};20, {un}oia, {wn}oia, (Vi (i=1,2,..), and {x,} 32,
be generated by xo € C, C1; = C, C1 = N2y C1,i, x1 = Pe,x0,

Fi,
Zn = T,(n ! (‘al)(xn - 1AXy),
F,
U, = T)Enz #2) (zn — AuBzy),
wy, = Pc(u, — s,Duy),

Yni = An,iXo + (]- - an,i)Tiwnz (44)

2
Cn+1,i = {Z € Cn,i : ”yn,i - Z” < “xn - Z||2 + “n,i(”xOHZ + 2<x1’l - xO/Z>> }/

o]
Cui1 = [ \Cusris

i=1

Xni1 = P, %0, n2>1.

n+l

Assume that {ay;}q € (0,1) (i=1,2,...), {rn};eq C[0,2a], and {A,};2, C [0,2p] satisfy
(i)0<a<r,<b<2a,
(i) 0<c <A, < f<2p,
(i) 1imp_ oottn; = 0,
(iv)0<h<s,<j<2y.

Then, {x, )y converges strongly to Ppxo.
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Proof. Using Lemma 7.1.1 of [52], we have that VI(C, D) = C(C, D). Hence, by Theorem 3.1
we obtain the desired conclusion. O

Next we study the problem of finding a minimizer of a continuously Fréchet differen-
tiable convex functional in a Hilbert space.

Theorem 4.2. For each m = 1,2, let F,, be a bifunction from H x H satisfying (A1)—(A4), ¢, :
H — RU {+oo} a proper lower semicontinuous and convex function with assumption (B1) or (B2),
A an a-inverse-strongly monotone mapping of H into itself, and B a p-inverse-strongly monotone
mapping of H into itself, and, for eachi=1,2,..., let T; : H — H be a nonexpansive mapping such
that N2, F(T;) # 0. Suppose that f is a functional on H which satisfies the following conditions:

(1) f is a continuously Fréchet differentiable convex functional on H and Vf is (1/y)-
Lipschitz continuous,

(2) (V)'0={z€ H: f(z) =mingen f(y)} #0.

Suppose that F := (2, F(T;) N GMEP(F;, A, ¢1) N GMEP(F,, B, ¢2) N (Vf)’107é(2). Let {z,}%

n=1s

{un ooy, {WnYoer, AYnitoe (= 1,2,...), and {x,};2, be generated by xo € K, C1; = K, C1 =
NZ1 Cui, x1 = Pe,xo,

Zn = T,(fl’(‘al)(xn — 1hAXy),
Uy, = Tk(fz"‘”) (zn — AnBzy),

Wy = Uy — S,V f(Un),

Yni = &n,iWn + (]- - “n,i)Tiwn/ (45)

2
Croi = {2 € Coi t lymi = 2[1* < lltn = 21+ s (00l + 2430 - x0,2)) },
]
Cui1 = [ \Cusris
i=1

X1 = Pe,,,x0, n2>1.

n+l

Assume that {a,;}q C (0,1) (i=1,2,..), {ru};eq C[0,2a], and {A,};2; C [0,2p] satisfy
i)0<a<r,<b<2a,
(i) 0<c<A, < f <26,
(iii) limy, — watni =0,
(iv)0<h<s,<j<2y.
Then, {x,},, converges strongly to Prxo.

Proof. We know from condition (i) and Lemma 2.2 that V f is an y-inverse-strongly monotone
operator from H into H. Using Theorem 3.1, we have the desired conclusion. O
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We now study a kind of multiobjective optimization problem with nonempty set of
solutions:

min h1(x), min hy(x), x€K, (4.6)

where K is a nonempty closed convex subset of a real Hilbert space H, and h; : K — R, i =
1,2, is a convex and a lower semicontinuous functional. Let us denote the set of solutions to
(4.6) by Q and assume that Q #@.

We will denote the set of solutions of the following two optimization problems by €;
and €, respectively:

1,21}2 hi(x), 1’)21[12 hy (x). (4.7)

Clearly, if we find a solution x € Q; N €, then one must have x € Q.
Now, foreachi=1,2,let F; : K x K — R be defined by F;i(x, v) := h;(y) — hi(x). Let us
now find the following equilibrium problem: find x € K such that

Fi(x,y) >0, i=1,2, (4.8)

for all y € K. It is obvious that F; satisfies conditions (A1)-(A4) and EP(F;) = Q;,i = 1,2,
where EP(F;) is the set of solutions to (4.8). By Theorem 3.1, we have the following theorem.

Theorem 4.3. Let K be a nonempty closed and convex subset of a real Hilbert space H. For each
i = 1,2, let h; be a lower semicontinuous and convex function such that Qi N Qo #0. Let {zn} ey,
{unYoer, {Yn '}y, and {x,} ;2 be generated by xo € K, C1 = K, x1 = P, xq,

1
hi(y) — hi(za) + E(y—zn,zn—xn) >0, VyeKk,

1
h(y) — h(u,) + A—(}/ —Up,Up—2,) >0, YyeKk,

4.9
Yn = XpXo + (1-au)uy, (*9)

Crt = {z € Cu: Iy = 2II” < llxw = 21 + @ (o + 2400 = x0,2)) },

Xn1 = P, %0, n21.

n+l

Assume that {a, }5eq C (0,1), {7y }5ey C (0,00), and {A,}5eqy C (0, 00) satisfy
(i) iminf, ., 1, >0,
(i) iminf,— Ay > 0,
(iii) limy, — e, = 0.
Then, {xy},o converges strongly to Po,nq,Xo.

Remark 4.4. Our results in this paper also hold for infinite family of uniformly continuous
quasi-nonexpansive mappings in a real Hilbert space.
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