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The notion of a commutative pseudo valuation on a BCK-algebra is introduced, and its characteri-
zations are investigated. The relationship between a pseudo valuation and a commutative pseudo-
valuation is examined.

1. Introduction

D. Buşneag [1] defined pseudo valuation on a Hilbert algebra and proved that every pseudo
valuation induces a pseudometric on a Hilbert algebra. Also, D. Buşneag [2] provided
several theorems on extensions of pseudo valuations. C. Buşneag [3] introduced the notions
of pseudo valuations (valuations) on residuated lattices, and proved some theorems of
extension for these (using the model of Hilbert algebras [2]). Using the Buşneag’s model,
Doh and Kang [4] introduced the notion of a pseudo valuation on BCK/BCI-algebras, and
discussed several properties.

In this paper, we introduce the notion of a commutative pseudo valuation on a
BCK-algebra, and investigate its characterizations. We discuss the relationship between a
pseudo valuation and a commutative pseudo valuation. We provide conditions for a pseudo
valuation to be a commutative pseudo valuation.

2. Preliminaries

A BCK-algebra is an important class of logical algebras introduced by K. Iséki and was
extensively investigated by several researchers.
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An algebra (X; ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies the following
axioms:

(i) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(ii) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(iii) (∀x ∈ X) (x ∗ x = 0),

(iv) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(v) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(a1) (∀x ∈ X) (x ∗ 0 = x),

(a2) (∀x, y, z ∈ X) (x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0),

(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) (((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0).

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0.
A BCK-algebra X is said to be commutative if x ∧ y = y ∧ x for all x, y ∈ X where

x ∧ y = y ∗ (y ∗ x).
A subset A of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following

conditions:

(b1) 0 ∈ A,

(b2) (∀x, y ∈ X) (x ∗ y ∈ A, y ∈ A ⇒ x ∈ A).

A subset A of a BCK-algebra X is called a commutative ideal of X (see [6]) if it satisfies
(b1) and

(b3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ A, z ∈ A ⇒ x ∗ (y ∧ x) ∈ A).

We refer the reader to the book in [7] for further information regarding BCK-algebras.

3. Commutative Pseudo Valuations on BCK-Algebras

In what follows let X denote a BCK-algebra unless otherwise specified.

Definition 3.1 (see [4]). A real-valued function ϕ on X is called a weak pseudo valuation on X
if it satisfies the following condition:

(c1) (∀x, y ∈ X)(ϕ(x ∗ y) ≤ ϕ(x) + ϕ(y)).

Definition 3.2 (see [4]). A real-valued function ϕ on X is called a pseudo valuation on X if it
satisfies the following two conditions:

(c2) ϕ(0) = 0,

(c3) (∀x, y ∈ X)(ϕ(x) ≤ ϕ(x ∗ y) + ϕ(y)).
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Table 1: ∗-operation.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a

b b a 0 b

c c c c 0

Proposition 3.3 (see [4]). For any pseudo valuation ϕ on X, one has the following assertions:

(1) ϕ(x) ≥ 0 for all x ∈ X.

(2) ϕ is order preserving,

(3) ϕ(x ∗ y) ≤ ϕ(x ∗ z) + ϕ(z ∗ y) for all x, y, z ∈ X.

Definition 3.4. A real-valued function ϕ on X is called a commutative pseudo valuation on X if
it satisfies (c2) and

(c4) (∀x, y, z ∈ X) (ϕ(x ∗ (y ∧ x)) ≤ ϕ((x ∗ y) ∗ z) + ϕ(z)).

Example 3.5. LetX = {0, a, b, c} be a BCK-algebra with the ∗-operation given by Table 1. Let ϑ
be a real-valued function on X defined by

ϑ =

(
0 a b c

0 7 9 9

)
. (3.1)

Routine calculations give that ϑ is a commutative pseudo valuation on X.

Theorem 3.6. In a BCK-algebra, every commutative pseudo valuation is a pseudo valuation.

Proof. Let ϕ be a commutative pseudo valuation on X. For any x, y, z ∈ X, we have

ϕ(x) = ϕ(x ∗ (0 ∧ x)) ≤ ϕ((x ∗ 0) ∗ z) + ϕ(z) = ϕ(x ∗ z) + ϕ(z). (3.2)

This completes the proof.

Combining Theorem 3.6 and [4, Theorem 3.9], we have the following corollary.

Corollary 3.7. In a BCK-algebra, every commutative pseudo valuation is a weak pseudo valuation.

The converse of Theorem 3.6 may not be true as seen in the following example.

Example 3.8. LetX = {0, a, b, c, d} be a BCK-algebra with the ∗-operation given by Table 2. Let
ϑ be a real-valued function on X defined by

ϑ =

(
0 a b c d

0 5 8 8 8

)
. (3.3)
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Table 2: ∗-operation.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

Then ϑ is a pseudo valuation on X. Since

ϑ(b ∗ (c ∧ b)) = 8 /≤ 0 = ϑ((b ∗ c) ∗ 0) + ϑ(0), (3.4)

ϑ is not a commutative pseudo valuation on X.

We provide conditions for a pseudo valuation to be a commutative pseudo valuation.

Theorem 3.9. For a real-valued function ϕ on X, the following are equivalent:

(1) ϕ is a commutative pseudo valuation on X.

(2) ϕ is a pseudo valuation on X that satisfies the following condition:

(∀x, y ∈ X
) (

ϕ
(
x ∗ (y ∧ x

)) ≤ ϕ
(
x ∗ y)). (3.5)

Proof. Assume that ϕ is a commutative pseudo valuation on X. Then ϕ is a pseudo valuation
on X by Theorem 3.6. Taking z = 0 in (c4) and using (a1) and (c2) induce the condition (3.5).

Conversely let ϕ be a pseudo valuation on X satisfying the condition (3.5). Then ϕ(x ∗
y) ≤ ϕ((x ∗ y) ∗ z) + ϕ(z) for all x, y, z ∈ X. It follows from (3.5) that

ϕ
(
x ∗ (y ∧ x

)) ≤ ϕ
(
x ∗ y) ≤ ϕ

((
x ∗ y) ∗ z) + ϕ(z) (3.6)

for all x, y, z ∈ X so that ϕ is a commutative pseudo valuation on X.

Lemma 3.10 (see [8]). Every pseudo valuation ϕ on X satisfies the following implication:

(∀x, y, z ∈ X
) ((

x ∗ y) ∗ z = 0 =⇒ ϕ(x) ≤ ϕ
(
y
)
+ ϕ(z)

)
. (3.7)

Theorem 3.11. In a commutative BCK-algebra, every pseudo valuation is a commutative pseudo
valuation.

Proof. Let ϕ be a pseudo valuation on a commutative BCK-algebra X. Note that

((
x ∗ (y ∧ x

)) ∗ ((x ∗ y) ∗ z)) ∗ z =
((
x ∗ (y ∧ x

)) ∗ z) ∗ ((x ∗ y) ∗ z)
≤ (x ∗ (y ∧ x

)) ∗ (x ∗ y)
=
(
x ∧ y

) ∗ (y ∧ x
)
= 0

(3.8)
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for all x, y, z ∈ X. Hence ((x ∗ (y ∧ x)) ∗ ((x ∗ y) ∗ z)) ∗ z = 0 for all x, y, z ∈ X. It follows
from Lemma 3.10 that ϕ(x ∗ (y ∧ x)) ≤ ϕ((x ∗ y) ∗ z) + ϕ(z) for all x, y, z ∈ X. Therefore ϕ is a
commutative pseudo valuation on X.

For any real-valued function ϕ on X, we consider the set

Iϕ :=
{
x ∈ X | ϕ(x) = 0

}
. (3.9)

Lemma 3.12 (see [4]). If ϕ is a pseudo valuation on X, then the set Iϕ is an ideal of X.

Lemma 3.13 (see [7]). For any nonempty subset I of X, the following are equivalent:

(1) I is a commutative ideal of X.

(2) I is an ideal of X that satisfies the following condition:

(∀x, y ∈ X
) (

x ∗ y ∈ I =⇒ x ∗ (y ∧ x
) ∈ I

)
. (3.10)

Theorem 3.14. If ϕ is a commutative pseudo valuation on X, then the set Iϕ is a commutative ideal
of X.

Proof. Let ϕ be a commutative pseudo valuation on a BCK-algebraX. Using Theorem 3.6 and
Lemma 3.12, we conclude that Iϕ is an ideal of X. Let x, y ∈ X be such that x ∗ y ∈ Iϕ. Then
ϕ(x ∗ y) = 0. It follows from (3.5) that ϕ(x ∗ (y ∧ x)) ≤ ϕ(x ∗ y) = 0 so that ϕ(x ∗ (y ∧ x)) = 0.
Hence x ∗ (y ∧ x) ∈ Iϕ. Therefore Iϕ is a commutative ideal of X by Lemma 3.13.

The following example shows that the converse of Theorem 3.14 is not true.

Example 3.15. Consider a BCK-algebra X = {0, a, b, c} with the ∗-operation given by Table 3.
Let ϕ be a real-valued function on X defined by

ϕ =

(
0 a b c

0 3 7 0

)
. (3.11)

Then Iϕ = {0, c} is a commutative ideal of X. Since

ϕ(b) = 7 > 6 = ϕ(b ∗ a) + ϕ(a), (3.12)

ϕ is not a pseudo valuation on X and so ϕ is not a commutative pseudo valuation on X.

Using an ideal, we establish a pseudo valuation.

Theorem 3.16. For any ideal I of X, we define a real-valued function ϕI on X by

ϕI(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if x = 0,

t1 if x ∈ I \ {0},
t2 if x ∈ X \ I

(3.13)
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Table 3: ∗-operation.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a

b b a 0 b

c c c c 0

for all x ∈ X where 0 < t1 < t2. Then ϕI is a pseudo valuation on X.

Proof. Let x, y ∈ X. If x = 0, then clearly ϕI(x) ≤ ϕI(x ∗ y) + ϕI(y). Assume that x /= 0. If y = 0,
then ϕI(x) ≤ ϕI(x ∗ y) + ϕI(y). If y /= 0, we consider the following four cases:

(i) x ∗ y ∈ I and y ∈ I,

(ii) x ∗ y /∈ I and y /∈ I,

(iii) x ∗ y ∈ I and y /∈ I,

(iv) x ∗ y /∈ I and y ∈ I.

Case (i) implies that x ∈ I because I is an ideal of X. If x ∗ y = 0, then ϕI(x ∗ y) = 0 and
so ϕI(x) = t1 = ϕI(x ∗ y) + ϕI(y). If x ∗ y /= 0, then ϕI(x ∗ y) = t1 and thus ϕI(x) = t1 ≤
ϕI(x ∗ y) + ϕI(y). The second case implies that ϕI(x ∗ y) = t2 and ϕI(y) = t2. Hence ϕI(x) ≤
t2 < ϕI(x ∗ y) + ϕI(y). Let us consider the third case. If x ∗ y = 0, then ϕI(x ∗ y) = 0 and thus
ϕI(x) ≤ t2 = ϕI(x ∗ y) + ϕI(y). If x ∗ y /= 0, then ϕI(x ∗ y) = t1 and so ϕI(x) ≤ t2 < t1 + t2 =
ϕI(x ∗ y) + ϕI(y). For the final case, the proof is similar to the third case. Therefore ϕI is a
pseudo valuation on X.

Before ending our discussion, we pose a question.

Question 1. If I is commutative ideal of X, then is the function ϕI in Theorem 3.16 a
commutative pseudo valuation on X?
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