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The notion of fuzzy s-prime filters of a bounded BCK-algebra is introduced.We discuss the relation
between fuzzy s-prime filters and fuzzy prime filters. By the fuzzy s-prime filters of a bounded
commutative BCK-algebra X, we establish a fuzzy topological structure on X. We prove that the
set of all fuzzy s-prime filters of a bounded commutative BCK-algebra forms a topological space.
Moreover, we show that the set of all fuzzy s-prime filters of a bounded implicative BCK-algebra
is a Hausdorff space.

1. Introduction

BCK-algebras are an important class of logical algebras introduced by Iséki in 1966 (see [1–
3]). Since then, a great deal of the literature has been produced on the theory of BCK-algebras.
In particular, emphasis seems to have been put on the ideal and filter theory of BCK-algebras
(see [4]). The concept of fuzzy sets was introduced by Zadeh [5]. At present, these ideas have
been applied to other algebraic structures such as semigroups, groups, rings, ideals, modules,
vector spaces, and so on (see [6, 7]). In 1991, Ougen [8] applied the concept of fuzzy sets to
BCK-algebras. For the general development of BCK-algebras the fuzzy ideal theory and fuzzy
filter theory play important roles (see [9–12]). Meng [13] introduced the notion of BCK-filters
and investigated some results. Jun et al. [9, 10] studied the fuzzification of BCK-filters. Meng
[13] showed how to generate the BCK-filter by a subset of Alò, and Deeba [14] attempted
to study the topological aspects of the BCK-structures. They initiated the study of various
topologies on BCK-algebras analogous to which has already been studied on lattices. In
[15], Jun et al. introduced the notion of topological BCI-algebras and found some elementary
properties.

In this paper, the topological structure and fuzzy structure on BCK-algebras are
investigated together. We introduce the concept of fuzzy s-prime filters and discuss some
related properties. By the fuzzy s-prime filters, we establish a fuzzy topological structure on
bounded commutative BCK-algebras and bounded implicative BCK-algebras, respectively.
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2. Preliminaries

A nonempty setX with a constant 0 and a binary operation denoted by juxtaposition is called
a BCK-algebra if for all x, y, z ∈ X the following conditions hold:

(1) ((xy)(xz))(zy) = 0,

(2) (x(xy))y = 0,

(3) xx = 0,

(4) 0x = 0,

(5) xy = 0 and yx = 0 imply x = y.

A BCK-algebra can be (partially) ordered by x ≤ y if and only if xy = 0. This ordering
is called BCK-ordering. The following statements are true in any BCK-algebra: for all x, y, z,

(6) x0 = x.

(7) (xy)z = (xz)y.

(8) xy ≤ x.

(9) (xy)z ≤ (xz)(yz).

(10) x ≤ y implies xz ≤ yz and zy ≤ zx.

A BCK-algebra X satisfying the identity x(xy) = y(yx) is said to be commutative. If
there is a special element 1 of a BCK-algebra X satisfying x ≤ 1 for all x ∈ X, then 1 is called
unit of X. A BCK-algebra with unit is said to be bounded. In a bounded BCK-algebra X, we
denote 1x by x∗ for every x ∈ X.

In a bounded BCK-algebra, we have

(11) 1∗ = 0 and 0∗ = 1.

(12) y ≤ x implies x∗ ≤ y∗.

(13) x∗y∗ ≤ yx.

Now, we review some fuzzy logic concepts. A fuzzy set in X is a function μ : X →
[0, 1]. We use the notation Xμ for {x ∈ X | μ(x) = μ(1)} and μt, called a level subset of μ, for
{x ∈ X | μ(x) ≥ t}where t ∈ [0, 1].

In this paper, unless otherwise specified, X denotes a bounded BCK-algebra. A
nonempty subset F of X is called a BCK-filter of X if

(F1) 1 ∈ F,

(F2) (x∗y∗)∗ ∈ F and y ∈ F imply x ∈ F for all x, y ∈ X.

Note that the intersection of a family of BCK-filters is a BCK-filter. For convenience,
we call a BCK-filter of X as a filter of X, and write F <F X.

Let μ be a fuzzy set in X. Then, μ is called a fuzzy filter of X if

(FF1) μ(1) ≥ μ(x),

(FF2) μ(x) ≥ min{μ(x∗y∗)∗, μ(y)}, for all x, y ∈ X. In this case, we write μ<FF X.

Note that in a bounded commutative BCK-algebra, the identity x∗y∗ = yx holds,
then (F2) and
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(F3) (yx)∗ ∈ F and y ∈ F imply x ∈ F for all x, y in X coincide, and (FF2) and

(FF3) μ(x) ≥ min{μ(yx)∗, μ(y)} coincide.

A proper filter F of X is said to be prime, denoted by F <PF X, if, for any x, y ∈ X,
x ∨ y ∈ F implies x ∈ F or y ∈ F.

A nonconstant fuzzy filter μ of X is said to be prime, denoted by μ<FPF X, if μ(x∨y) ≤
max{μ(x), μ(y)} for all x, y ∈ X.

For any fuzzy sets μ and ν in X, we denote

μ ⊆ ν ⇐⇒ μ(x) ≤ ν(x), ∀x, y in X,

μ ∩ ν(x) = min
{
μ(x), ν(x)

}
, ∀x ∈ X,

μ ∪ ν(x) = max
{
μ(x), ν(x)

}
, ∀x ∈ X,

⋂

α∈Ω
μα(x) = inf

α∈Ω
μα(x), ∀x ∈ X,

⋃

α∈Ω
μα(x) = sup

α∈Ω
μα(x), ∀x ∈ X,

μη(x) = sup
x=y∨z

{
min
{
μ
(
y
)
, η(z)

}}
.

(2.1)

Lemma 2.1. Let {ηα | α ∈ Ω} be a family of fuzzy filters of X. Then,
⋂

α∈Ω ηα is a fuzzy filter of X.

Proof. Let x ∈ X. For any α ∈ Ω, ηα(1) ≥ ηα(x) since ηα <FF X. Then, infα∈Ωηα(1) ≥ infα∈Ωηα(x)
and so,

⋂
α∈Ω ηα(1) ≥

⋂
α∈Ω ηα(x). (FF1) holds.

Moreover, for any ε > 0, there exists α(ε) ∈ Ω such that

⋂

α∈Ω
ηα(x) + ε = inf

α∈Ω
ηα(x) + ε

≥ ηα(ε)(x)

≥ min
{
ηα(ε)

((
x∗y∗)∗), ηα(ε)

(
y
)}

≥ min
{
inf
α∈Ω

ηα
(
x∗y∗)∗, inf

α∈Ω
ηα
(
y
)
}

= min

{
⋂

α∈Ω
ηα
(
x∗y∗)∗,

⋂

α∈Ω
ηα
(
y
)
}

.

(2.2)

Since ε is arbitrary, we get
⋂

α∈Ω ηα(x) ≥ min{⋂α∈Ω ηα(x∗y∗)∗,
⋂

α∈Ω ηα(y)}. So, (FF2)
holds.

Therefore,
⋂

α∈Ω ηα is a fuzzy filter of X.

Lemma 2.2 (see, [16]). Let μ be a fuzzy filter of X. For any x, y ∈ X, if x ≤ y, then μ(x) ≤ μ(y).
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Definition 2.3. Let μ be a fuzzy subset of X. Then the fuzzy filter generated by μ, which is
denoted by 〈μ〉, is defined as

〈
μ
〉
=
⋂{

η : μ ⊆ η, η <FF X
}
. (2.3)

Obviously, we get μ ⊆ 〈μ〉, and if μ<FF X, then μ = 〈μ〉.

Lemma 2.4. If μ, η <FFX, then μη = μ ∩ η.

Proof. Let x ∈ X, x = a ∨ b and μ, η be fuzzy filters. Then, by Lemma 2.2, μ(a) ≤ μ(a ∨ b) =
μ(x) and η(b) ≤ η(a ∨ b) = η(x). Hence, min{μ(a), η(b)} ≤ μ ∩ η(x).

Therefore, μη ≤ μ ∩ η(x), or equivalently μη ⊆ μ ∩ η.
Conversely, μη(x) = supx=y∨z{min{μ(y), η(z)}} ≥ min{μ(x), η(x)} = μ ∩ η(x). So μη ⊇

μ ∩ η.
Thus, μη = μ ∩ η.

Corollary 2.5. If μ, η <FFX, μη <FFX.

Lemma 2.6. If η <FFX, μη ⊆ η.

Proof. Let η <FF X. If x = y ∨ z, then from Lemma 2.2 we know η(z) ≤ η(x). Thus, μη(x) =
supx=y∨z{min{μ(y), μ(z)} ≤ supx=y∨z{η(z)} ≤ η(x). So, μη ⊆ η.

3. Fuzzy Filter Spectrum

Definition 3.1. Anonconstant fuzzy filter μ ofX is said to be s-prime if for all θ, σ <FF X, θσ ⊆ μ
implies θ ⊆ μ or σ ⊆ μ. In this case, we write μ<FSP X.

In this paper, we give some notations in the following.

(i) F(X) = {μ | μ<FSP X}.
(ii) V (θ) = {μ ∈ F(X) | θ ⊆ μ}, where θ is a fuzzy subset of X.

(iii) F(θ) = F(X)\V (θ) = {μ ∈ F(X) | θ /⊆μ}, where F(X)\V (θ) is called the complement
of V (θ) in F(X).

Lemma 3.2. If σ is a fuzzy subset of X, then V (〈σ〉) = V (σ). So F(σ) = F(〈σ〉).

Proof. Let μ ∈ V (σ), then σ ⊆ μ and so 〈σ〉 ⊆ μ. Hence, μ ∈ V (〈σ〉). Conversely, let μ ∈
V (〈σ〉), then 〈σ〉⊆μ. Note that σ⊆〈σ〉⊆μ, we get μ∈V (σ). Therefore, V (σ)=V (〈σ〉).

Theorem 3.3. Let ζ = {F(θ) | θ <FFX}. Then the pair (F(X), ζ) is a topological space.

Proof. Consider θ0 = 0 and θ1 = 1. Then θ0, θ1 <FF X, F(θ0) = ∅ and F(θ1) = F(X). Thus, F(X),
∅ ∈ ζ.

Then, we prove that ζ is closed under finite intersection.
Let η and θ be two fuzzy filters ofX. We claim that V (θ)∪V (η) = V (θη). Let τ ∈ V (θη).

Then, θη ⊆ τ . Since τ ∈ F(X), we have θ ⊆ τ or σ ⊆ τ . It follows that τ ∈ V (θ) ∪ V (η).
Conversely, let τ ∈ V (θ)∪V (η), then θ ⊆ τ or η ⊆ τ . By Lemma 2.6, θη ⊆ θ and θη ⊆ η.

Thus, θη ⊆ τ and so τ ∈ V (θη). It follows that V (θ) ∪ V (η) ⊆ V (θη).



International Journal of Mathematics and Mathematical Sciences 5

Combining the above arguments we get V (θ) ∪ V (η) = V (θη), or equivalently, F(θ) ∩
F(η) = (F(X) \ V (θ)) ∩ (F(X) \ V (η)) = (F(X) \ (V (θ) ∪ V (η)) = (F(X) \ V (θη)) = F(θη). By
Corollary 2.5, θη <FF X and so F(θ) ∩ F(η) = F(θη) ∈ ζ.

Finally, let {θα | α ∈ Ω} be a family of fuzzy prime filters of X. We will prove that⋂
α∈Ω V (θα) = V (

⋃
α∈Ω θα).

Let μ ∈ ⋂α∈Ω V (θα), then for any α ∈ Ω, μ ∈ V (θα) and so θα ⊆ μ. Hence,
⋃

α∈Ω θα ⊆ μ
and thus μ ∈ V (

⋃
α∈Ω θα).

Conversely, let μ ∈ V (
⋃

α∈Ω θα), then
⋃

α∈Ω θα ⊆ μ. Thus, for any α ∈ Ω, θα ⊆ ⋃α∈Ω θα ⊆
μ. Hence, μ ∈ V (θα) for all α ∈ Ω and so μ ∈ ⋂α∈Ω V (θα).

This shows that
⋂

α∈Ω V (θα) = V (
⋃

α∈Ω θα).
By Lemma 3.2, we get V (

⋃
α∈Ω θα) = V (〈⋃α∈Ω θα〉) and so

⋂
α∈Ω V (θα) = V (〈⋃α∈Ω θα〉).

Furthermore, we get
⋃

α∈Ω F(θα) =
⋃

α∈Ω(F(X) \ V (θα))= F(X) \⋂α∈Ω V (θα) = F(X) \
V (〈⋃α∈Ω θα〉) = F(〈⋃α∈Ω θα〉) ∈ ζ.

It follows that (F(X), ζ) is a topological space.

Theorem 3.4. The collection

ß =
{
F
(
xβ

) | x ∈ X, β ∈ (0, 1]
}

(3.1)

of ζ is a base of ζ where xβ <FFX is defined by

xβ(t) =

⎧
⎨

⎩

β, t = x,

0, t /=x.
(3.2)

Proof. By Lemma 3.2, for any x ∈ X, β ∈ (0, 1], F(xβ) = F(〈xβ〉) and so F(xβ) ∈ ζ.
Now, we prove that ß is a base of ζ. It is sufficient to show that for all F(θ) ∈ ζ, and

μ ∈ F(θ), there exists F(xβ) ∈ β such that μ ∈ F(xβ) and F(xβ) ⊆ F(θ).
Let F(θ) ∈ ζ and μ ∈ F(θ). Then, θ /⊆μ and so there exists x ∈ X such that μ(x) < θ(x).

Let θ(x) = β and then μ ∈ F(xβ). Moreover, for any σ ∈ V (θ), σ(x) ≥ θ(x) = β = xβ(x) and so
xβ ⊆ σ. Thus σ ∈ V (xβ). This means V (θ) ⊆ V (xβ). It follows that F(xβ) ⊆ F(θ).

Therefore, ß is a base of ζ.

The topological space (F(X), ζ) is called fuzzy filter spectrum of X, denoted by FF-
spec(X), or F(X) for convenience.

Theorem 3.5. FF-spec(X) is a T0 space.

Proof. Let μ, η ∈ F(X) and μ/=η. Then, μ/⊆η or η /⊆μ.
If μ/⊆η, then, η /∈ V (μ) but μ ∈ V (μ). Moreover, η ∈ F(μ) but μ /∈ F(μ).
If η /⊆μ, similarly we can get μ ∈ F(η) but η /∈ F(η). It follows that FF-spec(X) is a T0

space.

Lemma 3.6 (see [9]). Let μ be a fuzzy subset of X. Then, μ is a fuzzy filter of X if and only if μt is a
filter of X for each t ∈ [0, 1] wherever μt /= ∅.

Lemma 3.7. A non-constant fuzzy subset μ of X is a fuzzy prime filter if and only if μt is a prime
filter of X for each t ∈ [0, 1] whenever μt /= ∅.



6 International Journal of Mathematics and Mathematical Sciences

Proof. Let μ be a fuzzy prime filter and t ∈ [0, 1] such that μt /= ∅. Then by Lemma 3.6, μt is a
filter of X.

Suppose x ∨ y ∈ μt. It follows that μ(x ∨ y) ≥ t. Since μ is prime, we have
max{μ(x), μ(y)} ≥ μ(x ∨ y) ≥ t and thus μ(x) ≥ t or μ(y) ≥ t. It follows that x ∈ μt or
y ∈ μt. Therefore μt is a prime filter.

Conversely, suppose that for each t ∈ [0, 1], μt is a prime filter whenever μt /= ∅. If μ is
not a fuzzy prime filter, then there exist x, y ∈ X such that μ(x ∨ y) > max{μ(x), μ(y)}. Take
t satisfying μ(x ∨ y) > t > max{μ(x), μ(y)}. Then x ∨ y ∈ μt. Since μt is a prime filter of X,
then x ∨ y ∈ μt implies x ∈ μt or y ∈ μt. But on the other hand, μ(x) ≤ max{μ(x), μ(y)} < t
and μ(y) ≤ max{μ(x), μ(y)} < t imply x /∈ μt and y /∈ μt, a contradiction. It follows that μ is
indeed a fuzzy prime filter.

Lemma 3.8 (see [13]). Let X be a bounded commutative BCK-algebra and F be a BCK-filter of X.
Then, F is prime if and only if, for any filters A,B, F = A ∩ B implies F = A or F = B.

Theorem 3.9. LetX be a bounded commutative BCK-algebra and μ be a fuzzy s-prime filter. Then for
each t ∈ [0, 1], μt is a prime filter of X whenever μt /= ∅ and μt /=X.

Proof. Let μ be a fuzzy s-prime filter and t ∈ [0, 1], μt /= ∅. Then by Lemma 3.6, μt is a filter.
Let A, B be two filters such that μt = A ∩ B. Define the fuzzy subset θ = tχA and

σ = tχB. It is easy to see that θ and σ are fuzzy filters of X. Note that

θ ∩ σ(x) = θ · σ(x) =
⎧
⎨

⎩

t, x ∈ A ∩ B,

0, x /∈ A ∩ B.
(3.3)

Since μt = A∩B, then for any x ∈ A∩B = μt, μ(x) ≥ t = θ∩σ(x) and so μ(x) ≥ θ∩σ(x)
for all x ∈ X. Thus μ ⊇ θ ∩σ. It follows from μ being a fuzzy s-prime filter that θ ⊆ μ or σ ⊆ μ.
Without loss of generality let θ ⊆ μ. Then, for any x ∈ A, θ(x) = tχA(x) = t ≤ μ(x) and so
x ∈ μ(t). This means that A ⊆ μt. But μt = A ∩ B implies μt ⊆ A and thus μt = A. Therefore, μt

is a prime filter by Lemma 3.8.

Theorem 3.10. Let X be a bounded commutative BCK-algebra. If μ is a fuzzy s-prime filter, then it is
a fuzzy prime filter.

Proof. The proof follows from Lemma 3.7 and Theorem 3.9.

In general, the converse of Theorem 3.10 is not true. Let us see the following example.

Example 3.11. Let X = {0, 1}. Define the operation ∗ on X as follows: 0 ∗ 0 = 0, 0 ∗ 1 = 0,
1 ∗ 0 = 1 and 1 ∗ 1 = 0. It is easy to see that 〈X; ∗, 0〉 is a bounded commutative BCK-algebra.
Define a fuzzy subset μ of X by μ(0) = 0, μ(1) = 1/2. Clearly μ is a fuzzy prime filter of X.

Moreover, we define the fuzzy filters σ and θ by σ(x) = 1/2 for all x ∈ X and θ(1) = 1,
θ(0) = 0. Then, we get θσ ⊆ μ but σ /⊆μ and θ /⊆μ. Therefore, μ is not a s-prime fuzzy filter.

Lemma 3.12. F is a prime filter of X if and only if χα
F is a fuzzy s-prime filter, where α ∈ [0, 1), and

χα
F is defined by

χα
F(x) =

⎧
⎨

⎩

1, x ∈ F

α, x /∈ F.
(3.4)
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Proof. Let F be a prime filter. Then, by Lemma 3.6, we can easily see that χα
F is a fuzzy

filter.
Let θ, σ be two fuzzy prime filters such that θσ ⊆ χα

F , we will prove θ ⊆ χα
F or σ ⊆ χα

F .
If it is not true, then there exist x, y ∈ X \ F such that θ(x) > α and σ(y) > α. Since F is prime,
then x ∨ y /∈ F. Note that θσ ⊆ χα

F , then

α < min
{
θ(x), σ

(
y
)} ≤ min

{
θ
(
x ∨ y

)
, σ
(
x ∨ y

)}
= θ ∩ σ

(
x ∨ y

)
= θσ

(
x ∨ y

) ≤ χα
F

(
x ∨ y

)
.

(3.5)

Thus, x ∨ y ∈ F, a contradiction. It follows that θ ⊆ χα
F or σ ⊆ χα

F , and so χα
F is a fuzzy

s-prime filter.
Conversely, let χα

F be a fuzzy s-prime filter. By Theorem 3.10, χα
F is also a fuzzy prime

filter. Then, by Lemma 3.7, (χF)t = F is a prime filter, where α ≤ t ≤ 1.

Corollary 3.13. F is a prime filter of X if and only if χF is a fuzzy s-prime filter.

Lemma 3.14 (see [13]). Let X be a bounded implicative BCK-algebra, then x ∧ x∗ = 0 and x ∨ x∗

= 1.

Lemma 3.15. Let μ be a fuzzy filter of a bounded commutative BCK-algebra X. Then, μ(0) =
min{μ(x), μ(x∗)} for all x ∈ X.

Proof. Since μ is a fuzzy filter, we have μ(0) ≥ min{μ(x ∗ 0)∗, μ(x)} = min{μ(x∗), μ(x)} for all
x ∈ X. On the other hand, μ(0) ≤ min{μ(x∗), μ(x)}, since any fuzzy filter is order preserving.
Thus, μ(0) = min{μ(x), μ(x∗)}.

Lemma 3.16. If μ is a fuzzy filter of a bounded BCK-algebra X, then μ1 = {x ∈ X | μ(x) = μ(1)} is
a filter of X and χμ1 is a fuzzy filter of X.

Proof. Let μ be a fuzzy filter and take t = μ(1). Then, μt = μ1 and so μt = μ1 is a filter of X by
Lemma 3.6. Clearly χμ1 is a fuzzy filter.

Lemma 3.17. Let X be a bounded commutative BCK-algebra and μ be a fuzzy s-prime filter of X.
Then μ(1) = 1.

Proof. Suppose that μ(1) < 1. Since μ is non-constant, there exists a ∈ X such that μ(a) < μ(1).
Define fuzzy subset θ and σ of X by

θ(x) =

⎧
⎪⎨

⎪⎩

1, μ(x) = μ(1),

0, otherwise.
(3.6)

and σ(x) = μ(1) for all x ∈ X. By Lemma 3.16, θ(x) = χμ1 is a fuzzy filter and clearly σ is a
fuzzy filter. Note that θ(1) = 1 > μ(1) and σ(a) = μ(1) > μ(a), we get θσ /⊆μ. But note that
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for any x, y ∈ X

min{θ(x), σ(x)} ≤
⎧
⎨

⎩

σ
(
y
)
, x ∈ μ1

0, x /∈ μ1

≤
⎧
⎨

⎩

μ(1), x ∈ μ1

μ(x), x /∈ μ1

= μ(x)

≤ μ
(
x ∨ y

)
.

(3.7)

Thus, θσ(x) = supx=y∨z{min{θ(y), σ(z)}} ≤ supx=y∨z{μ(y ∨ z)} = sup{μ(x)} = μ(x)
for any x ∈ X, a contradiction. Therefore, μ(1) = 1.

Lemma 3.18. Let X be a bounded implicative BCK-algebra and μ be a fuzzy s-prime filter of X. Then
for any x ∈ X, μ(x) = 1 or μ(x∗) = 1.

Proof. By Lemma 3.14, x ∨ x∗ = 1, for all x ∈ X. Since μ is a fuzzy s-prime filter, we get that
μ1 is a prime filter of X by Theorem 3.9. Hence, x ∨ x∗ = 1 ∈ μ1 implies x ∈ μ1 or x∗ ∈ μ1.
Therefore, μ(x) = μ(1) = 1 or μ(x∗) = μ(1) = 1 by Lemma 3.17.

Theorem 3.19. Let X be a bounded implicative BCK-algebra and μ be a fuzzy s-prime filter of X.
Then, for x ∈ X, μ(x) = μ(1) = 1 or μ(x) = μ(0).

Proof. By Lemma 3.14, x ∨ x∗ = 1 and then μ(1) = μ(x ∨ x∗) = μ(x) or μ(x∗) since μ is a
fuzzy s-prime filter. By Lemma 3.18, we get μ(x) = 1 or μ(x∗) = 1. If μ(x∗) = 1, then μ(0) =
min{μ(x), μ(x∗)} = μ(x) by Lemma 3.15. If μ(x∗)/= 1, then μ(x) = 1 = μ(1).

Lemma 3.20. Let X be a bounded BCK-algebra. Then, a filter F of X is proper if and only if 0 /∈ F.

Proof. If 0 /∈ F, then clearly F is proper.
Conversely, let F be proper. If 0 ∈ F, then for any x ∈ X, (x∗0∗)∗ = (x∗1)∗ = 0∗ = 1 ∈ F

and so x ∈ F. It follows that F = X, a contradiction. Therefore, 0 /∈ F.

Lemma 3.21 (see [13]). Let X be a bounded commutative BCK-algebra and F be a filter of X. If
x ∈ X \ F, then there is a prime filter A of X such that F ⊆ A and x /∈ A.

Lemma 3.22 (see [13]). Let X be a bounded implicative BCK-algebra. Then, for any a ∈ X, the filter
〈a〉, generated by a, is a set of elements x in X satisfying a ≤ x.

Lemma 3.23. Let X be a bounded implicative BCK-algebra and a/= 0. Then, 〈a〉/=X.

Proof. By Lemma 3.22, 0 /∈ 〈a〉 and thus 〈a〉/=X.

Lemma 3.24 (see [16]). For a bounded commutative BCK-algebra X, one gets

(1) x∗∗ = x for all x ∈ X.

(2) x∗ ∧ y∗ = (x ∨ y)∗, x∗ ∨ y∗ = (x ∧ y)∗ for all x, y ∈ X.

(3) x∗y∗ = yx for all x, y ∈ X.
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Theorem 3.25. Let X be a bounded implicative BCK-algebra. Then,

(i) if β1, β2 ∈ (0, 1], β = min{β1, β2} and x, y ∈ X, then F(xβ1) ∩ F(yβ2) = F((x ∨ y)β).

(ii) if β ∈ (μ(0), 1] and x, y ∈ X, then F(xβ) ∪ F(yβ) = F((x ∧ y)β).

Moreover, F(xβ) is both open or closed, where μ ∈ F(X).

(iii) if F(xβ) = F(X), where x ∈ X and β ∈ (0, 1], then x = 0.

Proof. (i) If μ ∈ F(xβ1) ∩ F(yβ2), then μ(x) < β1 and μ(y) < β2. By Theorem 3.10, μ is a
fuzzy prime filter, and then μ(x ∨ y) ≤ max{μ(x), μ(y)}. Since μ(x) < β1 and μ(y) < β2, then
μ(x)/=μ(1) and μ(y)/=μ(1). It follows from Theorem 3.19 that μ(x) = μ(0) and μ(y) = μ(0).
Thus, μ(x ∨ y) ≤ max{μ(x), μ(y)} = μ(0) = min{μ(x), μ(y)} < min{β1, β2} = β. Therefore,
μ ∈ F((x ∨ y)β).

Conversely, if μ ∈ F(x∨y)β, then μ(x∨y) < β and so μ(x∨y) < β1, μ(x∨y < β2). Note
that x ≤ x ∨ y and y ≤ x ∨ y, we get μ(x) ≤ μ(x ∨ y) < β1, and μ(y) ≤ μ(x ∨ y) < β2, since μ is
order preserving. Thus, μ ∈ F(xβ1) and μ ∈ F(yβ2), or equivalently, μ ∈ F(xβ1) ∩ F(yβ2).

Therefore, (i) holds.
(ii) Let μ ∈ F(xβ) ∪ F(yβ). Then, μ(x) < β or μ(y) < β. By Lemma 3.17, we have

μ(1) = 1 ≥ β > μ(x), μ(1) = 1 ≥ β > μ(y). Therefore, x /∈ μ1 or y /∈ μ1. On the other hand,
by Lemma 3.14, x ∨ x∗ = 1 ∈ μ1, y ∨ y∗ = 1 ∈ μ1. Note that μ1 = μ1 is a prime filter of X by
Theorem 3.9. If x /∈ μ1, then x ∨ x∗ ∈ μ1 implies x∗ ∈ μ1. If y /∈ μ1, then y ∨ y∗ ∈ μ1 implies
y∗ ∈ μ1. Therefore, we get that x∗ ∈ μ1 or y∗ ∈ μ1. Note that x ∧ y ≤ x, y, we get x∗ ≤ (x ∧ y)∗

and y∗ ≤ (x∧y)∗. Thus, μ(x∗) ≤ μ((x∧y)∗) and μ(y∗) ≤ μ((x∧y)∗), and somax{μ(x∗), μ(y∗)} ≤
μ((x ∧ y)∗). But μ(x∗) = μ(1) or μ(y∗) = μ(1) implies that 1 = max{μ(x∗), μ(y∗)} ≤ μ((x ∧ y)∗)
or μ((x ∧ y)∗) = μ(1). This means, (x ∧ y)∗ ∈ μ1.

If x ∧ y ∈ μ1, then μ(0) ≥ min{μ(((x ∧ y) ∗ 0)∗), μ(x ∧ y)} = min{μ((x ∧ y)∗), μ(x ∧
y)} = μ(1). It follows that μ(x) = μ(1) for all x ∈ X, a contradiction. Thus, x ∧ y /∈ μ1. By
Lemma 3.18, μ(x ∧ y) = μ(0). Hence, μ(x ∧ y) < β and so μ ∈ F((x ∧ y)β). It follows that
F(xβ) ∪ F(yβ) ⊆ F((x ∧ y)β).

Conversely, let μ ∈ F((x ∧ y)β). Then, μ(x ∧ y) < β ≤ 1 = μ(1). Thus, x ∧ y /∈ μ1. Since
(x ∧ y) ∨ (x ∧ y)∗ = 1 ∈ μ1, then (x ∧ y)∗ ∈ μ1. By Lemma 3.24, (x ∧ y)∗ = x∗ ∨ y∗ and so x∗ ∈ μ1

or y∗ ∈ μ1. If x∗ ∈ μ1 (or y∗ ∈ μ1), then μ(0) ≥ min{μ((x∗0)∗), μ(x)} = min{μ(x∗), μ(x)} = μ(x)
(or μ(0) ≥ μ(y)). Thus, x /∈ μ1 or y /∈ μ1. It follows that F((x ∧ y)β) ⊆ F(xβ) ∪ F(yβ).

Combining the above arguments, we get F(xβ) ∪ F(yβ) = F((x ∧ y)β).
In order to prove F(xβ) is closed, we will show F(xβ) = V ((x∗)β).
Let μ ∈ F(xβ). Then, μ ∈ F(〈xβ〉) by Lemma 3.2. Thus, 〈xβ〉/⊆μ and so μ(x) < β ≤

1 = μ(1). Hence, x /∈ μ1. Note that x ∨ x∗ = 1 ∈ μ1 we get x∗ ∈ μ1, which implies that
μ(x∗) = μ(1) = 1 ≥ β and so (x∗)β ⊆ μ. It follows that μ ∈ V ((x∗)β) and thus F(xβ) ⊆ V ((x∗)β).

Conversely, let μ ∈ V ((x∗)β). Then, (x
∗)β ⊆ μ and so μ(x∗) ≥ β > μ(0). By Theorem 3.19,

μ(x∗) = μ(1). Note that μ(0) ≥ min{((x ∗ 0)∗), μ(x)} = min{μ(x∗), μ(x)} = μ(x), we get that
μ(x) = μ(0) < β, or equivalently, 〈xβ〉/⊆μ. Thus, μ ∈ F(xβ) and so V ((x∗)β) ⊆ F(xβ).

Combining the above two sides, we get F(xβ) = V ((x∗)β).
(iii) Let F(xβ) = F(X). We claim that x = 0. If this is not true, by Lemma 3.23,〈x〉/=X.

By Lemma 3.21, there exists a prime filter P of X such that 〈x〉 ⊆ P . On the other hand, by
Lemma 3.12, χP ∈ F(X) = F(xβ).

Therefore, 〈x〉/⊆P , a contradiction. It follows that x = 0.

In general, the converse of Theorem 3.25 (iii) does not hold. Let us see the following
counter example.
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Example 3.26. Let X = {0, 1, 2, 3} and ∗-table and ∨-table be given as follows.

∗ 0 1 2 3

0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

(3.8)

Then (x; ∗, 0) is a bounded implicative BCK-algebra and 3 is a unit. It is easy to see that
P = {1, 3} is a filter of X. From ∨-table, we can see easily that P is prime. So, χP is a fuzzy
s-prime filter by Lemma 3.12. Let β = 1/2. Then, 3β ⊆ μ and so 〈3β〉 ⊆ μ. Hence, μ /∈ F(3β).
Therefore F(3β)/=F(X).

Theorem 3.27. Let X be a bounded implicative BCK-algebra and Xα = {μ ∈ F(X) | μ(0) = α} for
α ∈ [0, 1). Then, Xα is a Hausdorff space.

Proof. Let μ, σ ∈ Xα and μ/=σ. We claim that μ1 /=σ1. Otherwise, if μ1 = σ1, then for x ∈ μ1 = σ1,
μ(x) = μ(1) = 1 = σ(1) = σ(x) and for x /∈ μ1 = σ1, μ(x) = μ(0) = α = σ(0) = σ(x) by
Theorem 3.19, a contradiction. Thus, μ1 /⊆σ1 or σ1 /⊆μ1. Let μ1 /⊆σ1. Then, x ∈ μ1 \ σ1 implies
x∗ ∈ σ1. Moreover, μ(0) ≥ min{μ(x ∗ 0)∗, μ(x)} = min{μ(x∗), μ(x)} = μ(x∗) since μ(x) =
μ(1) = 1. Thus μ(x∗) = μ(0)/=μ(1) and so x∗ /∈ μ1. Therefore, x∗ ∈ σ1 \ μ1. Hence,

σ(x) = α = μ(x∗), μ(x) = 1 = σ(x∗). (3.9)

Let t ∈ (α, 1]. Then, (xt)(x) = t > σ(x), and so σ ∈ F(xt). Note that ((x∗)t)(x
∗) = t > α =

μ(x∗), we get μ ∈ F((x∗)t). Moreover, we get

F(xt) ∩ F((x∗)t) = F((x ∨ x∗)t)
(
by Theorem 3.25 (i)

)

= F(1t)
(
by Lemma 3.14

)

= ∅ (
by Lemma 3.17

)
.

(3.10)

It follows that Xα is a Hausdorff space.

Corollary 3.28. Let X be a bounded implicative BCK-algebra. Then X0 = {μ ∈ F(X) | μ(0) = 0} is
a Hausdorff space.

Let X be a bounded commutative BCK-algebra, L(X) be the set of all filters of X, and
F-spec(X) stand for all prime filters of X.

For any subset A of X, we define S(A) = {P ∈ F-spec(X) | A/⊆P}.
If A = {a}, we denote S({a}) by S(a).

Lemma 3.29. S(A) = S(〈A〉) and if A ⊆ B, then S(A) ⊆ S(B).

Proof. Since A ⊆ 〈A〉, then A/⊆P implies 〈A〉/⊆P . Then, P ∈ S(A) implies P ∈ S(〈A〉).
Conversely, if P ∈ S(〈A〉), then 〈A〉/⊆P . Hence, A/⊆P since A ⊆ P implies 〈A〉 ⊆ P .

Therefore, P ∈ S(A).
Thus, S(A) = S(〈A〉). Similarly, we can prove that A ⊆ B implies S(A) ⊆ S(B).
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Proposition 3.30. The family T(X) = {S(F) | F ∈ L(X)} forms a topology on F-spec(X).

Proof. First, we get

S(1) = S(〈1〉) = {P ∈ F-spec(X) | 〈1〉/⊆P
}
= ∅ ∈ T(X),

S(X) =
{
P ∈ F-spec(X) | X/⊆P

}
= F-spec(X) ∈ T(X).

(3.11)

Then, for any family {S(Fα)}α∈Ω,
⋃

α∈Ω
S(Fα) =

{
P ∈ F-spec(X) | Fα /⊆P For some Fα

}

=

{

P ∈ F-spec(X) |
⋃

α∈Ω
Fα /⊆P

}

=

{

P ∈ F-spec(X) |
〈
⋃

α∈Ω
Fα

〉

/⊆P

}

= S

(〈
⋃

α∈Ω
Fα

〉)

∈ T(X).

(3.12)

Finally,

S(F1) ∩ S(F2) =
{
P ∈ F-spec(X) | F1 ∩ F2 /⊆P

}
= S(F1 ∩ F2) ∈ T(X). (3.13)

Therefore, T(X) is a topology on F-spec(X).

Theorem 3.31. Let X be a bounded implicative BCK-algebra and the map f : F-spec(X) → Xα is
defined by f(P) = χα

P where χα
P is defined in Lemma 3.12. Then, f is a homeomorphism.

Proof. (a) f is well defined.
By Lemma 3.12, χα

P is a fuzzy s-prime filter for any P ∈ F-spec(X). Note that 0 /∈ P ,
then χα

P (0) = α and so χα
P ∈ Xα. Thus, f is well defined.

(b) Clearly f is injective.

(c) f is surjective.

For any μ ∈ Xα, by Theorem 3.19, μ(x) = μ(1) = 1 or μ(x) = μ(0) = α. Hence, μ = χα
μ1
.

By Theorem 3.9, we get μ1 is a prime filter of X. Thus, μ1 ∈ F-spec(X) and so f(μ1) = χα
μ1

= μ.
It follows that f is surjective.

(d) f is continuous.

Let Fα(θ) = F(θ) ∩ Xα be an open set of Xα. We will prove that f−1(Fα(θ)) is an open
set of F-spec(X). It is sufficient to prove that f−1(Fα(θ)) =

⋃
α≤t≤1 S(θt), since θt is a filter of X

by Lemma 3.6.
First, let P ∈ ⋃α<t<1 S(θt), then there exists some t such that α < t < 1 and P ∈ S(θt).

Thus, θt /⊆P and there exists x ∈ θt \ P . Hence θ(x) ≥ t > α = χα
P (x). Therefore, θ /⊆χα

P and so
χα
P ∈ Fα(θ). This shows that f(P) ∈ Fα(θ). It follows that P ∈ f−1(Fα(θ)).
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Conversely, let P ∈ f−1(Fα(θ)), then f(P) = χα
P ∈ Fα(θ). Hence, θ /⊆χα

P , and thus there
exists x ∈ X such that χα

P < θ(x). Therefore, x /∈ P and so χα
P = α < θ(x). We can take t such

that α < t1 < θ(x). Then, x ∈ θt1 \ P . It follows that θt1 /⊆P and so P ∈ S(θt1) ⊆
⋃

α<t<1 S(θt).
Combining the above two hands, we get f−1(Fα(θ)) =

⋃
α<t<1 S(θt). So f is continuous.

(e) f−1 is continuous. It is sufficient to prove that f(S(F)) is an open set of Xα for any
F ∈ L(X).

We will prove that f(S(F)) = Fα(χα
F).

μ ∈ f(S(F)) =⇒ ∃P ∈ S(F) such that f(P) = μ = χα
P

=⇒ F /⊆P, f(P) = μ = χα
P

=⇒ ∃x ∈ F \ P, μ = χα
P

=⇒ χα
P < 1 = χα

F(x)

=⇒ χα
F /⊆χα

P = μ

=⇒ μ ∈ Fα

(
χα
F

)
.

(3.14)

Thus, f(S(F)) ⊆ Fα(χα
F).

Conversely, we get

μ ∈ Fα

(
χα
F

)
=⇒ χα

F /⊆ μ, ∃P ∈ F-spec(X) such that f(P) = μ = χα
P .

=⇒ ∃x ∈ X such that χα
F(x) > μ(x) = χα

P

=⇒ F /⊆ P

=⇒ P ∈ S(F)

=⇒ μ = f(P) ∈ f(S(F)).

(3.15)

So that Fα(χα
F) ⊆ f(S(F)).

Therefore, f(S(F)) = Fα(χα
F). By Lemma 3.6, we can easily see that χα

F is a fuzzy filter
of X and so Fα(χα

F) = F(χα
F) ∩Xα is an open set of Xα. It follows that f−1 is continuous.

By Theorem 3.27 and Theorem 3.31, we get the following corollary.

Corollary 3.32. Let X be a bounded implicative BCK-algebra. Then, F-spec(X) is a Hausdorff space.
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