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Let X be an arbitrary nonempty set and L a lattice of subsets of X such that ¢, X € L. A(L) denotes
the algebra generated by L, and M(L) denotes those nonnegative, finite, finitely additive measures
on A(L). In addition, I(L) denotes the subset of M(L) which consists of the nontrivial zero-
one valued measures. The paper gives detailed analysis of products of lattices, their associated
Wallman spaces, and products of a variety of measures.

1. Introduction

It is well known that given two measurable spaces and measures on them, we can obtain the
product measurable space and the product measure on that space. The purpose of this paper
is to give detailed analysis of product lattices and their associated Wallman spaces and to
investigate how certain lattice properties carry over to the product lattices. In addition, we
proceed from a measure theoretic point of view. We note that some of the material presented
here has been developed from a filter approach by Kost, but the measure approach lends to a
generalization of measures and to an easier treatment of topological style lattice properties.

2. Background and Notations

In this section we introduce the notation and terminology that will be used throughout the
paper. All is fairly standard, and we include it for the reader’s convenience.

Let X be an arbitrary nonempty set and L a lattice of subsets of X such that @, X € L. A
lattice L is a partially ordered set any two elements (x,y) of which have both sup(x, y) and
inf(x, y).

A(L) denotes the algebra generated by L; (L) is the o algebra generated by L; 6(L)
is the lattice of all countable intersections of sets from L; 7(L) is the lattice of arbitrary
intersections of sets from L; p(L) is the smallest class closed under countable intersections
and unions which contains L.
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2.1. Lattice Terminology
The lattice L is called:

O-lattice if L is closed under countable intersections; complement generated if L € L
implies L = NL), n = 1,...,00, L, € L (where prime denotes the complement);
disjunctive if for x € X and L; € L such that x ¢ L; there exists L, € L with x € L,
and Ly N L, = §; separating (or Tq) if x,y € X and x # y implies there exists L € L
suchthatx € L, y € L; T if for x,y € X and x # y there exist L, L, € L such that
x € L}, y € Ly, and L) NL} = §; normal if for any Ly, L, € L with LyNL; = @ there exist
L3, Ly € Lwith Ly C L}, L, € L), and Ly N L), = @; compact if for any collection {L,} of
sets of L with N L, = @, there exists a finite subcollection with empty intersection;
countably compact if for any countable collection {L,} of sets of L with N,L, = 0,
there exists a finite subcollection with empty intersection.

2.2, Measure Terminology

M(L) denotes those nonnegative, finite, finitely additive measures on A(L).
A measure y € M(L) is called:

o-smooth on L if for all sequences {L,} of sets of L with L,, | @, u(L,) — 0;

o-smooth on A(L) if for all sequences {A,} of sets of A(L) with A, | @, u(A,) — 0,
that is, countably additive.

L-regular if for any A € A(L),
u(A) =sup{u(L)|Lc A, LeL}. (2.1)

We denote by Mg(L) the set of L-regular measures of M(L); M (L) the set of o-smooth
measures on L, of M(L); M?(L) the set of c-smooth measures on A(L) of M(L); M%(L) the set
of L-regular measures of M°(L).

In addition, I(L), Ir(L), I;(L), I°(L), I3 (L) are the subsets of the corresponding M’s
which consist of the nontrivial zero-one valued measures.

Finally, let X, Y be abstract sets and L; a lattice of subsets of X and L, a lattice of subsets
of Y. Let pty € M(L1) and p» € M(L,).

The product measure py x pp € M(Lq x Ly) is defined by

(1 x p2)(Ly x Ly) = pr (L) pa(L2)  VLy € A(Ly), Lo € A(Ly). (2.2)

2.3. Lattice-Measure Correspondence

The support of y € M(L) is S(u) =nN{L € L/pu(L) = p(X)}.
In case p € I(L) then the supportis S(u) =N{L € L/u(L) =1}.
With this notation and in light of the above correspondences, we now note:

For any p € I(L), there exists v € Igx(L) such that y <vonL (i.e., (L) <v(L) for all
L e L). For any p € I(L), there exists v € Ig(L') such that y <vonL'
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L is compact if and only if S(u) # 0 for every u € Ig(L). L is countably compact if and
only if Ix(L) = IZ(L). Lis normal if and only if for each p € I(L), there exists a unique
v € Ig(L) such that 4 < v on L. L is reqular if and only if whenever p1, pr € I(L) and
p1 < pp on L, then S(p1) = S(uz). Lis replete if and only if for any pu € IZ(L), S(p) #0.
L is prime-complete if and only if for any u € I5(L), S(u) #0.

Finally, if p, is the measure concentrated at x € X, then y, € Iz(L), for all x € X if
and only if L is disjunctive.

For further results and related matters see [1-3].

2.4. The General Wallman Space and Wallman Topology

The Wallman topology in Ig (L) is obtained by taking all
Wo(L) ={puelIg(L)/u(L)=1}, LelL (2.3)

as a base for the closed sets in IZ(L) and then IZ(L) is called the general Wallman space
associated with X and L. Assuming L is disjunctive, W,(L) = {W,(L)/L € L} is a lattice
in IZ(L), isomorphic to L under the map L — Wy(L), L € L. W,(L) is replete and a base for
the closed sets tW (L), all arbitrary intersections of sets of W (L).

If A € A(L), then W,(A) = {u € Ig(L)/u(A) = 1} and the following statements are

true:
Wo(AUB) = Ws(A) UWs(B),
Wo(ANB) = Ws(A) N Ws(B),
Wo(A') = Ws(A), (24)
A D B iff W;(A) D Ws(B),
A(Ws(L)) = Ws(A(L)).
The Induced Measure

Let p € I3 (L) and consider the induced measure p € I3 (W (L)), defined by

HWo(A)) = u(A), AecA(L). (2.5)

The map y — H is a bijection between IZ (L) and I (W4 (L)).

3. The Case of Finite Product of Lattices
3.1. Notations

Let X, Y be abstract sets and L; a lattice of subsets of X and L, a lattice of subsets of Y. We

denote:
(1) L*=L;xL, = {L1 xL,/L1 €Ly,Ly € Lz},

(2) L = L(L*), the lattice generated by L*. jlist-itemgjlabel /;
We have the following:
(3) A(L1) x A(Lz) = A(L1 x L),
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(4) A(L") = A(L),

(5) Su(p) = S+ (),
(6 I(,(L*) = IU(L);

)
)
)
(7) Ir(L*) = Ir(L).

3.2. Results

Theorem 3.1 (the finite product of lattices/regular measures). Let X, Y be abstract sets and let
L4, L, be lattices of subsets of X and Y, respectively. Then Ig (L) x Ig (L) = Ir(L).

Proof. For A € A(Ly) x A(L2) = A(Ly x L,), we have A = J; A} x A}, disjoint union and
Al € A(Ly), A) € A(Ly).

Let p € Ig(Lq) and v € Ig(L,) and consider p x v defined on A(L;) x A(L,).

If u x v(A) =1, then p x (A} x A}) =1 for some i.

Then p (A})v(A)) =1, and since p and v are zero-one valued measures, (A})=1 and
v(Aé) = 1. By the regularity of y and v there exist L; C A;, Ly € Lywithy(Ly) =land L, C Al
L, € L, with V(Lz) =1.

Therefore pu x v(L; x Lp) = pu(L1)v(Ly) =1and Ly x L, € L*.

If welet M = Ly x L, C A} x A} C A, then

uxv(A) =sup{pxv(M)/MCc A MeL*} = puxvelg(L). (3.1)
O

Conversely, let p € Igx(L*) = Igr(L) and define p; on A(L{) by pu1(A) = u(A xY),
A € A(Lq). Since p is a zero-one measure on A(L; x L), it follows that y; is a zero-one
measure on A (L), thatis, y1 € Ir(Lq).

Suppose p1(A) = p(AxY) =1; there exists AxY D Ly x Ly € L* such that u(L; xY) =1
and p(L; x Lp) = 1. Then pi(L1) = p(L1 xY) =1 and L; C A which shows that p; € Ir(Ly).
Similarly take p; on A(Ly) defined by p»(B) = u(X x B), B € A(Ly).

Then, as before y; is regular on L,.

Finally for any A € A(L;) and any B € A(L,) we have p; x po(A x B) = p1(A)p2(B) =
HAXY)u(Xx B) = u[(AxY)N (X xB)] = u[(AnX) x (YNB)] = pu(A x B) which shows that
U = {1 x Uy, and therefore Ig(L;1) x Ig(Lp) = Ir(L).

Theorem 3.2 (the product of lattices/o-smooth regular measures). Let X, Y be abstract sets and
let Ly, Ly be lattices of subsets of X and Y, respectively. Then I (L1) x I3 (Lz) = Ig (L1 x Ly).

Proof. Let p € Ig(Ly) and v € I (L,). Hence for Ay, € A(Ly) with Ay, | @ we have u(Ay,) — 0
and for A, € A(Ly) with Ay, | @ we have v(Ay,) — 0,n=1,2,....

Consider the sequence {B,} of sets from A(L;) x A(Ly). As in Theorem 3.1 B, =
UL, Al x Al disjoint union and A} € A(Ly), A5, € A(Ly).

Suppose that B, | @, that is, Ain x A;n | @ for all i. Therefore Ay, | @ or Ay, | @ or both:

k
i=1

‘uXV(Bn)=,HXV[ <A11nXA12n>:| :zk:/,tXV<A§nXA;n>
i=1
k (32)
= ;#(Alin)V(Aén) — 0, therefore py x v € Ig(Ly x Ly).

1
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Conversely, let u € If (L1 x Ly) and define y; on A(Ly) by
Hi(A) = p(AxY), A€ AL (3.3)

If {A,} is a sequence of sets with A, € A(L;) and A, | @, then A, xY | 0, and since
u € 1°(Ly x Ly) it follows that u(A, xY) — 0.

Therefore y; € 1°(Ly).

Similarly, defining p» on A(Ly) by pa(B) = u(X x B), B € A(L,) we get po € I°(L,).

Hence pt = py x pp € I°(Lq) x I9(L,) = 1°(Ly x Ly).

Theorem 3.3 (product of supports of measures). Let X, Y be abstract sets and let Ly, Ly be lattices
of subsets of X and Y, respectively. The following statements are true:

(@) if p = p1 x pa € I(Lq) x I(L) = I(Lq x Ly) then S(p) = S(p1) x S(p2);

(b) if Ly and L, are compact lattices then L is compact.
Proof. We have

(@) S(p) =S(pu1 x po) =N{L1 x Ly € Ly x Lo/ p(Ly x Lp) = (X x Y)},

S(p1) x S(u2) =N{L1 x Lp/Ly € Ly, Ly € Ly, pu1(L1) = p1(X), p2(L2) = p2(Y) }, (3.4)

But pu(Ly x Lp) = p1 x pp(Lq x Ly) = p1(L1)p2(Ly) and p(X xY) = 1 x o (X xY) =
p1 (X)p2(Y),
(b) S(p) = S(p1) x S(u2) #0, since S(u;) # 0, L; being compact.
O
Theorem 3.4 (product of Wallman spaces/Wallman topologies). Consider the spaces Ir(L;)
with the Wallman topologies tW;(L;), i = 1,2.
It is known that the topological spaces (Ir(L;),tW;(L;)) are compact and Ty. Then the
topological space (Ir (L1) x Ir(Lz), tW1(Lq) x tW(L,)) is also compact and T;.

Proof. Since Ir(L;) are compact topological spaces,

St (1) = {Wi(L1) € Wa(La)/p(Wi (L)) =1} #8,

St (v) = N{Wa(Lo) € Wa(Lo) /2(Wa (L)) = 1} #0. >
We have
pWI(A) = p(A),  pelr(L),  A€AL),  pel(WiLy)),
YWAB) <v(B),  velly,  BeAM v EhWalw).
Therefore
j X 2(Wi(A) x Wa(B)) = x v(A  B) = u(A)v(B),
(3.7)

jx Y(Wi(A) x Wa(B)) = pu(Wi(A)) »(Wa(B)) = p(A)v(B),
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so that pxv = pxv € Ig(Wi(L1)) x Ir(W2(L2)), and then Sy xr,(f xv) = Sp,xp,(f x ¥) =
St (E) x Sp,(v) #0 = Ig(L1) x Ir(Ly) is compact. O

To show that Ir(Ly) x Igr(Ly) is a Ty-space, let y,v € Igx(L) and suppose p # v. Since
U= p1 x pp with pq, po € Ig(L1) and v = vy x v, with v1, v, € Ir(L2) we get p1 #v1 and po #v,.
There exist L1, L1 € Ly and L,, L, € L, with

1 € Wi(Ly), v € Wi(Ly); v € W <i1>, H1 € Wy (L) ,

, (3.8)
U2 € Wi(Lo), v € Wa(Lp)'; v, € W, <L2>, U €W, <L2> .
Therefore p1(L1) = po(La) = 1, vi(L1) = va(La) = 0, 1 (L1) = pa(L2) = 0, w1 (L1) = m(Ln) = 1
which implies p € W(L; x Ly), v € W(L; x Ly));v e W(Ly x L), neW(L xLy).

Theorem 3.5 (product of normal lattices). Let X, Y be abstract sets and let Ly, L, be normal
lattices of subsets of X and Y, respectively. Then L is a normal lattice of subsets of X x Y.

Proof. Let p € I(L) and v, p € Ig(L) such that y < v,pon L.

Then, since p = p1 x po € I(Lq1) x I(Ly), v = v; x vy € Ig(L1) x Ir(Ly) and p = p1 x ps €
Ir(Lq) x Ir(L2), we obtain y; < v;, pjonL;,i=1,2.

L; normal lattices = v; = p;; therefore vy x v, = p1 x py, thatis, v = p. O

3.3. Examples

(1) Let X, Y be topological spaces and let O;, O, be the lattices of open sets of X and Y,
respectively. Consider the product space X x Y with a base of open sets given by

{01 x 02/01 € 01,0, € 0,}. (3.9)
We have
(01x02) = {(x,y) €Xx Y/ (x,y) & (01 x 0,)}
= {(x9)/ (x,y) € (Xx03) or (x,) € (0 x V)] (310)

= (Xx05) U (0] xY) =(XxF)U(FxY).
Hence F = t(L(F; x F»)) where Fy, F, are the lattices of closed sets of X and Y,
respectively.

(2) Let X, Y be topological Tj3s-spaces and let Z;, Z, be the lattices of zero sets of
continuous functions of X and Y, respectively. Then for the product space X x Y
we consider a base of open sets given by

{Z’le'z/ZleZhZzeZz} (311)

such that any open set from X x Y is of the form O = |, Z}, x Z,, and any closed
set is

F=0"= ((Zie x Y) U (X x Z3a) € t(L(Z1 x Z5)) (3.12)

a

and then F = t(L(Z; x Z5)).
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4. The General Case of Product of Lattices

Let {X4},ca be a collection of abstract sets (A an arbitrary index set) and let L, be the lattice
of subsets of X, for all a.
We denote

L =] L= {HLa /Ly € Ly, Ly = Xq for almost all a}. (4.1)
aE aeN
4.1. Results

Theorem 4.1 (the product of lattices/regular measures). One has

HIR(La) =Igr(L) = I <HLa>- (4.2)

acN aeN

Proof. We note that [],cAA(Ly) = A(J]4epLa) = A(L) and that [T, A(Lg) is the collection of
all finite cylinder sets which means that if B € [],.oA(Ls) then B is a cylinder set for which
there exists a nonempty finite subset F = {aj, as,...,a,} of A and a subset Er € [],.pA(Ls)
such that B = P;l(E r) with

Pr: [ [Xe — ] [Xa = Xay % Xa, x -+ x Xa,, Py | [Xa — Xa. (4.3)

acN acN acN

Let po € Ir(Ly) for all &« € A with p, : A(L,) and define

p=]Tmae[ o), p:JTALD. (44)

acN acA acA

Let A € [T,enA(Ly) with #(A) = 1. Then ([Tpentta) (A) = (Taentte) (P! (EF)) =1 that
is

[TAL 2 [TA®L) 2 (0,1) (4.5)

acF a

and for Er € [],crA(Ly) we have

<HyaPF1> (Ef) = <Hua> (PF'(ER)) = <H> (Er)

acA ac acF

(4.6)
= (Aulxl X Hay X000 X .ufxn)(EF) =1

As in the finite case, we get EF D Ly, X Lg, x - -+ Ly, where Ly, € Ly, and pg,(Ly,;) = 1 for
alli=1,2,...,n. Then A = P;'(Ep) D P;'(La, % La, X -+ Ly,) and Pp' (L, X La, x -+ Lg,) = 1,
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which shows that p(A) = sup{p(P;'(Lay X Lay % *+-La,))/Pp* (Lay X Lay x -+ Lg,) C A and
Pl (Lay % Lgy x -+ La,) € [TaenLa = L*}; hence p is L-regular.
Conversely, let p € Ix(L) = Ir(] [4epLa) and define p, on A(L,) by

pa(A) = p <A < T1 xﬁ>, A€ A(Ly), thatis, pa(A) = ‘I/L<P,;1(A)>. (4.7)
per-{a)

Since p is a zero-one valued measure on A(J],caLs) it follows from the above
definition that p, € I(Ly). If py(A) = 1, then u(P;'(A)) = 1, and since u is L-regular, there
exists [Tgep Lp such that P, (A) D [geaLp € L* and p([TpenLp) = 1.

Then P;1(L,) C Py (A) and pa(La) = pa (Pt (Ly)) = 1.

Therefore pa(A) = sup{pa(La)/La C A, Ly € Ly}, thatis, p, € Ir(Ls). Next, if B €
L*, we may consider B = P;'(Ly, x La, x -+ Ly,) and then [T,eapta(B) = [TaeaMa(Pr' (Lay X
La, x -+ La,)) = Tlaerpa(Lay X Lay X *++La,) = (Hay X Pay X =+ X fa,)(Lay X Lay X =++Lg,) =
Ha (Lal)/’llxz (lez) © Ha, (Lun) = #(Pz;ll (Lﬂl )) T /l(Pf;nl (Lan))- If HueA/’liX(B) =1, then /"(Pa:il (Lb!i))
for all i; hence pu(N, P;il(L,xi)) =1 and y(PF’l( Lay X Ly, x -+ Lg,)) = u(I'l,La) = 1, that is,

u(B) =1.Thus p = T, pa € Ir(L*), and then p = [T, pta o0 [ [, A(Lg). O

Theorem 4.2 (the product of normal lattices). Let L, be a lattice of subsets of X. Then

(@) if p = [ Tabta € A Taerla) = TTaeal(La) we have S(u) = JTaenS(Ha);

(b) if Ly disjunctive for all « € A, then L = L([],epLa) is a disjunctive lattice of subsets of
HuEAX“;

(c) suppose that L, is a normal lattice of subsets of X, for all « € A; then L = L(] [ epLa) is
a normal lattice of subsets of T | zep Xa-

1} and S(u) = S(TTpepMa) =

Proof. (a) We have S(py) = N{Ly € Ly/ pa(La) = pa(Xa) =
= 1}. But u(I1,Ls) = 1 implies

MITaeaLa € ITaeaLa/p(I1aLa) = p(I12Xa)

Hmuvl(HuEALa) =1. Then S(#) = HaeAS(.uﬂ)'
(b) Let x = (Xa)uen € IlaeaXa Since [Taeapir,(IlaenAa) = px(IlaenAa) we get

HaEA.uxa = Hx.

L, disjunctive implies ., € Ir(L,) for all « € A and then [ ,cppix, € [TaenIr(La) =

IR(TT4epLa); therefore p, € IR(I ] epLa) which proves that L = L(JT,caLa) is

disjunctive.

(c) Let p € I(L) and v, p € Ig(L) such that 4 <v,p on L.

But y = [T pa € [Taenl(La) and both v = [, cVa, p = [Tacpa € [Taealr(La) and
then Ha#ﬂ < Huele and Ha‘ulx < Haep“ on L with Ha (Aa) = #(Pz;l (Au))/ vu(Avc) =
v(P;1(Ay)) for A, € A(Ly). By the previous work we get 1, < vy and pn < py on L.

Since each L, is normal it follows that v, = p, for all « € A, and therefore v =
(Va) aep = (Pa)aen = p Which proves that L is a normal lattice. O

4.2. Examples

(3) Let X, be a topological T3 5-spaces and let L, = Z, be the replete lattices of zero sets
of continuous functions of X, for all a € A.

Then each X, is said to be realcompact.
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Consider a lattice Z of subsets of [ ],c4 X« such that
[ 1z c t<Hz“>. (4.8)
acA acA

Then Z is replete, and [ ,c 4 X« is realcompact.

(4) Let X, be a T; and 0-dimensional space and let L, = C, be the replete lattice of clopen
sets for all @ € A. Then each X, is said to be N-compact. Consider any lattice C of

subsets of [ ],c4Xqx such that [],c4Ca C t(JT2caCa) C t(I 14caZa) = Fand Cis replete
and [],c4Xx is N-compact.
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