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The concept of tangential for single-valued mappings is extended to multivalued mappings and
used to prove the existence of a common fixed point theorem of Gregus type for four mappings
satisfying a strict general contractive condition of integral type. Consequently, several known fixed
point results generalized and improved the corresponding recent result of Pathak and Shahzad
(2009) and many authors.

1. Introduction

The first important result on fixed points for contractive-type mappings was the well-known
Banach contraction principle, published for the first time in 1922 in [1] (see also [2]). Banach
contraction principle has been extended in many different directions, see [3–5], and so
forth. Many authors in [3, 5–12] established fixed point theorems involving more general
contractive conditions. In 1969, Nadler [13] combines the ideas of set-valued mapping and
Lipschitz mapping and prove some fixed point theorems about multivalued contraction
mappings. Afterward, the study of fixed points for multivalued contractions using the
Hausdorff metric was initiated by Markin [14]. Later, an interesting and rich fixed point
theory for such maps was developed (see [15–18]). The theory of multivalued maps has
applications in optimization problems, control theory, differential equations, and economics.

Sessa [19] introduced the concept of weakly commuting maps. Jungck [20] defined
the notion of compatible maps in order to generalize the concept of weak commutativity
and showed that weakly commuting mappings are compatible but the converse is not true.
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This concept was further improved by Jungck and Rhoades [21] with the notion of weakly
compatible mappings. In 2002, Aamri and Moutawakil [22] defined property (E.A). This
concept was frequently used to prove existence theorems in common fixed point theory.
Three years later, Liu et al. [23] introduced common property (E.A). The class of (E.A)
maps contains the class of noncompatible maps. Branciari [3] studied contractive conditions
of integral type, giving an integral version of the Banach contraction principle, that could
be extended to more general contractive conditions. Recently, Pathak and Shahzad [24]
introduced the new concept of weak tangent point and tangential property for single-valued
mappings and established common fixed point theorems. Very recently, Vetro [25] obtained
an interesting theorem for mappings satisfying a contractive condition of integral type which
is a generalization of Branciari [3, Theorem 2].

The aim of this paper is to define a tangential property for multivalued mappings
which generalize the concept of tangential property for single-valued mappings of Pathak
and Shahzad [24] and prove a common fixed point theorem of Gregus type for fourmappings
satisfying a strict general contractive condition of integral type.

2. Preliminary

Throughout this paper, (X, d) denotes a metric space. We denote by CB(X), the class of all
nonempty bounded closed subsets of X. The Hausdorff metric induced by d on CB(X) is
given by

H(A,B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}
, (2.1)

for every A,B ∈ CB(X), where d(a, B) = d(B, a) = inf{d(a, b) : b ∈ B} is the distance from
a to B ⊆ X. Let f : X → X and T : X → CB(X). A point x ∈ X is a fixed point of f
(resp. T) if fx = x (resp. x ∈ Tx). The set of all fixed points of f (resp. T) is denoted by
F(f) (resp. F(T)). A point x ∈ X is a coincidence point of f and T if fx ∈ Tx. The set of all
coincidence points of f and T is denoted by C(f, T). A point x ∈ X is a common fixed point
of f and T if x = fx ∈ Tx. The set of all common fixed points of f and T is denoted by
F(f, T).

Definition 2.1. The maps f : X → X and g : X → X are said to be commuting if fgx = gfx,
for all x ∈ X.

Definition 2.2 (see [19]). The maps f : X → X and g : X → X are said to be weakly
commuting if d(fgx, gfx) ≤ d(fx, gx), for all x ∈ X.

Definition 2.3 (see [20]). The maps f : X → X and g : X → X are said to be compatible
if limn→∞d(fgxn, gfxn) = 0 whenever {xn} is a sequence in X such that limn→∞fxn =
limn→∞gxn = z, for some z ∈ X.

Definition 2.4 (see [26]). The maps f : X → X and g : X → X are said to be weakly
compatible fgx = gfx, for all x ∈ C(f, g).



International Journal of Mathematics and Mathematical Sciences 3

Definition 2.5 (see [22]). Let f : X → X and g : X → X. The pair (f, g) satisfies property
(E.A) if there exist the sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z ∈ X. (2.2)

See example of property (E.A) in Kamran [27, 28] and Sintunavarat and Kumam [11].

Definition 2.6 (see [23]). Let f, g,A, B : X → X. The pair (f, g) and (A,B) satisfy a common
property (E.A) if there exist sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

Ayn = lim
n→∞

Byn = z ∈ X. (2.3)

Remark 2.7. If A = f , B = g, and {xn} = {yn} in (2.3), then we get the definition of property
(E.A).

Definition 2.8 (see [24]). Let f, g : X → X. A point z ∈ X is said to be a weak tangent point
to (f, g) if there exist sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

gyn = z ∈ X. (2.4)

Remark 2.9. If {xn} = {yn} in (2.4), we get the definition of property (E.A).

Definition 2.10 (see [24]). Let f, g,A, B : X → X. The pair (f, g) is called tangential with
respect to the pair (A,B) if there exist sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

gyn = lim
n→∞

Axn = lim
n→∞

Byn = z ∈ X. (2.5)

3. Main Results

In this section, we first introduce the notion of tangential property for two single-valued and
two multivalued mappings. Throughout this section, �+ denotes the set of nonnegative real
numbers.

Definition 3.1. Let f, g : X → X and A,B : X → CB(X). The pair (f, g) is called tangential
with respect to the pair (A,B) if

lim
n→∞

Axn = lim
n→∞

Byn = D ∈ CB(X), (3.1)

whenever sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

gyn = z ∈ D, (3.2)

for some z ∈ X.
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Example 3.2. Let (�+ , d) be a metric space with usual metric d. Let f, g : �+ → �+ and
A,B : �+ → CB(�+) be mappings defined by fx = x + 1, gx = x + 2, Ax = {x2/2 + 1},
and Bx = {x2 + 2}, for all x ∈ �+ . Clearly, there exists two sequences {xn = 2 + 1/n} and
{yn = 1 + 1/n} such that

lim
n→∞

Axn = lim
n→∞

Byn = {3} ∈ CB(�+) (3.3)

whenever

lim
n→∞

fxn = lim
n→∞

gyn = 3 ∈ �+ . (3.4)

So, the pair (f, g) is tangential with respect to the pair (A,B).

Definition 3.3. Let f : X → X and A : X → CB(X). The mapping f is called tangential with
respect to the mapping A if

lim
n→∞

Axn = lim
n→∞

Ayn = D ∈ CB(X), (3.5)

whenever sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

fyn = z ∈ D, (3.6)

for some z ∈ X.

Example 3.4. Let (�+ , d) be a metric space with usual metric d. Let f : �+ → �+ andA : �+ →
CB(�+ ) be mappings defined by

fx = x + 1, Ax =
{
x2 + 1

}
. (3.7)

Clearly, there exist two sequences {xn = 1 + 1/n} and {yn = 1 − 1/n} such that

lim
n→∞

Axn = lim
n→∞

Ayn = {2} ∈ CB(�+ ) (3.8)

whenever

lim
n→∞

fxn = lim
n→∞

fyn = 2 ∈ �+ . (3.9)

So, the mapping f is tangential with respect to the mapping A.

Now, we state and prove our main result.
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Theorem 3.5. Let f, g : X → X and A,B : X → CB(X) satisfy

(
1 + α

∫d(fx,gy)
0

ψ(t)dt

)∫H(Ax,By)

0
ψ(t)dt

< α

(∫d(Ax,fx)
0

ψ(t)dt
∫d(By,gy)
0

ψ(t)dt +
∫d(Ax,gy)
0

ψ(t)dt
∫d(fx,By)
0

ψ(t)dt

)

+ a
∫d(fx,gy)
0

ψ(t)dt + (1 − a)max

⎧⎨
⎩
∫d(Ax,fx)
0

ψ(t)dt,
∫d(By,gy)
0

ψ(t)dt,

(∫d(Ax,fx)
0

ψ(t)dt

)1/2(∫d(Ax,gy)
0

ψ(t)dt

)1/2

,

(∫d(fx,By)
0

ψ(t)dt

)1/2(∫d(Ax,gy)
0

ψ(t)dt

)1/2
⎫⎬
⎭,
(3.10)

for all x, y ∈ X for which the right-hand side of (3.10) is positive, where 0 < a < 1, α ≥ 0 and
ψ : �+ → �+ is a Lebesgue integrable mapping which is a summable nonnegative and such that

∫ ε
0
ψ(t)dt > 0, (3.11)

for each ε > 0. If the following conditions (a)–(d) hold:

(a) there exists a point z ∈ f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential with respect to (A,B),

(c) ffa = fa, ggb = gb, and Afa = Bgb for a ∈ C(f,A) and b ∈ C(g, B),

(d) the pairs (f,A) and (g, B) are weakly compatible.

Then, f , g, A, and B have a common fixed point in X.

Proof. Since z ∈ f(X) ∩ g(X), z = fu = gv for some u, v ∈ X. It follows from a point zwhich
is a weak tangent point to (f, g) that there exist sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

gyn = z. (3.12)
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Because the pair (f, g) is tangential with respect to the pair (A,B), we get

lim
n→∞

Axn = lim
n→∞

Byn = D, (3.13)

for some D ∈ CB(X). Since z = fu = gv and (3.12) and (3.13) are true, we have

z = fu = gv = lim
n→∞

fxn = lim
n→∞

gyn ∈ lim
n→∞

Axn = lim
n→∞

Byn = D. (3.14)

We claim that z ∈ Bv. If not, then condition (3.10) implies

(
1 + α

∫d(fxn,gv)
0

ψ(t)dt

)∫H(Axn,Bv)

0
ψ(t)dt

< α

(∫d(Axn,fxn)
0

ψ(t)dt
∫d(Bv,gv)
0

ψ(t)dt +
∫d(Axn,gv)
0

ψ(t)dt
∫d(fxn,Bv)
0

ψ(t)dt

)

+ a
∫d(fxn,gv)
0

ψ(t)dt + (1 − a)max

⎧⎨
⎩
∫d(Axn,fxn)
0

ψ(t)dt,
∫d(Bv,gv)
0

ψ(t)dt,

(∫d(Axn,fxn)
0

ψ(t)dt

)1/2(∫d(Axn,gv)
0

ψ(t)dt

)1/2

,

(∫d(fxn,Bv)
0

ψ(t)dt

)1/2(∫d(Axn,gv)
0

ψ(t)dt

)1/2
⎫⎬
⎭.
(3.15)

Letting n → ∞, we get

∫H(D,Bv)

0
ψ(t)dt ≤ (1 − a)

∫d(Bv,z)
0

ψ(t)dt. (3.16)

Since

∫d(z,Bv)
0

ψ(t)dt <
∫H(D,Bv)

0
ψ(t)dt

≤ (1 − a)
∫d(Bv,z)
0

ψ(t)dt

<

∫d(z,Bv)
0

ψ(t)dt,

(3.17)

which is a contradiction, then z ∈ Bv.
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Again, we claim that z ∈ Au. If not, then condition (3.10) implies

(
1 + α

∫d(fu,gyn)
0

ψ(t)dt

)∫H(Au,Byn)

0
ψ(t)dt

< α

(∫d(Au,fu)
0

ψ(t)dt
∫d(Byn,gyn)
0

ψ(t)dt +
∫d(Au,gyn)
0

ψ(t)dt
∫d(fu,Byn)
0

ψ(t)dt

)

+ a
∫d(fu,gyn)
0

ψ(t)dt + (1 − a)max

⎧⎨
⎩
∫d(Au,fu)
0

ψ(t)dt,
∫d(Byn,gyn)
0

ψ(t)dt,

(∫d(Au,fu)
0

ψ(t)dt

)1/2(∫d(Au,gyn)
0

ψ(t)dt

)1/2

,

(∫d(fu,Byn)
0

ψ(t)dt

)1/2(∫d(Au,gyn)
0

ψ(t)dt

)1/2
⎫⎬
⎭.
(3.18)

Letting n → ∞, we get

∫H(Au,D)

0
ψ(t)dt ≤ (1 − a)

∫d(Au,z)
0

ψ(t)dt. (3.19)

Since

∫d(z,Au)
0

ψ(t)dt <
∫H(Au,D)

0
ψ(t)dt

≤ (1 − a)
∫d(Au,z)
0

ψ(t)dt

<

∫d(z,Au)
0

ψ(t)dt,

(3.20)

which is a contradiction, then z ∈ Au.
Now, we conclude z = gv ∈ Bv and z = fu ∈ Au. It follows from v ∈ C(g, B),

u ∈ C(f,A) that ggv = gv, ffu = fu, and Afu = Bgv. Hence, gz = z, fz = z and Az = Bz.
Since the pair (g, B) is weakly compatible, gBv = Bgv. Thus gz ∈ gBv = Bgv = Bz.

Similarly, we can prove that fz ∈ Az. Consequently, z = fz = gz ∈ Az = Bz. Therefore the
maps f, g,A, and B have a common fixed point.

If α = 0 in Theorem 3.5, we get the following corollary.
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Corollary 3.6. Let f, g : X → X and A,B : X → CB(X) satisfy

∫H(Ax,By)

0
ψ(t)dt < a

∫d(fx,gy)
0

ψ(t)dt

+ (1 − a)max

⎧⎨
⎩
∫d(Ax,fx)
0

ψ(t)dt,
∫d(By,gy)
0

ψ(t)dt,

(∫d(Ax,fx)
0

ψ(t)dt

)1/2(∫d(Ax,gy)
0

ψ(t)dt

)1/2

,

(∫d(fx,By)
0

ψ(t)dt

)1/2(∫d(Ax,gy)
0

ψ(t)dt

)1/2
⎫⎬
⎭,

(3.21)

for all x, y ∈ X for which the right-hand side of (3.21) is positive, where 0 < a < 1 and ψ : �+ → �+

is a Lebesgue integrable mapping which is a summable nonnegative and such that

∫ ε
0
ψ(t)dt > 0, (3.22)

for each ε > 0. If the following conditions (a)–(d) hold:

(a) there exists a point z ∈ f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential with respect to (A,B),

(c) ffa = fa, ggb = gb and Afa = Bgb for a ∈ C(f,A) and b ∈ C(g, B),
(d) the pairs (f,A) and (g, B) are weakly compatible.

Then, f , g, A, and B have a common fixed point in X.

If α = 0, g = f , and B = A in Theorem 3.5, we get the following corollary.

Corollary 3.7. Let f : X → X and A : X → CB(X) satisfy

∫H(Ax,Ay)

0
ψ(t)dt < a

∫d(fx,fy)
0

ψ(t)dt

+ (1 − a)max

⎧⎨
⎩
∫d(Ax,fx)
0

ψ(t)dt,
∫d(Ay,fy)
0

ψ(t)dt,

(∫d(Ax,fx)
0

ψ(t)dt

)1/2(∫d(Ax,fy)
0

ψ(t)dt

)1/2

,

(∫d(fx,Ay)
0

ψ(t)dt

)1/2(∫d(Ax,fy)
0

ψ(t)dt

)1/2
⎫⎬
⎭,

(3.23)
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for all x, y ∈ X for which the right-hand side of (3.23) is positive, where 0 < a < 1 and ψ : �+ → �+

is a Lebesgue integrable mapping which is a summable nonnegative and such that

∫ ε
0
ψ(t)dt > 0 (3.24)

for each ε > 0. If the following conditions (a)–(d) hold:

(a) there exists sequence {xn} in X such that limn→∞fxn ∈ X,

(b) f is tangential with respect to A,

(c) ffa = fa for a ∈ C(f,A),

(d) the pair (f,A) is weakly compatible.

Then, f and A have a common fixed point in X.

If ψ(t) = 1 in Theorem 3.5, we get the following corollary.

Corollary 3.8. Let f, g : X → X and A,B : X → CB(X) satisfy

(
1 + αd

(
fx, gy

))
H
(
Ax, By

)
< α
(
d
(
Ax, fx

)
d
(
By, gy

)
+ d
(
Ax, gy

)
d
(
fx, By

))
+ ad

(
fx, gy

)

+ (1 − a)max
{
d
(
Ax, fx

)
, d
(
By, gy

)
,
(
d
(
Ax, fx

))1/2(
d
(
Ax, gy

))1/2
,

(
d
(
fx, By

))1/2(
d
(
Ax, gy

))1/2}
(3.25)

for all x, y ∈ X for which the right-hand side of (3.25) is positive, where 0 < a < 1 and α ≥ 0. If the
following conditions (a)–(d) holds:

(a) there exists a point z ∈ f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential with respect to (A,B),

(c) ffa = fa, ggb = gb and Afa = Bgb for a ∈ C(f,A) and b ∈ C(g, B),
(d) the pairs (f,A) and (g, B) are weakly compatible.

Then, f , g, A, and B have a common fixed point in X.

If ψ(t) = 1 and α = 0 in Theorem 3.5, we get the following corollary.

Corollary 3.9. Let f, g : X → X and A,B : X → CB(X) satisfy

H
(
Ax, By

)
< ad

(
fx, gy

)
+ (1 − a)max

{
d
(
Ax, fx

)
, d
(
By, gy

)
,
(
d
(
Ax, fx

))1/2(
d
(
Ax, gy

))1/2
,

(
d
(
fx, By

))1/2(
d
(
Ax, gy

))1/2}
,

(3.26)
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for all x, y ∈ X for which the right-hand side of (3.26) is positive, where 0 < a < 1. If the following
conditions (a)–(d) hold:

(a) there exists a point z ∈ f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential with respect to (A,B),

(c) ffa = fa, ggb = gb and Afa = Bgb for a ∈ C(f,A) and b ∈ C(g, B),
(d) the pairs (f,A) and (g, B) are weakly compatible.

Then, f , g, A, and B have a common fixed point in X.

If ψ(t) = 1, α = 0, g = f and B = A in Theorem 3.5, we get the following corollary.

Corollary 3.10. Let f : X → X and A : X → CB(X) satisfy

H
(
Ax,Ay

)
< ad

(
fx, fy

)

+ (1 − a)max
{
d
(
Ax, fx

)
, d
(
Ay, fy

)
,
(
d
(
Ax, fx

))1/2(
d
(
Ax, fy

))1/2
,

(
d
(
fx,Ay

))1/2(
d
(
Ax, fy

))1/2}
(3.27)

for all x, y ∈ X for which the right-hand side of (3.27) is positive, where 0 < a < 1. If the following
conditions (a)–(d) holds:

(a) there exists sequence {xn} in X such that limn→∞fxn ∈ X,

(b) f is tangential with respect to A,

(c) ffa = fa for a ∈ C(f,A),

(d) the pairs (f,A) is weakly compatible.

Then, f and A have a common fixed point in X.
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