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We introduce a certain subclass of multivalent analytic functions by making use of the principle
of subordination between these functions and Cétas operator. Such results as subordination and
superordination properties, convolution properties, inclusion relationships, distortion theorems,
inequality properties, and sufficient conditions for multivalent starlikeness are provide. The results

presented here would provide extensions of those given in earlier works. Several other new results
are also obtained.

1. Introduction

Let A,(n) denote the class of functions of the following form:

f(z) =2+ iap+kz"+k (p,ne N:={1,2,3,...}), (1.1)
k=n

which are analytic in the open unit disk U := {z: z € C and |z| < 1}.
For simplicity, we write

A,(1) =4, A1) = A (1.2)

A function f(z) € A,(n) is said to be in the class S;/n(y) of p-valent starlike functions of order
y in U if it satisfies the following inequality:
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#&q
Re{— > 0<y<p,zel). 1.3
o7 ©@sr<p ) (1.3)
Let H[a, n] be the class of analytic functions of the following form:

F(z) =a+apz" + apaz"t+--- (zel). (1.4)

Let f, g € Ap(n), where f(z) is given by (1.1) and g(z) is defined by
g(z) = 2P + > byuzl*. (1.5)
k=n

Then the Hadanard product (or convolution) f * ¢ of the functions f(z) and g(z) is defined
by

(f*xg)(z):=2"+ iawkbwkz”*k = (g* f)(z). (1.6)

k=n

We consider the following multiplier transformations.

Definition 1.1 (see [1]). Let f(z) € Ap(n). Forp,n € N, 6,0 > 0,€ > 0, define the multiplier
transformations I,(6, A, €) on A, (n) by the following infinite series:

I,(6,1,€)f (z) = 2F + i

k=n

Ak +27°
u] ak+pzk+7". (1.7)

p+¥

It is easily verified from (1.7), that
(p+O)L,(6+1,1,0)f(z) = [p(1-1)+€]L,(5,1,€)f(z) + Az(I,(6, A, ﬁ)f(z))’. (1.8)

It should be remarked that the class of multiplier transforms I,(6,4,¢) is a
generalization of several other linear operators considered, in earlier investigations (see [2—
12]).

If f(z) is given by (1.1), then we have

16,4, 0f(2) = (f*9},0) (2, (1.9)

where

p+rk+? szk.

7 (1.10)

[0}

5
(pp’kfé(z) =zF + Z
k=n
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In particular, we set
Li(6,M,€)f(z):=1(5,),8)f(2). (1.11)

For two functions f(z) and g(z), analytic in U, we say that the function f(z) is
subordinate to g(z) in U, and write f(z) < g(z) (z € U) if there exists a Schwarz function
w(z), which is analytic in U with

w(0)=0, |w(z)|<1 (zel) (1.12)
such that
f(z) =g(w(z)) (zel). (1.13)
Indeed, it is known that
f(2)<g(), (zelU)=f(0)=g(0),  f(UU)cgl). (1.14)

Furthermore, if the function g is univalent in U, then we have the following equivalence:
f(z)<g(z), (zel) <= f(0)=g(0), fMU) cgl). (1.15)

By making use of the linear operator I,(6,1,¢) and the above-mentioned principle of
subordination between analytic functions, we introduce and investigate the following
subclass of the class A, (n) of p-valent analytic functions.

Definition 1.2. A function f(z) € Ap (n) is said to be in the class B;’ﬂ (6,4, ,n; A, B) if it satisfies
the following subordination condition:

LELOFDN  [LE+LLOfE) /LELOF)\ 1+ Az
(1"“)< 2 > +“< L5, 0)f(2) >< 2 <1ypz GEU:

(1.16)

where (and throughout this paper unless otherwise mentioned) the parameters a, ,p, n, A, 6,
¢, A, and B are constrained as follows:

aeCRe(f)>0, 1,€>0, L€eR 6>0, -1<B<1,A#BeR, pneN. (117)
For simplicity, we write
817(1,1,1;1;1,-1) = R(B). (1.18)

Clearly, the class £3(f) is a subclass of the familiar class of Bazilevi¢ functions of type .
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If wesetd =0, = ¢ = p = 1in the class BZ’p(ﬁ, A, ¢,n; A, B), which was studied by
Liu [13]. In particular, Zhu [14] determined the sufficient conditions such that 3, (a, 8, A,0) C
Spa(p).

Catas [1, 5, 15], Cho and Srivastava [6], Cho and Kim [7], and Kumar et al. [10]
obtained many interesting results associated with the multiplier operator.

In the present paper, we aim at proving such results as subordination and super-
ordination properties, convolution properties, inclusion relationships, distortion theorems,
inequality properties, and sufficient conditions for multivalent starlikeness of the class

BZ’ (6,A,€,n; A, B). The results presented here would provide extensions of those given in
earlier works. Several other new results are also obtained.

2. Preliminary Results
In order to establish our main results, we need the following definition and lemmas.

Definition 2.1 (see [16]). Denote by Q the set of all functions f(z) that are analytic and
injective on U — E(f), where

E(f)={geau:li£r}€f(z)=oo}, (2.1)
and such that f'(¢) #0 for € € oU — E(f).

Lemma 2.2 (see [17]). Let the function h be analytic and univalent (convex) in U with h(0) = 1.
Suppose also that the function k given by

k(z) =1+ cpz" + Cppn 2™t + - (2.2)
is analytic in U. If
k(z) + Zk'g(z) <h(z) (Re(®)>0; ¢#0; zeU), (2.3)
then
k(z) < x(z) = %z-é/" fo tMp(hde < h(z) (z € U), (2.4)

and y(z) is the best dominant of (2.3).

Lemma 2.3 (see [18]). Let g(z) be a convex univalent function in U and let o,1 € C with

Re<1+%> >max{0,—Re<%>}. (2.5)
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If the function p is analytic in U and
op(z) +nzp'(z) < 0q(z) +nzq'(z), (2.6)

then p(z) < q(z) and q(z) is the best dominant.

Lemma 2.4 (see [16]). Let q be convex univalent in U and k € C. Further assume that Re(E) > 0if
p(z) € H[q(0),1] nQ, (2.7)

and p(z) + kzp'(z) is univalent in U, then
q(2) + kzq'(z) < p(2) + kzp'(2) (2.8)

implies that q(z) < p(z) and q(z) is the best subdominant.

Lemma 2.5 (Jach’s Lemma [19]). Let w(z) be a noncostant analytic function in U with w(0) = 0.
If |w| attains its maximum value on the circle |z| = r < 1 at z, then

zow'(20) = kw(zo), (2.9)

where k > 1 is a real number.

Lemma 2.6 (see [20]). Let F be analytic and convex in U. If f(z), g(z) € Aand f(z), g(z) < F(z);
then

Af(z)+(1-XN)g(z) <F(z) (0<A<1). (2.10)
Lemma 2.7 (see [21, 22]). Let k,v € C. Suppose also that m is convex and univalent in U with
m(0) =1, Re(km(z) +v) >0 (zel). (2.11)

If u is analytic in U with u(0) = 1, then the following subordination:

u(z) + % <m(z), (zel) (2.12)
implies that
u(z) <m(z) (zel). (2.13)

Lemma 2.8 (see [23]). Let f(z) = 1+ X7, axzF analyticin U and g(z) = 1+ 372, bxz* be analytic
and convex in U. If f(z) < g(z), then |ax| < |b1]|, (k € N).
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Lemma 2.9 (see [24]). Let 6#0,6 € R, v/6>0,0<p<1,pe H[1,n], and p(z) <1+kz (k =
oM/ (né +v)), where

(1-p)I6|/(1 +n6/v)

M= MaBp) = |1—6+p6|+\/1+(n6/v)2. .
If q(z) € H[1, n] satisfies the following subordination condition:
p(z)[1-6+6((1-p)q(z)+p)] <1+ Mz, (2.15)
then
Re(q(z)) >0 (zeU). (2.16)

3. Main Results

We begin by presenting our first subordination property given by Theorem 3.1 below.

Theorem 3.1. Let f(z) € BZ’ﬂ(G, A, €;n; A, B) with Re(ar) > 0. Then

p
I,(6,1,€)f(2) (p+O)p ("1+Azu_ 1+ Az
LS A p+0)p/Ana-1
< o < T 4[0 T+ Ban du < 1+ 82 (zel). (3.1)

Proof. Define the function P(z) by

zP

p
P(z) := <M> (zel). (3.2)

Then P(z) is analytic in U with P(0) = 1. By taking the derivatives in the both sides in equality
(3.2) and using (1.8), we get

b p

(- a) <w> . a<1p;6(; it)%()z)) <Ip<6, A;pf)f(z)>
Y (3.3)
N AazP' (z) < 1+ Az
p(p+€) 1+Bz

= P(2)

(zel).
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An application of Lemma 2.2 to (3.3) yields

B z
<IP(6’ A, e)f(z) > < (P + Z)ﬁz—(p+€)ﬁ/)ma ‘[ t(p+€)ﬁ/)~na—l 1+ At dt

zP Ana 0 1+ Bt
(34)
e e e
where
gz(szﬂf (35)
The proof of Theorem 3.1 is thus completed. O

Theorem 3.2. Let q(z) be univalent in U, 0# a € C. Suppose also that q(z) satisfies

zq"(2) (p+O)p
Re<1+W> >max{0,—Re< T >} (3.6)

If f(z) € Ap(n) satisfying the following subordination:

p [ /
(1_M<E£Z£Qﬂﬁ> +a<%6+1Aﬂwﬂm><hﬂiLaﬂn> e

7 (6,1, 0)f(z) z (p+o)p’
(3.7)
then
1,6, ¢ p
<1L§¥ﬂ2><m@, (3.8)

and q(z) is the best dominant.
Proof. Let the function P(z) be defined by (3.2). We know that (3.3) holds true. Combining
(3.3) and (3.7), we find that

AazP' (z) Xazq'(z)
P(Z)+W <q(Z)+m. (39)

By Lemma 2.3 and (3.9), we easily get the assertion of Theorem 3.2.
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Taking g(z) = (1 + Az)/(1 + Bz) in Theorem 3.2, we get the following result.

Corollary 3.3. Let « € Cand -1 < B < A < 1. Suppose also that (1 + Az)/(1 + Bz) satisfies the
condition (3.6). If f(z) € Ap(n) satisfies the following subordination:

(1_@<£ﬁlkﬁﬂﬁ>ﬂ+a<#®+LAJV@0><#wanca>ﬁ

P 1,51, ¢ P
z p( )f(z) z (310)
< 1+Az+ Aa(A-B)z
1+Bz  (p+¢)p(1+Bz)*
then
LGELOf2)\ 1+ Az
(RO e an

and (1 + Az)/(1 + Bz) is the best dominant.
If f(z) is subordinate to F (z), then F(z) is superordinate to f(z). We now derive the following

superordination result for the class BZ’ﬂ (6,\,¢;,n; A, B).

Theorem 3.4. Let q(z) be convex univalent in U, a € C, with Re(a) > 0. Also let

B
<£@ﬁ?ﬂﬂ>eHM®ﬂﬂg

z

(1- a)<M>ﬂ N a<fp<6 + 1,)»,€)f(z)> <Ip(5,)t,€)f(z)>ﬂ

(3.12)

zP I,(6,1,€)f(2) zP

be univalent in U. If

) P p
q(z)+/\azq (2) <(1_0£)<Ip(6,)t,€)f(z)> +a<Ip(6+1,)L,€)f(Z)><Ip(6,)t,€)f(z)> ,

(p+o)p 2P I,(6,1,9)f (z) zP
(3.13)

then

zP

B
ma<<i@ﬁﬁﬂﬁ>, 6.14)

and q(z) is the best subdominant.
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Proof. Let the function P(z) be defined by (3.2). Then

/ p P
4(2)+ lazq(2) (1_a)<1p(6,)»,€)f(2)> +a<1p(5+1,)t,€)f(2)><Ip(5,l,€)f(2)>

(p+0)p zP 1,(6,1,€)f(z) zP
AazP' (z)
=P(z) + ———.
(p+o)p
(3.15)
An application of Lemma 2.4 yields the assertion of Theorem 3.4. O

Taking q(z) = (1 + Az)/(1 + Bz) in Theorem 3.4, we get the following corollary.

Corollary 3.5. Let q(z) be convex univalent in U and -1 < B < A <1,a € C with Re(a) > 0. Also
let

p
<M> € H[9(0),1] nQ,

Z
(3.16)
. L(5,1,0)f(z)\’ LG+1,4,0f=)\ /L6ALOf=)\
(1-a) p TN\ LG L Of(2) 7
be univalent in U. If
1+ Az N Aa(A-B)z
1+Bz  (p+¢)p(1+Bz)*
(3.17)
) L5, 0)f(2)\ LE+1L,L,0f=)\ /L6, 0)f(=)\
<(-a) e TN\ LGOS (2) p '
then
1+4z <I”(6’A’ af (Z)>ﬂ, (3.18)
1+ Bz zP

and (1 + Az)/(1 + Bz) is best subdominant.

Combining the above results of subordination and superordination. We easily get the
following “Sandwich-type result”.
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Corollary 3.6. Let q1(z) be convex univalent and let g,(z) be univalent in U, & € C, Re(a) > 0. Let
q2(z) satisfies (3.6). If

z

LELOFEHN  [LE+LLOf(2)\ /L6, Of(=)
”'“)<z—p> < (64,0 >< ?

p
w(i@ﬁ?ﬂﬁ)eﬂmﬂmumg
(3.19)

is univalent in U, also

! ﬁ ﬂ
q1(z) + Aazg, (z) (1 —a)<M> +a<I”(6 +1,A,€)f(z)> <IP(61)‘/9)f(Z)>

(p+o)p z 5,5, 0)f(2) 7
o
(3.20)
then
q1(z) < (W)ﬂ < q2(2), (3.21)

and q1(z), q2(z) are, respectively, the best subordinate, and dominant.

Theorem 3.7. Let f(z) € Ap(n), & € C\ {0}, and 0 <y < 1. Also let the function ¢ be defined by

z((I,,(5+ 1,1, 0)f(2)/1,(5,1,0)f(2)(1,5,1,€) f(z)/2°)" —1>'

(zeU). (322)
(I (6+1,1,0)f(2)/1,(6,1, ) (2)) (1,(5,1, ) f (2)/27) -1

¢(z) =

If o satisfies one of the following conditions:

ﬁ§M@<M®>w
Re(yp(z)) 4 #0 (Re($) =0), (3.23)

>#M©<m®w»
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or

>-I@) (1Q)>0),

[
I(p(z))q #0 (I(¢) =0), (3.24)
< —#I(é) (1@ <0),
then
:
LG+1,4,0f=)\ /L6L0f=)\

‘( (Borora) (oo ) ‘ a6

Proof. We define the function ¢(z) by

<Ip(6+1,A,Z)f(z)> (Ip(6,)n,€)f(z)>ﬂ ) ‘

I,(6,1,€)f(2) = (3.26)

=(1-y)¢(z) (0<y<1;¢eC\{0};zel).

It is easy to see that the function ¢ is analytic in U with ¢(0) = 0.
Differentiating both sides of (3.26) with respect to z logarithmically, we get

z9'(2)
$(2)
z<(1p(5 +1,4,0)f(2)/1,6,1,0) f(2)) (1,(6,1, ) f(z)/2°)” - 1)'
=¢ 5 (zel; ¢eC\{0}).
(I,(6+1,1,0)f(2)/1,(6,1,€) f(2)) (I,(6, X, &) f (z) / zF)" - 1
(3.27)
We now consider the function ¢ defined by
IO
@ = R 3 (zelU, ¢ eC\{0}). (3.28)
Assume that there exists a point zy € U such that
max |p(z)| = |p(z0)| =1, (3.29)

zI<]zo]
by Lemma 2.5, we know that

20¢/(2) = kp(z0) (k2 1). (3.30)
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If follows from (3.28) and (3.30) that

& z¢/(20) k o /%
Re(p(z0)) = Re(@ ) ) = i e(d)

1

> o7 Re(§) (Re(§) >0), (3.31)
_ % Re(#){=0 (Re(?) = 0)
< & Re(®) (Re(®)<0),
(£ E) ks
I(¢(z0)) = I<|§|2 $(20) > |§|2I<§)
1
< _RI ©) () >0), (3.32)
_ %1@) =0 (1) =0),

> -#I@) (1) <0).

But the inequalities in (3.31) and (3.32) contradict, respectively, the inequalities in (3.23) and
(3.24). Therefore, we can conclude that

|p(2)| <1 (zel), (3.33)
which implies that
$
L(6+1,),¢ L,(6,\,¢ B
<< p;p(g, X, e)f)(j;()Z)> < : 7 )f(Z)> - 1) =(1-7)|$p@E@)|<1-y. (634
We thus complete the proof of Theorem 3.7. 0

From Theorem 3.7, we easily get the following result for the class £3(f) of Bazilevic¢
functions of type .

Corollary 3.8. Let f(z) €A, 6=0,p=A=¢=¢=1,and y = 0. Also let the function ¢ be defined
by (3.22). If  satisfies one of the following conditions:

Re(p(z)) <1 or I(p(z))#0, (3.35)

then f(z) € B(p).
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Theorem 3.9. Let Re(a) > 0, > 0, and f(z) € Bg’ﬂ((i, Aén1-2p,-1) (0 < p < 1). Then
f(z) e BZ’ﬂ(6, X &é;n,1-2p,-1) for |z| < R(a, B, €, \, p), where

—la + \/)Lzaz +(p+0)p

R(a,B,¢,\,p) = (3.36)
(€+p)p
The bound R(a, B, €, A, p) is the best possible.
Proof. Suppose that
L(5,1,0)f(z)\"
— ) =P+ (1-p)h(z) (zeU;0<p<1), (3.37)

where h is analytic and has a positive real part in U. By taking the derivatives in the both
sides in equality (3.37) and using (1.9), we get

I,(6,1,€)f(2) g L,(6+1,1,8)f(2)\ [ 1,(6,1,€)f(2) g
Re<(1_“)<—zp > +a< LGELOG) >< 7 —P

_(1 Aazk'(z) 3.38
=(1 p)Re<h(z)+(p+g)p> (3.38)

>(1-p) Re<h(z) - %g;;')

By making use of the following well-known estimate (see [25]):

2r
1-r2

|zH' (z)] < Re(h(z)) (]z|=7r<1) (3.39)

in (3.38), we obtain that
L6LOf)\  (LE+1,0,0f2)\ [ L,640f(2)\
Re[(l—a)<—zp > +a< LGELOE) >< o > P

= (1 —P) <1 - %) Re(h(z)) >0

(3.40)

forr < R(a,B,%,\,p), where R(a, 3, ¢, A, p) is given by (3.36).
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To show that the bound R(a, 3, ¢, 1, p) is the best possible, we consider the function
f(z) € Ap(n) defined by

p
<Ip(6,A,8>f<z>> i ew (3.41)

zP 1-2z

By noting that

L6210 | (LE+LLOfE) (LG Of(2))
Re<(1—a)<—zp > +a< LGLOIE) >< o 4
(3.42)

:(1—p)Re<1+Z 2\ z >:O

-z (prOp(1-2)

for z = R(a, 3,4, 1, p), we conclude that the bound is the best possible. Theorem 3.9 is thus
proved. O

Theorem 3.10. Let f(z) € 837 (6,1, €;n; A, B) with Re(a) > 0. Then

1+ Aw(z)\* E/p+rk+e\ |

= Pl —— 7 p - - P

f(2) <z <1+Bw(z)) o = +kz( - ) ), (3.43)
where w(z) is analytic in U with w(0) = 0 and |w(z)| <1 (z € U).

Proof. Suppose that f(z) € BZ’ﬂ (6,1, ¢;n; A, B). It follows from (3.1) that

<1p<6, L O)f(2) >ﬂ 1+ Aw(z) (3.44)

zP " 1+ Bw(z)’

where w(z) is analytic in U with w(0) = 0 and |w(z)| <1 (z € U).
By virtue of (3.44), we easily find that

1/p
L(6,1,0)f(z) = z’”(%) : (3.45)
Combining (1.10), (1.16), and (3.45), we have
e /p+Ak+0\° . {1+ Aw(z)\*
(Z“é( pre )= p>*f(z)‘zp<1+3w<z>> | (340

The assertion (3.43) of Theorem 3.10 can now easily be derived from (3.46). O
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Theorem 3.11. Let f(z) € BZ’ﬁ((S, A, €;n; A, B) with Re(a) > 0. Then

% [<1 i Bie>1/ﬂ <ZP ’ i(%>_62k+p> * f(z) - 2P <1 + Aeie>1/ﬁ]

fon (3.47)

20 (zeU;0<0 <2r).

Proof. Suppose that f(z) € BZ"H (6,\,€;n; A, B) with Re(a) > 0. We know that (3.1) holds true,
which implies that

ﬂ .

L,(6,\,¢ i0

pOLOFE@ N 1+ A o< 6 <2m). (3.48)
zP 1+ Be'

It is easy to see that the condition (3.48) can be written as follows:

1
z

[1,,(6, 1,0)f(z) (1 + Bei9>1/ﬂ - ZP<1 + Aif’)l/ﬁ ] £0 (zeU;0<6<2r). (3.49)

Combining (1.9), (1.10), and (3.49), we easily get the convolution property (3.47) asserted by
Theorem 3.11. O

Theorem 3.12. Let ap > a1 > 0and -1 < By < By < Ay < A1 < 1. Then

Ry (8,1, €;1; Ay, By) C B3P (6,4, €;m; Ay, By). (3.50)

Proof. Suppose that f(z) € ﬁzz'ﬁ (6,1,4;n; Ay, By). We know that

(1 —a2)<M>ﬁ+a2<Ip(5+1,)L,€)f(z)> <I,,(6,J\,€)f(z)>ﬂ e

zP I,(6,),8)f(z) zP 1+ Bz’
(3.51)
Since -1 < By < B, < A; < A; £1, we easily find that
B B
(1-a) I,(6,1,€)f(2) v I,(6+1,)1,8)f(2) I,(6,1,€)f(2)
zP L,(6,A,€)f(z) zP (3.52)

1+A22< 1+Az
1+ Byz 1+ Bz

thatis, f(z) € Bzz’ﬂ(é, A, €;n; A1, By). Thus the assertion of Theorem 3.12 holds for a; = a; > 0.
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If ay > a1 > 0, by Theorem 3.1 and (3.52), we know that f(z) € Bg’ﬂ(d A, €;n; A1, By),
that is,

zP 1+Blz'

<1p(5,x, 0) f(Z)>ﬂ Lz (3.53)

At the same time, we have

LG4, 0f(2)\ L6+1,1,0f(=)\ (G 0f(2)\
<L“”<__§T__>+m< 1,6,1,0)f(z) >< i

:Q_ﬂ><&@L@ﬂ@>ﬂ
a zP

. L6, 0)f(2)\ LE+1L,L,0F=)\ /L6 0f2)\
+a_2[(1_a2)<—zp > +a2< RCAWIIE) >< - >] )

(3.54)

Moreover, since 0 < (a1 /a2) < 1 and hi(z) := (1 + A1z)/(1 + Byz), is analytic and convex in
U. Combining (3.52)-(3.54) and Lemma 2.6, we find that

LGEALOf@Y [ LG+LL0f@\ [/ LELOFE@HN 1+ Az
(1_“1)< 2 > +“1< 1,61 0f (=) >< 2 > “T+Biz’

(3.55)

thatis, f(z) € Bgl’ﬁ (6,A,€;n; A1, B1), which implies that the assertion (3.50) of Theorem 3.12
holds.
Let p denote the class of functions of the following form:

tz) =1+ itkzk (n € N), (3.56)
k=n

which are analytic and convex in U and satisfy the following condition:

Re(t(z)) >0 (zeU). (3.57)

By making use of the principle of subordination between analytic functions, we introduce the
subclasses S;, , (1, ) and Cp »(p, P) of the class A, (n):
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1 !
Spn(t, P) = {f € Ap(n) : ﬂ(Z]{(S) —,u> <P(z) (pep; 0<pu<pze LI)},
1 "
Cpn(p; d) = {f(z) € Ay(n): P—#<1+ zjj:/((zz)) —‘u> <P(z) (pep; 0<pu<p; ZGU)}.

(3.58)

Next, by using the operator defined by (1.7), we define the following two subclasses
Spn(6, 4, €; u;d) and Cp (6, A, €; y; ¢) of the class A, (n):

Son (6,4, €1:9) = { f(2) € A,(m) : 1,(6,1,0)f (2) € S}, (1 $) |

(3.59)
Con (6,1, € 1;9) == {f(2) € Ap(n) : [,(6,1,€) f(2) € Cpu(p; §) }.
Clearly, we know that
FeCon (6 &) = L ;(Z) € Spn(6,0, 8 115). (3.60)

We now derive some inclusion relationships for the classes S, (6,1, ¢;u;$) and
Cpn(6,4,€; u; ¢), by similarly applying the method of proof of Proposition 1 obtained by Cho
et al. [26] and Wang et al. [27]. O

Theorem 3.13. Let 0 < p < p, A > —p, and ¢ € p with

6+u A+u-p
Re(¢(z) >max{0,— ,— } (z e lU). (3.61)
(9(z)) pP—H pP—H
Then
Spn(6+1L, M6 1;,¢) CSpn(6,M,814;$) CSpn(6,1+1,6; ;). (3.62)

Theorem 3.14. Let 0 <y <p, A > —p and ¢ € p with (3.61) holds. Then
Con(6+1L,N,Em,9) CCpu(6,X,81;9) CCpn(6,1+1,6 ;). (3.63)
Proof. By virtue of (3.60) and Theorem 3.13, we observe that

F(2) €Cpu(6+1,1,81;¢) = L,(5+1,1,8)f(2) € Cpu(t; )

— z(I,(6+1,4,0)f(2))
p

€S, (1)

<=>1,,(5+1,)L,e)<#

) €S, (1)

=

!
=f p(z) €Spn(6+1,1, € 1;9)
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RETAC)
p

€ Spn(6,1, 611 9)

I (5u)< 2= )>€S*n(y,¢)

— Z(IP((S/-)‘r/)e)f(z)) e S;,n(‘l/l,‘ (i))

= 1,(6,1,€)f(z) € Cp,n(/i;(;b)
= f(2) € Cou(6,N, 61, 9),

f(2) € Cou (6,1, 615 9) = ZJ‘;)(Z)

€Spn(6,\, 1)

= p(z) € Spu(6,0+1,6 1 b)

— Z(IP(6/)l +p1/€)f(z)) c S;,n(#; 4))

= L,(6,A+1,0)f(2) € Cpu(i; §)

&= f(2) € Con(6,A+1,61;9).
(3.64)

From (3.64), we conclude that the assertion of Theorem 3.14 holds true. O
Taking ¢(z) = (1+Az)/(1+Bz) in Theorems 3.13 and 3.14, we get the following results.

Corollary 3.15. Let 0 < p<p, A > —p,and -1 < B < A< 1. Then

spn<6+1 Ae,l,“AZ) s,,,,(me,i,“AZ) spn<5 A+1, eﬂ,“Az

,,n<6+1 w2 ‘u,1+AZ) p,,(é w2 ﬂ,“AZ) pn<5 A+1,8; ‘u,1+AZ)

Theorem 3.16. Let f(z) € B;’ﬁ(S, A, €;n; A, B) withRe(a) >0and -1 < B< A< 1. Then

1- Bu zP

(p+0)p f L= AU opinct g, < o <Ip<6,w>f<z>>"
(3.66)

< (P + g)ﬁ ! 1+ Auu(p+f)[5/)ma—ldu
o 1+Bu '
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The extremal function of (3.66) is defined by

1/p
p+0)p (*1+ Azu _
) (p+0)p/ Ana-1 3.67
I,(6,X,€)Fapap(z) =z < Tan ), 1 B du . (3.67)

Proof. Let f(z) € BZ’ﬁ(d A, €;n; A, B) with Re(a) > 0. From Theorem 3.1, we know that (3.1)
holds, which implies that

p 1
Re <Ip(61 L €)f(z) ) < sup Re< (p+O)p ("1+ Azuu(p+€)ﬁ/Analdu>

zP el Aan ), 1+ Bzu

1
< (p+o)p sup Re( 1+ Azu > L PO/ Ana-1 g,
T Ana )y L 1+ Bzu

< (p+o)p J'1 1+ Auu(p+€)ﬂ/lna71du
Ana ), 1+ Bu ’

p 1
Re <Ip(6/)b g)f(Z)) S inf Re< (p + f)ﬁ 1+ Azuu(p_‘_g)ﬁ//\na_ldu)

zP zel Ana )y 1+ Bzu

(3.68)

1
S (p+2)p inf Re 1+ Azuu(p+€)ﬂ/)ma—1du
T Ana  Jyzeu 1+ Bzu

S (p+o)p r 1- Auu(;ﬂf)ﬂ/lnu—ldu.
Ana ),

1- Bu

Combining both equations of (3.68), we get (3.66). By noting that the function I,(, 1,

€)F,p,48(z) defined by (3.67) belongs to the class BZ"H (6,1,¢;n; A, B), we obtain that the
equality (3.66) is sharp. The proof of Theorem 3.16 is evidently completed. O

By similarly applying the method of proof of Theorem 3.16, we easily get the following
result.

Corollary 3.17. Let f(z) € BZ’ﬂ(d A, €;n; A, B) with Re(a) >0and -1 < A< B<1. Then

(p+0)p J’l L+ Au peoyp/ana g,
Ana )y 1+ Bu
(3.69)

B
Re I,(6,1,0)f(z) - (p+€)p J'1 1-Au L PrO/Ana-1 g,
zP Ana )y 1-Bu

The extremal function of (3.69) is defined by (3.67).

In view of Theorem 3.16 and Corollary 3.17, we easily derive the following distortion
theorems for the class BZ’ﬂ (6,1,¢;n; A, B).
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Corollary 3.18. Let f(z) € {BZ’ﬂ(ﬁ,A, ¢;n; A, B) with Re(a) > 0 and-1 < B < A < 1. Then for
|z| = r < 1, we have

1/p
e (P + e)ﬂ ! 1- Aur u(p+€)ﬂ/)ma—1du
Ana ), 1- Bur

(3.70)

(p+0)p (' 1+ Aur -
o (p+€)p/Ana-1
<|L(6,LO)f(z)| <7 < Ana ), 1+ Bur " du

The extremal function of (3.70) is defined by (3.67).

Corollary 3.19. Let f(z) € BZ’ﬂ(d)L, ¢;n; A, B) with Re(a) > 0 and-1 < A < B < 1. Then for
|z| = r < 1, we have

1/p
P (p+O)P (' 1+ Aur L PO/ Ana=1 g,
Ana )y 1+ Bur

s (3.71)
(p+0)p Y- Aur _
p (p+0)p/ Ana-1
<|L,(6 N E)f(z)| <r < T, T B du i
The extremal function of (3.71) is defined by (3.67).
By noting that
(Re(v))/? < Re<v1/2> <2 (v €C; Re(») 2 0). (3.72)
From Theorem 3.16 and Corollary 3.17, we easily get the following results.
Corollary 3.20. Let f(z) € BZ’ﬂ(G, A, €;n; A, B) withRe(a) >0and -1 < B< A< 1. Then
1/2
(p+O)p (' 1-Au L (POB/Ana-1 3,
Ana )y 1-Bu
52 " (3.73)
Re I,(6,)1,€)f(2) - (p+O)p ("1~ Auu(eré)ﬂ/)Lnafldu ‘
zP Ana ), 1-Bu
Corollary 3.21. Let f(z) € BZ’ﬂ(6, A, ¢;n; A, B) with Re(a) > 0and -1 < A< B < 1. Then
1/2
(p+Op ("1+ AU (peoyp/ana- g,
Ana )y 1+ Bu
(3.74)

p/2 ) 1/2
Re <Ip(5, L €)f(z) > - < (p+O)p ('1- Auu(p+2)ﬂ/)tna1du> .

zP Ana ), 1-Bu
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Theorem 3.22. Let

f(z) =2 + Zap+kzp+k € BZ'ﬂ(ﬁ, A, ¢;n; A, B).

k=n
Then
o+1
|ap+n|5 (€+p) 5 A-B .
(p+in+e)°|(€+p)p+\na

The inequality (3.76) is sharp, with extremal function defined by (3.67).

Proof. Combining (1.16) and (3.75), we obtain

LELOFDN  (LE+1LL0f@) [ L64,0f(=)\
(1—“)<T> +“< 1,6,5,6)f(2) >< =

a Ana p+Ain+\° " 1+ Az
_1+<1+(p+€)ﬂ>< p+e >’5“’“"Z U T4Bz
An application of Lemma 2.8 to (3.77) yields
6
14 Ana <p+)m+€> Bayon
(p+Op/)\ P+

Thus, from (3.78), we easily arrive at (3.76) asserted by Theorem 3.22.

<|A-B.

21

(3.75)

(3.76)

(3.77)

(3.78)

O

Theorem 3.23. LetO£a € R, peR, p/a>0,L>-pand0<p<1.If f(z) € BZ’ﬂ((S,)L,E;n;A,O)

with

(1-p)lal(1 + Ana/(p + £)p)

A= An(a, B, A p,p) = -
11— a+pa +\/1+ (1+Ana/(p+ €)p)

7

then
I,(6,0,0)f(2) €S, ,(pp - (1= p)A).

Proof. Suppose that f(z) € BZ’ﬂ (6,1,€;n; A,0). By definition, we have

L6L,0f@Y  (L6+14,0f@)\ [ LEL0F@)Y
(1_a><T> +“< L63,0f ) >< § >

<1+Az (zel).

(3.79)

(3.80)

(3.81)
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Let the function P(z) be defined by (3.2). We then find from (3.1) and (3.81) that

¢ z ¢+p)pA
pla) < PP z-<P+f>ﬂ/Wf (14 Apppropineg g, (EXPIPA e
\na 0 Ana+ (p+¢)p

We now suppose that

L(6+1,,0)f(2)
I,(6,1,€)f(2)

=(1-p)giz)+p (0<p<1; zel). (3.83)
Then g(z) € H[1, n]. It follows from (3.81) and (3.83) that
Pz){(1-a)+a[(1-p)q(z) +p]} <1+Az (zel). (3.84)
An application of Lemma 2.9 to (3.84) yields
Re(q(z)) >0 (zel). (3.85)

Combining (3.83) and (3.85), we find that

L(6+1,18)f(=)
Re( £ =(1-p)Re(g(z)) +p> zel). 3.86
The assertion of Theorem 3.23 can now easily be derived from (1.8) and (3.86). O

Theorem 3.24. Let f(z) € BZ’ﬁ((S, X é;n; A 0) with p>0,A > 0,Re(a) >0, and |a|(n + Re(p +
0)p/ra) > A((p +€)B/\). Then

2(L,(5,1,0f(2) ' A+ Opal(n+Re((p + Op/A)) + (p+ OF] 50
I,(6,1,€)f(2) Ma|[Ma|(n+Re((p+€)p/ra)) — A(p + €)p]
Proof. Let the function P(z) be defined by (3.2). It follows from (3.3) that
p(z) + )(f)‘i—p;()zg =1+ Aw(z), (3.88)
where
w(z) = ki’wkzk (ne N) (3.89)

is analytic in U with |w(z)| <1 (z € U). From (3.88), we easily get
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¢ 1
p(z) =1+ AWI tPrOPAalyy (b2 dt
0

(3.90)

B (p+O)pE 1 k
=l+AT ,;nm(pw)p/mwkz ‘

It follows from (3.90) that

k+1
+ kzk

. (P+OP
(zp(z)) =1+ A 1 ék+(p+€)ﬁ/law

_ (P+ )P 1 k
=1+A— éh (p+€)ﬂ/wwkz (3.91)

(¢+p)p (p+O)p (! (¢+p)/Aa-1
We next find from (3.90) and (3.91) that

1
ZPI(Z) - A (p If)ﬂ <ZU(Z) _ w IO t(€+p)ﬂ/)»u—1w(tz)dt>

(3.92)

_ (p+O)p& k k
AT ék+(p+e)p/mw"z'

Now from (3.88) we get

zp'(z)

- [(n+Re((p+2)p/ra)) + (p+€)p/Aal |
p(z)

lp(2)] '

(3.93)

and from (3.90) we get

(p+O)p& 1 k
1+A " é ez

Ip(z)] = “k+ (p+O)p/ra

(3.94)
[Mal(n +Re((p + £)p/Aa)) = A(p + £) ]
—AMa|(n+Re((p+¢)p/\a)) ’

from (3.93) and (3.94), we get

A(p +€)p[Mal(n +Re((p + £)p/Aa)) + (p + €)p]
Mal[Mla|(n+Re((p +€)p/Aa)) - A(p + £) ]

zp'(z)
p(z)

(3.95)

Thus, from (3.2) and (3.95), we easily arrive at the assertion of Theorem 3.24. O
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