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The stress induced in a loaded beam will not exceed some threshold, but also its maximum
deflection, as for all the elastic systems, will be controlled. Nevertheless, the linear beam theory
fails to describe the large deflections; highly flexible linear elements, namely, rods, typically found
in aerospace or oil applications, may experience large displacements—but small strains, for not
leaving the field of linear elasticity—so that geometric nonlinearities become significant. In this
article, we provide analytical solutions to large deflections problem of a straight, cantilevered rod
under different coplanar loadings. Our researches are led by means of the elliptic integrals, but the
main achievement concerns the Lauricella F(3)

D hypergeometric functions use for solving elasticity
problems. Each of our analytic solutions has been individually validated by comparison with other tools,
so that it can be used in turn as a benchmark, that is, for testing other methods based on the finite
elements approximation.

1. Introduction

1.1. A Literature’s Overview

As early as 1691, Jakob Bernoulli proposed to find out the deformed centerline (planar
“elastica”) of a thin, homogeneous, straight, and flexible rod under a force applied at its end,
and ignoring its weight. Studying the geometry of its deflection, he established, Curvatura
laminae elasticae (1694), the differential equation of the centerline, say y = y(x), of the rod ab
appenso pondere curvata to be

dy =
x2dx√
1 − x4

. (1.1)
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Not succeeding in solving it, he was led to look for its arclength, arriving at the same elliptic
integral

s =
∫x

0

dξ√
1 − ξ4

, (1.2)

of lemniscate rectification. Daniel Bernoulli, Johann’s son and Jakob’s nephew, obtained
in 1738 subspecie integralis the potential energy stored in a bent rod; in October 1742 he
wrote to Leonard Euler the rod should attain such a shape as to minimize the function of
squared curvature. Accordingly, Euler dealt elastica as an isoperimetric problem of calculus of
variations, De curvis elasticis (1744), arriving at elastica’s differential equation and identifying
nine shapes of the curve, all equilibrium states of minimal energy. Anyway, Colin Maclaurin
had realized the elastica’s connection to elliptic integrals, see A treatise on fluxions (1742), § 927
entitled “The construction of the elastic curve, and of other Figures, by the rectification of the conic
sections”. In 1757, Euler authored a paper, Sur la force des colonnes, concerning the buckling
of columns again, where the critical load is approached through a simplified expression to
the elastica’s curvature, coming again over the problem again in 1770 and 1775; for all this
historical concern, see [1, 2]. Some analytic solutions to elastic planar curves through elliptic
integrals of I and II kind can be read at [3–5]. Almost half a century ago, the analytic treatment
of flexible rods inspired a nice book, [6], which collects many problems ordered according
to the constraint type, and all solved by the elliptic integrals of I and II kind, while the III
kind and Theta functions appear there marginally in the 6th Chapter concerning the three
dimensional deformations. In order to fix just right from the start, the true concept of rod will
be recalled from [7] as follows:

A rod is something of a hybrid, that is, a mathematical curve made up of material
points. It has no cross section, yet it has stiffness. It can weigh nothing or it can
be heavy. We can twist it, bend it, stretch it and shake it, but we cannot break it,
it is completely elastic. Of course, it is a mathematical object, and does not exist
in the physical world; yet it finds wide application in structural (and biological)
mechanics: columns, struts, cables, thread, and DNA have all been modeled with
rod theory.

A rod which offers no resistance to bending is called a string: it is completely
flexible. The string model finds applications in the study of long slender structural
members such as cables, where an external load dominates the mechanics and the
rods flexural stiffness is negligible.

The link between elliptic functions and elastica was always understood so close, to induce the
elliptic functions to be plotted through suitable curved rubber rods (G. Greenhill: Graphical
representation of the elliptic functions by means of a bent elastic beam, 1876), while the paper [8]
is founded on the use of the Weierstrass ℘ function. For recent developments, see: [8–15].
Inextensibility and circular shape of undeformed rod are (numerically) analyzed in [16, 17]
where the load is a uniform centrally directed force.

Our object is the analytical solutions to large-deflection problems of a planar slender
cantilever under coplanar loads. The slender structures are those much longer in one direction
than in the other two, and their deflection will be described by elastic rod theory if one is
interested in phenomena on length scales much larger than the lateral dimensions of the
structure. For Dirichlet problems relevant to large deformations, see [18, 19]. A simplified
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version of this theory, beam theory, suffices if only small deflections need to be considered; the
majority of structural engineering applications are adequately modelled by a beam; bridges
and buildings are not designed to suffer large deformations. But in other applications of
structural mechanics, deflections may be large, meaning that nonlinear geometric effects
must be taken into account; the full (geometrically nonlinear) rod theory is then necessary.
Mathematically, a rod is modelled as a curve with effective mechanical properties such as
bending and torsional stiffnesses, see [20]. Although such problems belong to statics, they
have a strong relation with dynamics; arclength along the rod plays a role similar to time in
a dynamical system. In its simplest form, this analogy (Kirchhoff’s Dynamic Analogy: Über
das Gleichgewicht und die Bewegung eines unendlich dűnnen elastischen Stabes, 1859, see [21]) is
seen between the deformations of an elastic strut and the motions of a swinging pendulum.
A less known analogy links a twisted rod and a spinning top, and the precession of a top
does correspond to a rod helical deformation. Engineering problems where rod theory is
applied include the looping of ocean cables [22] and the buckling of oil well drilling strings,
which nowadays can be over 5 km long. Furthermore, there is a deep reason for a great
interest in applying the elastic rod theory to the supercoiling and packing of DNA molecules
and proteins (such as collagen): as a matter of fact, due to its double helical nature, DNA
is unusually stiff (in both, bending and torsion) for a polymer and, hence, well described by a rod.
Finally, the study of strings and rods is of interest to electrodynamic space tethers1, generally
credited of great potential for future space missions in order to bring down space debris
(derelict spacecraft, etc.). Unlike the majority of tethers, which can be treated as cables, Space
European Tether (SET, see [23]) is a prototype designed to withstand torsional and bending
forces so that it needs to be modelled as a spinning rod (and not a cable), namely, a 3D-
elastica2. All above provide enough motivations to implement exact solutions within the rod
theory, see [10].

The exact governing equations for the finite displacement rod theory become highly
nonlinear, and, hence, it is very difficult to solve these equations analytically. Thus,
for practical purposes, problems of this kind are usually solved by the methods
based on the finite elements approximations. However, the closed form solutions
for these problems are still important to the practical point that the accuracy of the
approximate methods can be precisely evaluated by these solutions, to say nothing
of the mathematical importance.

1.2. Aim of the Paper

It is well known why the elastic curve of a rod is essential, in fact not only the stresses, but
also its maximum deflection will not exceed a fixed amount. Furthermore, (see Mattiasson
[24]).

When developing finite element methods, there is also a need for checking
the results against an exact solution. In the case of finite element methods for
geometrically nonlinear beam, frame and shell structures, elliptic integral solutions
of large deflection beam and frame problems offer such exact solution.

Nevertheless, his approach is a bit obsolete nowadays because he computes the elliptic
integrals numerically through the arithmetic-geometrical means.

We are going to analyze an elastic, thin, flexible rod, clamped at one end (cantilever)
bent under different loadings whose plane coincides with that of the strained centerline.
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Equating the exact curvature in cartesian coordinates to the bending moment divided into
the flexural rigidity, one is led to a second-order nonlinear and nonautonomous differential
equation. Boundary conditions are given both on the clamped end (Cauchy problem), so that,
for example, if the constraint is perfect, displacement and rotation have to be zero there. We
discarded the illusion of a general system of loads and rods and restricted ourselves to only
one configuration, charged by a single load and treating each single problem by means of
the special functions of mathematical physics. The chosen loads are constant couple, evenly
distributed load, shear at the tip, hydrostatic load, and sinusoidal load. All our force loads
have to be understood as “dead load”, namely, always equal to itself and then not “follower”
as are currently named the loads keeping a fixed inclination to the rod before and after the
strain.

For one of the above loads, based on the rod’s unextensibility, we computed in
closed form the Ω free tip coordinates, parametrized to the load itself. We use everywhere
nondimensional quantities; the reader will see how advantageous is such a choice in
producing “universal” relationships which (in elliptical and/or hypergeometric cloth) keep
their formal validity in several situations.

1.3. Special Functions Tools

We assume that the reader knows the elliptic functions (see [25] for details), but let us recall
hereinafter the less known Lauricella hypergeometric ones.

The hypergeometric series first appeared in the Wallis’s Arithmetica infinitorum (1656)

2F1(a, b; c;x) = 1 +
a · b
1 · c x +

a · (a + 1) · b · (b + 1)
1 · 2 · c · (c + 1)

x2 + · · · , (1.3)

for |x| < 1 and real parameters a, b, c. The product of n factors

(λ)n = λ(λ + 1) · · · (λ + n − 1), (1.4)

called Pochhammer symbol (or truncated factorial) allows to write 2F1 as

2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
. (1.5)

The first meaningful contributions about various 2F1 representations are due to Euler3;
nevertheless, he does not seem to have known the integral representation

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(c − a)

∫1

0

ua−1(1 − u)c−a−1

(1 − xu)b
du, (1.6)

traditionally ascribed to him, but really due to A. M. Legendre4. For all this and for the Stirling
contributions, see [26]. The above integral relationship is true if c > a > 0 and for |x| < 1, even
if this bound can be discarded due to analytic continuation.
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Several functions have been introduced in the 19th century for generalizing the hyper-
geometric functions to multiple variables, but we will mention only those introduced and
investigated by Lauricella (1893) and Saran (1954). Among them our interest is focused on
the hypergeometric function F

(n)
D of n ∈ N

+ variables (and n + 2 parameters), see [27, 28],
defined as

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) :=

∑
m1,...,mn∈N

(a)m1+···+mn
(b1)m1

· · · (bn)mn

(c)m1+···+mn
m1! · · ·mn!

xm1
1 · · ·x

mm
n , (1.7)

with the hypergeometric series usual convergence requirements |x1| < 1, . . . , |xn| < 1. If Re c >
Re a > 0, the relevant integral representation theorem (IRT) provides

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) =

Γ(c)
Γ(a) Γ(c − a)

∫1

0

ua−1(1 − u)c−a−1

(1 − x1u)b1 · · · (1 − xnu)bn
du, (1.8)

allowing the analytic continuation to C
n deprived of the cartesian n-dimensional product of

the interval ]1,∞[ with itself.

2. Bent Slender Rod: A Large Deflections 2D-Model

Let us tackle a L-long, thin, and weightless rod whose end A is clamped and B free. We put
at B the origin O of a (x, y) cartesian reference frame with x along the undeformed rod, from
B to A; and y downwards, normal at B to x. Our basic assumptions are

(A1) the rod is thin, initially straight, homogeneous, with uniform cross-section and
uniform flexural stiffness EJ , where E is the Young modulus, and J the cross-
section moment of inertia about a “neutral” axis normal to the plane of bending
and passing through the central line;

(A2) the slender rod is charged by coplanar dead loads;

(A3) linear constitutive load: the induced curvature is proportional via 1/(EJ) to the
bending moment. The rod undergoes large deflections but small strains;

(A4) the shear transverse deformation is ignored, and the rod is assumed to keep
constant its previous length (inextensibility);

(A5) a stationary strain field, by isostatic equilibrium of active loads and reactive forces,
takes place, and, due to rest of static equilibrium, no rod element undergoes
acceleration.

The key Bernoulli-Euler linear constitutive law connects flexural stiffness EJ and
bending moment M to the consequent curvature κ of the deflected centerline ±EJκ =M(x).
With our (traditional) reference frame (x, y), the curvature has always opposite sign to the
bending moment

EJ
yxx(

1 + y2
x

)3/2
= −M(x), (2.1)
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where y = y(x) is the unknown elastica’s cartesian equation and

yx =
dy
dx

, yxx =
d2y

dx2
. (2.2)

To (2.1) a useful dress can be given

d
dx

⎛
⎜⎝ yx√

1 + y2
x

⎞
⎟⎠ = − 1

EJ
M(x), (2.3)

to be solved together to the perfect clamping boundary conditions

y(L) = 0, y′(L) = 0. (2.4)

Throughout all the paper, it will be minded that the Cauchy problem

d
dx

⎛
⎜⎝ yx√

1 + y2
x

⎞
⎟⎠ = − 1

EJ
M(x), 0 ≤ x ≤ L,

y(L) = 0,

yx(L) = 0,

(2.5)

can be solved in such a way. Putting

H(x) :=
∫L
x

M(ξ)dξ, (2.6)

the solution of (2.5) is

y(x) = −
∫L
x

H(ξ)√
(EJ)2 −H2(ξ)

dξ. (2.7)

In the sequel, we are going to use dimensionless variables ξ = x/L, η = y/L, so that
the previous relationship becomes

ηξ =
H(Lξ)√

(EJ)2 −H2(Lξ)
,

η(1) = 0,

(2.8)
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Figure 1: Horizontal cantilever rod inflected by a constant bending couple at its tip.

whose solution is

η(ξ) =
∫ ξ

1

H(Lζ)√
(EJ)2 −H2(Lζ)

dζ. (2.9)

2.1. Rod Inflected by a Constant Bending Couple at Its Tip

The clamped section is at x = L, see Figure 1. In such a case, the equation to be integrated is
(2.5), with M(x) = −M0, and (2.9) provides, in nondimensional form,

η(ξ) =
1
χ
−
√

1
χ2
− (ξ − 1)2, (2.10)

where χ =M0L/EJ > 0. The elastica is more readable reverting at a dimensional form

x2 + y2 − 2Lx − 2χLy + L2 = 0, (2.11)

half circle of centre C(L, Lχ) and radius Lχ, see Figure 1, as it is well known.

2.2. The Horizontal Heavy Rod.

The classic elastica theory started by the “lamina”, namely, a thin rod without weight but capable
to withstand the flexure and loaded at its free end only. Chapter 5 of [6] on the specific problem
of the horizontal cantilever under uniform load gives (page 173):

This problem. . . has shown considerable resistance to a closed form solution and all
investigations dealing with it have employed approximate methods only.

Accordingly, he obtains elastica coordinates as parametric functions of the arclength s,
stopping their Maclaurin expansions to s10.
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Figure 2: Horizontal cantilever rod bent by a uniform load.

Let us consider at Figure 2 a horizontal, flexible, homogeneous, heavy and cantilever;
it will be inflected by the uniform evenly continuous load q (weight for unity span length). Its
elastica, according to the approximate beam theory, would consist of a fourth-order rational
function of x. Being

M(x) = −1
2
qx2, ν =

qL3

6EJ
, (2.12)

we obtain, in nondimensional coordinates, using (2.9)

η(ξ) =
ν

3

∫ ξ3−1

0

σ1/2

(1 + σ)2/3(1 − νσ)1/2(1 + νσ)
dσ, (2.13)

and finally, passing to the variable λ = σ/(ξ3 − 1):

η(ξ) =
ν
(
ξ3 − 1

)2

3

∫1

0

λ

[1 − λ(1 − ξ3)]2/3√[1 − λν(ξ3 − 1)][1 − λν(1 − ξ3)]
dλ. (2.14)

By identification, we obtain the solution to our elastica through a Lauricella function
of 3 variables x1 = 1 − ξ3, x2 = ν(ξ3 − 1), x3 = ν(1 − ξ3), so that

η(ξ) =
ν

6

(
ξ3 − 1

)2
F
(3)
D

(
2;

2
3
,

1
2
,

1
2

; 3;
(

1 − ξ3
)
, ν
(
ξ3 − 1

)
, ν
(

1 − ξ3
))

. (2.15)

For being compliant with the IRT requirements, it shall be |x̂k| < 1, and then ν < 1. Otherwise,
it will be necessary another method.

We got there three ν-ranges. The first is the very narrow one, where the small
deflections assumption is true, first-order theory. By |η′(ξ)| < h2, h ∈ (0, 1), we get

ν
∣∣∣ξ3 − 1

∣∣∣ < h2
√

1 − ν2(ξ3 − 1)2, (2.16)

which at ξ = 0, gives ν < h2/(
√

1 + h4). For instance, if h = 1/10, then
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Figure 3: Horizontal cantilever rod bent under tip-concentrated upwards load.

(i) if 0 < ν < 0.0099, the first-order approximation can be accepted;

(ii) if 0.0099 < ν < 1 by (IRT), the hypergeometric function F(3)
D is capable of describing

our solution (2.14);

(iii) if ν ≥ 1, the solution (2.14) will be numerically computed.

Formula (2.15), founded on the Lauricella F(3)
D hypergeometric functions, provides a

very compact explicit solution to the elastica of a thin clamped heavy rod. We cannot give
now the due importance to (2.15) due to the lack of software packages whose quickness and
precision of computing are comparable to those available on Mathematica for the Gauss or
Appell hypergeometric functions. We did invite Wolfram to consider such a necessity, but no
forecasting is possible. As far as we are concerned, the integral (2.14) cannot be led to any
other known special functions or to any combination of them.

2.3. A Tip-Sheared Horizontal Rod

We refer to Figure 3, where the force R is transversal (in [29] is studied the inclined end
load) but not a follower one; we have M(x) = Rx, so that, after defining the nondimensional
μ = RL2/2EJ , we obtain

η(ξ) = μ
∫1

ξ

1 − ζ2√(
1 − μ(1 − ζ2)

)(
1 + μ(1 − ζ2)

)dζ, (2.17)

being the bending moment always greater than zero, so will be H(x), and then it will be
ηξ > 0. For this load too, the hypergeometric treatment is possible. Passing from ζ to λ, with
λ = (1 − ζ2)/(1 − ξ2), we obtain

η(ξ) =
μ

2

(
1 − ξ2

)2
∫1

0

λ√
[1 − λ(1 − ξ2)]

[
1 − λμ(1 − ξ2)

][
1 − λμ(ξ2 − 1)

]dλ. (2.18)
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We can see that, recognizing the Lauricella parameters a = 2, bi = 1/2, c = 3

η(ξ) =
μ

4

(
1 − ξ2

)2
F
(3)
D

(
2;

1
2
,

1
2
,

1
2

; 3;
(

1 − ξ2
)
, μ
(
ξ2 − 1

)
, μ
(

1 − ξ2
))

, (2.19)

compliant to the IRT requirements if μ < 1. For this load, we have to the Lauricella’s
alternative of the elliptic integrals (not applicable to the heavy nor to the submerged rod),
so that we will cover with much more details this approach. Investigating the elastica of a
thin cantilever, the majority of authors (Landau and Lifchitz [30], Love [21], Mathieu [31],
Burgatti [4], Panayotounakos and Theocaris [11, 12, 14], Chucheepsakul and Phungpaigram
[9], Basoco [8], Frisch-Fay [6]) use the slope-arclength formulation (ϑ, s) they integrate a
first time for getting ϑ as a function of s. But dx = ds cosϑ(s) and dy = ds sin ϑ(s), so that
they get, through a second integration, the elastica’s x and y coordinates parametrized on s.
Only few develop a different (x, y) parametric equations, for example, Saalschütz, in [32].
Anyway a treatment leading to explicit sole cartesian coordinates does not seem to be ever
established, and it is exactly what we are doing. An old reference, rather fit to Jakob Bernoulli
(1694) and Euler (1744) formulae, is that of Kiepert (1912), who5 stops without reducing his
elliptic integral to the Legendre standard form. It will be just the elliptic integral (2.17) our
startup. First let us change variables in (2.17) passing from ζ to t = 1 − ζ2, obtaining

η(ξ) =
1
2

∫1−ξ2

0

t√((
1/μ
)
− t
)
(1 − t)

(
t +
(
1/μ
))dt. (2.20)

For the reader convenience, let us fix some notation. Let a > b > x > y > c. Consider the
definite elliptic integral

I
(
a, b, c, x, y

)
=
∫x
y

t√
(a − t)(b − t)(t − c)

dt. (2.21)

Combining formulae given in [25]: integral 234.16 page 76 and integral 340.01 page 205,
introducing

k2 =
b − c
a − c , ϕ(x) = arcsin

√
(a − c)(b − x)
(b − c)(a − x) , (2.22)

we obtain:

I
(
a, b, c, x, y

)

=
2√
a − c

{
a
[
F
(
ϕ
(
y
)
, k
)
− F
(
ϕ(x), k

)]
− (a − b)

[
Π
(
ϕ
(
y
)
, k2, k

)
−Π
(
ϕ(x), k2, k

)]}
,

(2.23)
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where F(ϕ, k) and Π(ϕ, k2, k) are the I and III kind elliptic integrals. Now assuming that μ < 1
we have the identification

a b x y c

	 	 	 	 	
1
μ

1 1 − ξ2 0
−1
μ

(2.24)

which allows to give (2.17) via (2.20) by means of the integration formula

η
(
ξ;μ
)
=
√
μ

2

[
1
μ
F
(
ξ, μ
)
+
(

1 − 1
μ

)
P
(
ξ, μ
)]
, (2.25)

where:

F
(
ξ, μ
)
= F

⎛
⎝ϕ
(
μ
)
,

√
1 + μ

2

⎞
⎠ − F

⎛
⎝ψ
(
μ
)
,

√
1 + μ

2

⎞
⎠,

P
(
ξ, μ
)
= Π

⎛
⎝ϕ
(
μ
)
,

1 + μ
2

,

√
1 + μ

2

⎞
⎠ −Π

⎛
⎝ψ
(
μ
)
,

1 + μ
2

,

√
1 + μ

2

⎞
⎠,

(2.26)

being

ϕ
(
μ
)
= arcsin

√
2μ

1 + μ
, ψ

(
μ
)
= arcsin

√
2μ

1 + μ
ξ2

1 − μ(1 − ξ2)
. (2.27)

Formula (2.25) provides the dimensionless deflection η to the position ξ and to the load μ: its
3D-plot, via Mathematica, as shown in Figure 4.

From it, one could obtain the relevant contour plots cutting by planes of μ = constant.
The thing is shown in Figure 5, where the clamped end is on the left. The deflection curves
are given for some values of μ : 0.2; 0.4; 0.6; 0.8. Each of them is compared with the dot
curve coming from the approximate theory6. Mind that ξ is ranged as ξΩ < ξ < 1, and ξΩ
has to be found from (3.12). Accordingly, each single μ-curve has been plotted between ξ = 1
and ξΩ(μ). From the physical viewpoint, the lines’7 comparison shows at the low loads an
agreement which is becoming worst for increasing loads when the approximate theory is
progressively failing.

It is worth noting that the power series expansion of (2.25) drives back to the
approximate expression for η(ξ) used in literature. Of course, we deeply exploited the
computer algebra power for this task. First we compute the Maclaurin third-order expansion
of (2.25) with respect to ξ obtaining
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Figure 4: The sheared cantilever: a 3D dimensionless plot of deflection η versus position ξ and load
intensity μ.
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Figure 5: The sheared cantilever: solution to (2.17) with some μ values compared to the dotted lines of the
linearized theory.

η(ξ) =
μ

3
(
1 − μ2

)3/2
ξ3 −

μ√
1 − μ2

ξ +
√
μ

2
A
(
μ
)
, (2.28)

where (ϕ(μ) is the quantity introduced in (2.27))

A
(
μ
)
=

1
μ
F

⎛
⎝ϕ
(
μ
)
,

√
μ + 1

2

⎞
⎠ +

(
1 − 1

μ

)
Π

⎛
⎝μ + 1

2
;ϕ
(
μ
)
,

√
μ + 1

2

⎞
⎠. (2.29)
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Now we expand the elliptic integrals of I and III kind with respect to μ, with initial point
μ0 = 0

F

⎛
⎝ϕ
(
μ
)
,

√
μ + 1

2

⎞
⎠ =

√
2 μ1/2 +

31

60
√

2
μ5/2 +O

(
μ7/2
)
,

Π

⎛
⎝μ + 1

2
;ϕ
(
μ
)
,

√
μ + 1

2

⎞
⎠ =

√
2 μ1/2 +

√
2

3
μ3/2 +O

(
μ5/2
)
,

(2.30)

arriving at

√
μ

2
A
(
μ
)
=

2
3
μ +O

(
μ2
)
. (2.31)

Moreover recalling the Maclaurin first-order expansion with respect to μ

μ

3
(
1 − μ2

)3/2
ξ3 −

μ√
1 − μ2

ξ = μ

(
ξ3

3
− ξ
)

+O
(
μ2
)
, (2.32)

adding (2.31) and (2.32), we obtain eventually

η(ξ) =
μ

3

(
2 − 3ξ + ξ3

)
+O
(
μ2
)
, (2.33)

that is, the usual approximation.
Going again to formula (2.25), his peculiarities are: it is nondimensional; it is

new, in closed form, exact, and explicit. Moreover, for being implemented, no previous
transcendental equation has to be solved; it requires only to compute the dimensionless
parameter μ = (RL2)/(2EJ) holding all the rod physical data.

On the purpose, it will be observed that in [33], an eigenvalue problem is solved
through a double boundary condition of no rotation at the ends of the rod. The authors
get the coordinates of elastica parametrized to the external load and marked by the mode
number. For our same load, they show four elastica each relevant to a given load, but referring
to the static mode n = 1. Other curves are provided referring to the first dynamic mode,
n = 2. Furthermore, the module k of the Jacobi elliptic functions involved there, is on its
own depending on the tip load P via an equation to be solved previously. Nevertheless the
(essential!) relationship k � P keeps unrevealed, because the authors at page 740 write:

The modulus of elliptic functions k and the parameter F1 play the role of integration
constants and they are related to the force P and the angle ϕ0 by boundary
conditions for each case of rod bending.

In fact, they do not provide the k computation at all, marking their plot solutions not
in terms of P (as it should be done), but of a sequence of k values 0.5; 0.6; 0.85; 1 − 10−5 see
Figure 2, page 742 of [33], so that their (x, y) solution seems to be not easily accessible from
P .
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Figure 6: Submerged vertical rod under hydrostatic pressure.

2.4. The Rod Inflected by Hydrostatic Pressure

We are looking for the shape of a (L, EJ) slender and thin cantilever clamped at the bottom
of a pool of calm water. The rod weight has been deliberately ignored, being partially
balanced by the Archimedes buoyancy. The rod is at full length submerged, being obvious
the adjustments for a rod leaning out the water or whose tip is under the sheet of water.
We assume, as in Figure 6, a reference with the y axis downwards and x over the water
surface. The hydrostatic head, being ρ the liquid mass density and g the gravity, will have a
linearly deep-growing profile (Stevin), so that, integrating twice such a head, one arrives at
the bending moment

M(x) =
1
6
ρgLx3. (2.34)

By the usual identification, we obtain the solution to our elastica through the Lauricella
function of three variables

x1 = σ
(
ξ4 − 1

)
, x2 = σ

(
1 − ξ4

)
, x3 = 1 − ξ4, (2.35)

where σ = ρgL5/24EJ , so that

η(ξ) =
σ

8

(
1 − ξ4

)2
F
(3)
D

(
2;

1
2
,

1
2
,

3
4

; 3;σ
(
ξ4 − 1

)
, σ
(

1 − ξ4
)
, 1 − ξ4

)
. (2.36)

For being compliant with the IRT requirements, it will be |xk| < 1, and then σ < 1.

2.5. The Rod Loaded by a Sinusoidal Bending Moment

Assumption A3 implies that our systems are ruled by differential equations affected by a
geometrical nonlinearity due to the nonlinear link between the curvature κ and yx. But κ,
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Figure 7: Elastica of a cantilever rod bent by a sinusoidal continuous load.

which is the consequence on the rod, is linked to its cause, namely, the bending moment
M, by a Linear Constitutive Law κ = ±M/EJ , being EJ the flexural stiffness. Such a linearity
implies that, by superposition, whenever some moment distribution is repeated periodically,
we can make its Fourier expansion, so that the rod bending moment is broken out into the
addition of an infinitely many harmonics sine/cosine. In such a way, one will get the elastica
by superposition, of course retaining those harmonics deemed useful or necessary.

What above provides enough motivation for analyzing once for all, the effect of
the sinusoidal load, whose a half wave only is taken, omitting all the possible variants or
subcases. Seeing Figure 7, let q(x) be the continuous transverse load (whose highest value is
Q) over the unit of an L-length flexible cantilever

q(x) = Q sin
(π
L
x
)
. (2.37)

Integrating twice such a load, one arrives at the bending moment affecting the x-section

M(x) = −L
2Q

π2
sin
(π
L
x
)
. (2.38)

In such a way, introducing ε = L3Q/(π3EJ) > 0, with8 ε 
 1, following (2.9), we find

η(ξ) = −ε
∫ ξ

1

1 + cos(πζ)√
1 − ε2[1 + cos(πξ)]2

dζ. (2.39)

If 1 + cos(πζ) = u/ε, so that

η(ξ) =
1
π

∫ ε[1+cos(πξ)]

0

√
u

(1 − u)(1 + u)(2ε − u)du. (2.40)
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By the integration Tables [25], entries 254.12 page 113 and 337.01 page 201, we can establish
an integration formula, embedding (2.40) as a particular case: let a > b ≥ y > c > d and define

k2 =
(a − d)(b − c)
(a − c)(b − d) , α2 =

b − c
b − d , ϕ = arcsin

√√√√ (b − d)
(
y − c

)
(b − c)

(
y − d

) , (2.41)

then

∫y
c

√
u − c

(a − u)(b − u)(u − d)du =
2(b − c)(c − d)

(b − d)α2

√
(a − c)(b − d)

[
Π
(
ϕ, α2, k

)
− F
(
ϕ, k
)]
,

(2.42)

where Π(ϕ, α2, k) is again the elliptic integral of third kind and F(ϕ, k) of first kind. Being
2ε < 1, in (2.40), we do the identification

a b y c d

	 	 	 	 	
1 2ε ε[1 + cos(πξ)] 0 −1

(2.43)

so that our elastica is

η(ξ; ε) =
2

π
√

2ε + 1

[
Π

(
θ(ξ, ε),

2ε
2ε + 1

, 2
√

ε

2ε + 1

)
− F
(
θ(ξ, ε), 2

√
ε

2ε + 1

)]
, (2.44)

where

θ(ξ, ε) := arcsin

( √
2ε + 1√

ε cos(πξ) + ε + 1
cos

πξ

2

)
. (2.45)

Figure 8, performed through Mathematica, provides the overlapping of the integral (2.39)
numerically computed and the plot consequent to our compact smart formula (2.44).

3. How to Compute the Tip Position after the Strain

Considering the small deflections, the deformed centerline’s curvature is approximately
equated to the deflection’s second derivative, assuming the rod deformation field to proceed
along purely vertical displacements. If it is so, the free end O(ξ = 0, η = 0) will be mapped to
ξ = 0, with η(0)/= 0, but having the elastica as horizontal projection, its full unstrained length,
then the rod will undergo extension.

With large displacements all, this is not true any more, and a further unknown will
appear, namely, the abscissa ξΩ of the new position Ω, where O has been mapped to. Rod’s
behavior under strain can be modeled in several ways. For instance in [9] after integrating
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Figure 8: Integral (2.39) numerical, and by formula (2.44) with ε = 0.1. The plot shall be conveniently
oriented; the rod’s clamped end is at the right side, that is, ξ = 1, and the load is thought to act upwards.

the elastica, the authors write five congruence relationships involving geometric quantities
before and after the strain and then leave the rod free of extension.

Following a completely different method, in [34] some possible alternatives like
rotational load, load always perpendicular to the tangent at the tip and so on, are taken into
account.

Anyway, the simplest criterion is the inextensibility assumption A4; the rod keeps
its originary length9. For the horizontal weightless cantilever inflected by a tip shear (see
Figure 3), the elastica η(ξ) has been provided by means of the elliptic integrals, see formula
(2.25). Wishing to compute the tip deflection f , the approximate beam theory would answer
f = η(0), but with large deflection, we have first to detect ξΩ what is done assuming the
unextensibility

∫1

ξΩ

√
1 + η2

ξ
dξ = 1. (3.1)

We see that ξΩ is the sole unknown, having been previously found ηξ, so that, after ξΩ, we
will compute f = η(ξΩ). let us provide the full treatment for such a case. By plugging

ηξ = μ
1 − ξ2√(

1 − μ(1 − ξ2)
)(

1 + μ(1 − ξ2)
) , (3.2)

in (3.1), after the change 1 − ξ2 = t, we get

2μ =
∫1−ξ2

Ω

0

dt√((
1/μ
)
− t
)
(1 − t)

((
1/μ
)
+ t
) . (3.3)

Our unknown appears in the upper integration limit; in order to solve (3.3), we need to
establish an existence-uniqueness Lemma.
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Lemma 3.1. Consider the transcendental x-equation where a > b ≥ x > y ≥ c

∫x
y

dt√
(a − t)(b − t)(t − c)

= 2μ. (3.4)

Defining

k2 =
b − c
a − c , ϕ

(
y
)
= arcsin

√√√√ (a − c)
(
b − y

)
(b − c)

(
a − y

) , (3.5)

then the equation (3.4) has a unique real root x if and only if

0 ≤ 2μ ≤
∫b
y

dt√
(a − t)(b − t)(t − c)

=
2√
a − c

F
(
ϕ
(
y
)
, k
)
, (3.6)

and such a root is given by

x̂ =
b(c − a) + a(b − c) sn2(μ √a − c − F(arcsinϕ

(
y
)
, k
)
, k
)

c − a + (b − c) sn2
(
μ
√
a − c − F

(
arcsinϕ

(
y
)
, k
)
, k
) , (3.7)

where sn(u, k) is the Jacobi sine amplitude of module k.

Proof. Let a > b ≥ x > y ≥ c. Observe that the function

x �−→
∫x
y

dt√
(a − t)(b − t)(t − c)

, (3.8)

is strictly increasing, and that (3.6) ensures existence of solution of equation (3.4). In order to
prove the Lemma, we will refer to [25], formula 234.00, page 74, to establish that

∫x
y

dt√
(a − t)(b − t)(t − c)

=
2√
a − c

[
F
(
ϕ
(
y
)
, k
)
− F
(
ϕ(x), k

)]
, (3.9)

with the ϕ and k meanings previously introduced. The very last step follows from the
inversion:

F
(
arcsinψ, k

)
= α⇐⇒ ψ = sn(α, k), (3.10)

which delivers x from (3.9), after equating the right hand side to 2μ.
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Figure 9: Sheared rod: tip’s abscissa as a function of the load.

We can then use the Lemma to solve (3.3) via the identification

a b x y c

	 	 	 	 	
1
μ

1 1 − ξ2
Ω 0

−1
μ
,

(3.11)

where it has been assumed10 μ < 1. Minding that a = 1/μ and c = −1/μ, it should be
seen that (3.6) provides an upper limit to the dimensionless load μ solving numerically a
transcendental inequality. To such a limit, a physical meaning can be found as the highest
allowable load beyond which the linear constitutive law (curvature versus bending couple)
is not true any more.

Solving to ξΩ, we find out that

ξ2
Ω =

1 − μ2

2μ

⎧⎪⎨
⎪⎩

sn
(√

2μ − F
(

arcsin
√

2μ/
(
μ + 1

)
,
√(

μ + 1
)
/2
)
,
√(

μ + 1
)
/2
)

dn
(√

2μ − F
(

arcsin
√

2μ/
(
μ + 1

)
,
√(

μ + 1
)
/2
)
,
√(

μ + 1
)
/2
)
⎫⎪⎬
⎪⎭

2

. (3.12)

Therefore, increasing R intensities11, and then μ, the successive positions of the free tip, that
is, the components of the displacement

−−−−→
OΩk = (ξΩ, |η(ξΩ)|) will be described as functions of

μ at Figures 9 and 10.
First, the (3.12) relationship is plotted as shown in Figure 9.
Plugging (3.12) in (2.25), we obtain for the tip η as a function of μ alone. But such a

formula is too long, and then we will omit here, providing its relevant plot.

4. Conclusions

Five elasticae have been analytically solved of a thin cantilever rod bent by different coplanar
“dead” loadings12, namely, whose direction remains unchanged during the deformation of
the rod. They are concentrated couple, tip shear, evenly continuous load, hydrostatic load,



20 International Journal of Mathematics and Mathematical Sciences

0.80.60.40.2
μ

0.1

0.2

0.3

0.4

0.5

0.6

η

Figure 10: Sheared rod: dimensionless tip deflection as a function of the load. Dotted line refers to the
approximate theory |η(0)| = 2μ/3.

and sinusoidal load. Each of them describes a single physical situation for which we obtain
the large deflections in closed form through elliptic and/or hypergeometric functions. Some
care has been put (tip sheared rod) in providing analytically, via the isometric assumption, the
free end position after the strain, parametrizing its coordinates as a function of the load. Some
of our solutions, specially that to the heavy rod by the Lauricella functions, have enriched the
literature on the elastica.

Acknowledgments

The authors are indebted to their friend Aldo Scimone who drew some Figures of this
paper; they hereby take opportunity for thanking him warmly. They wish also to thank the
anonymous referee whose valuable criticism improved their article.

Endnotes

1. A space tether is a long cable used to connect spacecraft to other orbiting bodies
such as space stations, boosters, payload, and so forth in order to transfer energy and
momentum.

2. The problem of 3D-elastica is very old, but out of our purpose. We will say only that it
first appeared in Lagrange’s Mécanique Analytique 2nd edition (1811). J. Binet (Mémoire
sur l’intégration des équations de la courbe élastique à double courbure, 1844) and M. Wantzel
(Note sur l’intégration des équations de la courbe élastique à double courbure, 1844) arrived at
the same differential system, vaguely formulated, and not affronted. A modern treatment
of a particular case can be read in [35], with its specific bibliography.

3. We quote three works: (a) De progressionibus transcendentibus, Op. omnia, S.1, vol. 28; (b)
De curva hypergeometrica Op. omnia, S.1, vol. 16; (c) Institutiones Calculi integralis, 1769,
vol. II.

4. A.M. Legendre, Exercices de calcul intégral, II, quatriéme part, sect. 2, Paris 1811.
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5. In [36] putting R = 2/a, he gets the elastica y(x) through the integral

y(x) = ±
∫

C1 ± x2√
a4 − (C2 ± x)2

dx. (4.1)

“Die Kurve welche diese Gleichung entspricht, heißt die elastische Linie weil ein
elastischer Stab der an dem Ende befestigt und an dem andern Ende belastet ist, diese
Form annimmt.”

6. Under transversal load at the cantilever tip, this problem in strength of materials is solved
in cartesian coordinates following the linear approximation; the solution is found (e.g.,
see [37, page 305]) to be

∣∣η(ξ)∣∣ =
(
μ

3

)(
2 − 3ξ + ξ3

)
, (4.2)

in dimensionless form.

7. Notice that the plots are coming after Mathematica’s computation of our explicit solution
(2.25), but adding the map ξ → 1 − ξ in order to provide the geometrical true
configuration of the stressed rod.

8. Inserting in ε some numerical values, for example, L = 5 m, q = 6 N ×m−1, EJ = 100 N ×
m2, g = 9, 81 m×s−2, one gets: ε ≈ 3×10−2, so that, unless of assuming unrealistic lengths,
ε is essentially much less than unity.

9. Only in some special cases such a tip path description is quick. For instance for a rod
loaded by a fixed couple (Section 2.1), one gets ξΩ = 1 − χ, f = χ.

10. Having for instance L = 1 m, R = 10 N, EJ = 100 N ×m2, we get μ = RL2/2EJ = 0.05.

11. Nothing to say, apart from the more strict link imposed by the transcendental inequality
(linearity range), (3.12) requires μ ≤ 1.

12. The contrary case is that of the follower load which is being unchanged in its relationship
with the rod, for example, keeping its direction perpendicular—or inclined—to it during
and after the strain.
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