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The purpose of this paper is, by using a new hybrid method, to prove a strong convergence
theorem for finding a common element of the set of solutions for a generalized mixed equilibrium
problem, the set of solutions for a variational inequality problem, and the set of common fixed
points for a pair of quasi-φ-asymptotically nonexpansive mappings. Under suitable conditions
some strong convergence theorems are established in a uniformly smooth and strictly convex
Banach space with Kadec-Klee property. The results presented in the paper improve and extend
some recent results.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. We also assume that E is a real Banach space, E∗ is the dual space of E, C is a
nonempty closed convex subset of E, and 〈·, ·〉 is the pairing between E and E∗.

Let ψ : C → R be a real-valued function,Θ : C×C → R a bifunction, andA : C → E∗

a nonlinear mapping. The “so-called” generalizedmixed equilibrium problem is to find u ∈ C
such that

Θ
(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions for (1.1) is denoted by Ω, that is,

Ω =
{
u ∈ C : Θ

(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C}. (1.2)
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Special examples are as follows.

(I) If ψ = 0, the problem (1.1) is equivalent to finding u ∈ C such that

Θ
(
u, y

)
+
〈
Au, y − u〉 ≥ 0, ∀y ∈ C, (1.3)

which is called the generalized equilibrium problem. The set of solutions for (1.3)
is denoted by GEP.

(II) If A = 0, the problem (1.1) is equivalent to finding u ∈ C such that

Θ
(
u, y

)
+ ψ

(
y
) − ψ(u) ≥ 0, ∀y ∈ C, (1.4)

which is called the mixed equilibrium problem (MEP) [1]. The set of solutions for
(1.4) is denoted by MEP.

(III) If Θ = 0, the problem (1.1) is equivalent to finding u ∈ C such that

〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C, (1.5)

which is called the mixed variational inequality of Browder type (VI) [2]. The set
of solutions for (1.5) is denoted by VI(C,A, ψ).

(IV) If ψ = 0 and A = 0, the problem (1.1) is equivalent to finding u ∈ C such that

Θ
(
u, y

) ≥ 0, ∀y ∈ C, (1.6)

which is called the equilibrium problem. The set of solutions for (1.6) is denoted by
EP(Θ).

(V) If ψ = 0 and Θ = 0, the problem (1.1) is equivalent to finding u ∈ C such that

〈
Au, y − u〉 ≥ 0, ∀y ∈ C, (1.7)

which is called the variational inequality of Browder type. The set of solutions for
(1.7) is denoted by VI(C,A).

The problem (1.1) is very general in the sense that numerous problems in physics,
optimiztion and economics reduce to finding a solution for (1.1). Some methods have been
proposed for solving the generalized equilibrium problem and the equilibrium problem in
Hilbert space (see, e.g., [3–6]).

A mapping S : C → E is called nonexpansive if

∥∥Sx − Sy∥∥ ≤ ∥∥x − y∥∥, ∀x, y ∈ C. (1.8)

We denote the fixed point set of S by F(S).
In 2008, S. Takahashi and W. Takahashi [6] proved some strong convergence theorems

for finding an element or a common element of EP, EP(f) ∩ F(S) or VI(C,A) ∩ F(S),
respectively, in a Hilbert space.
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Recently, Takahashi and Zembayashi [7, 8] proved someweak and strong convergence
theorems for finding a common element of the set of solutions for equilibrium (1.6) and the
set of fixed points of a relatively nonexpansive mapping in a Banach space.

In 2010, Chang et al. [9] proved a strong convergence theorem for finding a common
element of the set of solutions for a generalized equilibrium problem (1.3) and the set of
common fixed points of a pair of relatively nonexpansive mappings in a Banach space.

Motivated and inspired by [4–9], we intend in this paper, by using a new hybrid
method, to prove a strong convergence theorem for finding a common element of the set
of solutions for a generalized mixed equilibrium problem (1.1) and the set of common fixed
points of a pair of quasi-φ-asymptotically nonexpansive mappings in a uniformly smooth
and strictly convex Banach space with the Kadec-Klee property.

2. Preliminaries

For the sake of convenience, we first recall some definitions and conclusions which will be
needed in proving our main results.

The mapping J : E → 2E
∗
defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ = ‖x∗‖}, x ∈ E, (2.1)

is called the normalized duality mapping. By the Hahn-Banach theorem, J(x)/= ∅ for each
x ∈ E.

In the sequel, we denote the strong convergence and weak convergence of a sequence
{xn} by xn → x and xn ⇀ x, respectively.

A Banach space E is said to be strictly convex if ‖x+y‖/2 < 1 for all x, y ∈ U = {z ∈ E :
‖z‖ = 1} with x /=y. E is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0
such that ‖x + y‖/2 < 1 − δ for all x, y ∈ U with ||x − y|| ≥ ε. E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U. E is said to be uniformly smooth if the above limit exists uniformly in
x, y ∈ U.

Remark 2.1. The following basic properties can be found in Cioranescu [10].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J−1 is hemicontinuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach space, then J is singlevalued,
one-to-one and onto.

(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ||xn|| → ||x||, then xn → x.
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Next we assume that E is a smooth, strictly convex, and reflexive Banach space and C
is a nonempty closed convex subset of E. In the sequel, we always use φ : E × E → R

+ to
denote the Lyapunov functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, ∀x, y ∈ E. (2.3)

It is obvious from the definition of φ that

(‖x‖ − ∥
∥y

∥
∥)2 ≤ φ(x, y) ≤ (‖x‖ + ∥

∥y
∥
∥)2, ∀x, y ∈ E. (2.4)

Following Alber [11], the generalized projection ΠC : E → C is defined by

ΠC(x) = arg inf
y∈C

φ
(
y, x

)
, ∀x ∈ E. (2.5)

Lemma 2.2 (see [11, 12]). Let E be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of E. Then, the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
(b) if x ∈ E and z ∈ C, then

z = ΠCx ⇐⇒ 〈
z − y, Jx − Jz〉 ≥ 0, ∀y ∈ C; (2.6)

(c) for x, y ∈ E, φ(x, y) = 0 if and only x = y.

Remark 2.3. If E is a real Hilbert space H, then φ(x, y) = ||x − y||2 and ΠC is the metric
projection PC ofH onto C.

Let E be a smooth, strictly, convex and reflexive Banach space, C a nonempty closed
convex subset of E, T : C → C a mapping, and F(T) the set of fixed points of T . A point
p ∈ C is said to be an asymptotic fixed point of T if there exists a sequence {xn} ⊂ C such that
xn ⇀ p and ||xn − Txn|| → 0. We denoted the set of all asymptotic fixed points of T by F̃(T).

Definition 2.4 (see [13]). (1) A mapping T : C → C is said to be relatively nonexpansive if
F(T)/= ∅, F(T) = F̃(T), and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (2.7)

(2) A mapping T : C → C is said to be closed if, for any sequence {xn} ⊂ C with
xn → x and Txn → y, Tx = y.

Definition 2.5 (see [14]). (1) A mapping T : C → C is said to be quasi-φ-nonexpansive if
F(T)/= ∅ and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (2.8)
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(2) A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive if
F(T)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞)with kn → 1 such that

φ
(
p, Tnx

) ≤ knφ
(
p, x

)
, ∀n ≥ 1, x ∈ C, p ∈ F(T). (2.9)

(3) A pair of mappings T1, T2 : C → C is said to be uniformly quasi-φ-asymptotically
nonexpansive if F(T1)

⋂
F(T2)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞) with kn → 1

such that for i = 1, 2

φ
(
p, Tni x

) ≤ knφ
(
p, x

)
, ∀n ≥ 1, x ∈ C, p ∈ F(T1) ∩ F(T2). (2.10)

(4)Amapping T : C → C is said to be uniformly L-Lipschitz continuous if there exists
a constant L > 0 such that

∥∥Tnx − Tny∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ C. (2.11)

Remark 2.6. (1) From the definition, it is easy to know that each relatively nonexpansive
mapping is closed.

(2) The class of quasi-φ-asymptotically nonexpansive mappings contains properly the
class of quasi-φ-nonexpansive mappings as a subclass, and the class of quasi-φ-nonexpansive
mappings contains properly the class of relatively nonexpansive mappings as a subclass, but
the converse may be not true.

Lemma 2.7 (see [15]). Let E be a uniformly convex Banach space, r > 0 a positive number, and
Br(0) a closed ball of E. Then, for any given subset {x1, x2, . . . , xN} ⊂ Br(0) and for any positive
numbers {λ1, λ2, . . . , λN} with ∑N

i=1 λi = 1, there exists a continuous, strictly increasing, and convex
function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any i, j ∈ {1, 2, . . . ,N} with i < j,

∥∥∥∥∥

N∑

n=1

λnxn

∥∥∥∥∥

2

≤
N∑

n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.12)

Lemma 2.8 (see [15]). Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property and C a nonempty closed convex subset of E. Let T : C → C be a closed and
quasi-φ-asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1. Then F(T)
is a closed convex subset of C.

For solving the generalized mixed equilibrium problem (1.1), let us assume that the
function ψ : C → R is convex and lower semicontinuous, the nonlinear mapping A : C →
E∗ is continuous and monotone, and the bifunction Θ : C × C → R satisfies the following
conditions:

(A1) Θ(x, x) = 0, for all x ∈ C,
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0, ∀x, y ∈ C,
(A3) limsupt↓0Θ(x + t(z − x), y) ≤ Θ(x, y) ∀x, z, y ∈ C,
(A4) the function y �→ Θ(x, y) is convex and lower semicontinuous.
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Lemma 2.9. Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty closed
convex subset of E. Let Θ : C × C → R a bifunction satisfying the conditions (A1)–(A4). Let r > 0
and x ∈ E. Then, the followings hold.

(i) (Blum and Oettli [3]) there exists z ∈ C such that

Θ
(
z, y

)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.13)

(ii) (Takahashi and Zembayashi [8]) Define a mapping Tr : E → C by

Tr(x) =
{
z ∈ C : Θ

(
z, y

)
+
1
r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ E. (2.14)

Then, the following conclusions hold:

(a) Tr is single-valued,

(b) Tr is a firmly nonexpansive-type mapping, that is, ∀z, y ∈ E,

〈
Trz − Try, JTrz − JTry

〉 ≤ 〈
Trz − Try, Jz − Jy

〉
, (2.15)

(c) F(Tr) = EP(Θ) = F̃(Tr),

(d) EP(Θ) is closed and convex,

(e) φ(q, Trx) + φ(Trx, x) ≤ φ(q, x), ∀q ∈ F(Tr).

Lemma 2.10 (see [16]). Let E be a smooth, strictly convex, and reflexive Banach space, and C a
nonempty closed convex subset of E. Let A : C → E∗ be a continuous and monotone mapping,
ψ : C → R a lower semicontinuous and convex function, andΘ : C×C → R a bifunction satisfying
conditions (A1)–(A4). Let r > 0 be any given number and x ∈ E any given point. Then, the following
hold.

(i) There exists u ∈ C such that

Θ
(
u, y

)
+ 〈Au, y − u〉 + ψ(y) − ψ(u) + 1

r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C. (2.16)

(ii) If we define a mapping Kr : C → C by

Kr(x) =
{
u ∈ C : Θ

(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u)

+
1
r

〈
y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ C.

(2.17)
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Then, the mapping Kr has the following properties:

(a) Kr is single valued,

(b) Kr is a firmly nonexpansive-type mapping, that is,

〈
Krz −Kry, JKrz − JKry

〉 ≤ 〈
Krz −Kry, Jz − Jy

〉
, ∀z, y ∈ E, (2.18)

(c) F(Kr) = Ω = F̃(Kr),

(d) Ω is closed and convex,

(e)

φ
(
q,Krz

)
+ φ(Krz, z) ≤ φ

(
q, z

)
, ∀q ∈ F(Kr), z ∈ E. (2.19)

Remark 2.11. It follows from Lemma 2.9 that the mapping Kr is a relatively nonexpansive
mapping. Thus, it is quasi-φ-nonexpansive.

3. Main Results

In this section, we will prove a strong convergence theorem for finding a common element
of the set of solutions for the generalized mixed equilibrium problem (1.1) and the set of
common fixed points for a pair of quasi-φ-asymptotically nonexpansive mappings in Banach
spaces.

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. LetA : C → E∗ be a continuous and monotone
mapping, ψ : C → R a lower semicontinuous and convex, function, and Θ : C × C → R a
bifunction satisfying conditions (A1)–(A4). Let S, T : C → C be two closed and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose that
S and T are uniformly L-Lipschitz continuous and that G = F(T)

⋂
F(S)

⋂
Ω is a nonempty and

bounded subset in C. Let {xn} be the sequence generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),

yn = J−1
(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ψ

(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.1)
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where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1] and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). Suppose that the following conditions
are satisfied:

(i) lim infn→∞αn(1 − αn) > 0,

(ii) lim infn→∞βn(1 − βn) > 0.

Then {xn} converges strongly to ΠF(S)∩F(T)∩Ωx0, where ΠF(S)∩F(T)∩Ω is the generalized projection of
E onto F(S) ∩ F(T) ∩Ω.

Proof. Firstly, we define two functionsH : C × C → R and Kr : C → C by

H
(
x, y

)
= Θ

(
x, y

)
+
〈
Ax, y − x〉 + ψ(y) − ψ(x), ∀x, y ∈ C,

Kr(x) =
{
u ∈ C : H

(
u, y

)
+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}
, x ∈ C.

(3.2)

By Lemma 2.10, we know that the function H satisfies conditions (A1)–(A4) and Kr has
properties (a)–(e). Therefore, (3.1) is equivalent to

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),

yn = J−1
(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,

H
(
un, y

)
+

1
rn
〈y − un, Jun − Jyn〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0, ∀n ≥ 0.

(3.3)

We divide the proof of Theorem 3.1 into five steps.
(I) First we prove that Cn andQn are both closed and convex subsets of C for all n ≥ 0.
In fact, it is obvious that Qn is closed and convex for all n ≥ 0. Again we have that

φ(v, zn) ≤ φ(v, xn) + ξn ⇐⇒ 2〈v, Jxn − Jzn〉 ≤ ‖xn‖2 − ‖zn‖2 + ξn,

φ(v, un) ≤ φ(v, xn) + (1 + kn)
(
1 − βn

)
ξn ⇐⇒ 2〈v, Jxn − Jun〉

≤ ‖xn‖2 − ‖un‖2 + (1 + kn)
(
1 − βn

)
ξn.

(3.4)

Hence Cn, ∀n ≥ 0, is closed and convex, and so Cn ∩Qn is closed and convex for all n ≥ 0.
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(II) Next we prove that F(T) ∩ F(S) ∩Ω ⊂ Cn ∩Qn, ∀n ≥ 0.
Putting un = Krnyn, ∀n ≥ 0, by Lemma 2.10 and Remark 2.11, Krn is relatively

nonexpansive. Again since S and T are quasi-φ-asymptotically nonexpansive, for any given
u ∈ F(S) ∩ F(T) ∩Ω, we have that

φ(u, zn) = φ
(
u, J−1(αnJxn + (1 − αn)JTnxn)

)

= ‖u‖2 − 2〈u, αnJxn + (1 − αn)JTnxn〉 + ‖αnJxn + (1 − αn)JTnxn‖2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, JTnxn〉 + αn‖xn‖2

+ (1 − αn)‖Tnxn‖2 − αn(1 − αn)g(‖Jxn − JTnxn‖)
= αnφ(u, xn) + (1 − αn)φ(u, Tnxn) − αn(1 − αn)g(‖Jxn − JTnxn‖)
≤ αnφ(u, xn) + (1 − αn)knφ(u, xn) − αn(1 − αn)g(‖Jxn − JTnxn‖)
≤ knφ(u, xn) − αn(1 − αn)g(‖Jxn − JTnxn‖)
≤ φ(u, xn) + sup

p∈G
(kn − 1)φ

(
p, xn

) − αn(1 − αn)g(‖Jxn − JTnxn‖)

= φ(u, xn) + ξn − αn(1 − αn)g(‖Jxn − JTnxn‖)
≤ φ(u, xn) + ξn.

(3.5)

From (3.5)we have that

φ(u, un) = φ
(
u,Krnyn

) ≤ φ(u, yn
)

≤ φ
(
u, J−1

(
βnJxn +

(
1 − βn

)
JSnzn

))

= ‖u‖2 − 2
〈
u, βnJxn +

(
1 − βn

)
JSnzn

〉
+
∥∥βnJxn +

(
1 − βn

)
JSnzn

∥∥2

≤ ‖u‖2 − 2βn〈u, Jxn〉 − 2
(
1 − βn

)〈u, JSnzn〉 + βn‖xn‖2

+
(
1 − β)‖Snzn‖2 − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

= βnφ(u, xn) +
(
1 − βn

)
φ(u, Snzn) − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ βnφ(u, xn) +
(
1 − βn

)
knφ(u, zn) − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ βnφ(u, xn) +
(
1 − βn

)
kn

(
φ(u, xn) + ξn

) − βn
(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ βnφ(u, xn) +
(
1 − βn

)(
φ(u, xn) + ξn

)
+
(
1 − βn

)
knξn − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ φ(u, xn) +
(
1 − βn

)
ξn +

(
1 − βn

)
knξn − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ φ(u, xn) + (1 + kn)
(
1 − βn

)
ξn − βn

(
1 − βn

)
g(‖Jxn − JSnzn‖)

≤ φ(u, xn) + (1 + kn)
(
1 − βn

)
ξn ∀n ≥ 0.

(3.6)

This implies that u ∈ Cn, ∀n ≥ 0, and so F(T) ∩ F(S) ∩Ω ⊂ Cn, ∀n ≥ 0.
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Now we prove that F(T) ∩ F(S) ∩Ω ⊂ Cn ∩Qn, ∀n ≥ 0.
In fact, from Q0 = C, we have that F(T) ∩ F(S) ∩ Ω ⊂ C0 ∩ Q0. Suppose that F(T) ∩

F(S)∩Ω ⊂ Ck ∩Qk, for some k ≥ 0. Now we prove that F(T)∩F(S)∩Ω ⊂ Ck+1 ∩Qk+1. In fact,
since xk+1 = ΠCk∩Qkx0, we have that

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0, ∀z ∈ Ck ∩Qk. (3.7)

Since F(T) ∩ F(S) ∩Ω ⊂ Ck ∩Qk, for any z ∈ F(T) ∩ F(S) ∩Ω, we have that

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0. (3.8)

This shows that z ∈ Qk+1, and so F(T) ∩ F(S) ∩Ω ⊂ Qk+1. The conclusion is proved.
(III) Now we prove that {xn} is bounded.
From the definition of Qn, we have that xn = ΠQnx0, ∀n ≥ 0. Hence, from

Lemma 2.2(1),

φ(xn, x0) = φ
(
ΠQnx0, x0

) ≤ φ(u, x0) − φ
(
u,ΠQnx0

)

≤ φ(u, x0), ∀u ∈ F(T) ∩ F(S) ∩Ω ⊂ Qn, ∀n ≥ 0.
(3.9)

This implies that {φ(xn, x0)} is bounded. By virtue of (2.4), {xn} is bounded. Denote

M = sup
n≥0

{‖xn‖} <∞. (3.10)

Since xn+1 = ΠCn∩Qnx0 ∈ Cn ∩ Qn ⊂ Qn and xn = ΠQnx0, from the definition of ΠQn , we have
that

φ(xn, x0) ≤ φ(xn+1, x0) ≤ (M + ‖x0‖)2, ∀n ≥ 0. (3.11)

This implies that {φ(xn, x0)} is nondecreasing, and so the limit limn→∞φ(xn, x0) exists.
Without loss of generality, we can assume that

lim
n→∞

φ(xn, x0) = r ≥ 0. (3.12)

By the way, from the definition of {ξn}, (2.4), and (3.10), it is easy to see that

ξn = sup
u∈G

(kn − 1)φ(u, xn) ≤ sup
u∈G

(kn − 1)(‖u‖ +M)2 −→ 0 (as n −→ ∞). (3.13)

(IV)Now,we prove that {xn} converges strongly to some point p ∈ G = F(T)∩F(S)∩Ω.
In fact, since {xn} is bounded in C and E is reflexive, there exists a subsequence {xni} ⊂

{xn} such that xni ⇀ p. Again since Qn is closed and convex for each n ≥ 0, it is weakly
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closed, and so p ∈ Qn for each n ≥ 0. Since xn = ΠQnx0, from the defintion of ΠQn , we have
that

φ(xni , x0) ≤ φ
(
p, x0

)
, n ≥ 0. (3.14)

Since

lim inf
ni →∞

φ(xni , x0) = lim inf
ni →∞

{
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

}

≥ ∥
∥p

∥
∥2 − 2

〈
p, Jx0

〉
+ ‖x0‖2 = φ

(
p, x0

)
,

(3.15)

we have that

φ
(
p, x0

) ≤ lim inf
ni →∞

φ(xni , x0) ≤ lim sup
ni →∞

φ(xni , x0) ≤ φ
(
p, x0

)
. (3.16)

This implies that limni →∞φ(xni , x0) = φ(p, x0), that is, ||xni || → ||p||. In view of the Kadec-Klee
property of E, we obtain that limn→∞xni = p.

Now we first prove that xn → p (n → ∞). In fact, if there exists a subsequence
{xnj} ⊂ {xn} such that xnj → q, then we have that

φ
(
p, q

)
= lim

ni →∞,nj →∞
φ
(
xni , xnj

)
≤ lim

ni →∞,nj →∞
φ(xni , x0) − φ

(
ΠQnj

x0, x0
)

= lim
ni →∞,nj →∞

φ(xni , x0) − φ
(
xnj , x0

)
= 0

(
by (3.12)

)
.

(3.17)

Therefore we have that p = q. This implies that

lim
n→∞

xn = p. (3.18)

Now we first prove that p ∈ F(T) ∩ F(S). In fact, by the construction of Qn, we have
that xn = ΠQnx0. Therefore, by Lemma 2.2(a) we have that

φ(xn+1, xn) = φ
(
xn+1,ΠQnx0

) ≤ φ(xn+1, x0) − φ
(
ΠQnx0, x0

)

= φ(xn+1, x0) − φ(xn, x0) −→ 0 (as n −→ ∞).
(3.19)

In view of xn+1 ∈ Cn ∩Qn ⊂ Cn and noting the construction of Cn we obtain

φ(xn+1, zn) ≤ φ(xn+1, xn) + ξn,
φ(xn+1, un) ≤ φ(xn+1, xn) + (1 + kn)

(
1 − βn

)
ξn.

(3.20)

From (3.13) and (3.19), we have that

lim
n→∞

φ(xn+1, un) = 0, lim
n→∞

φ(xn+1, zn) = 0. (3.21)
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From (2.4) it yields that (||xn+1||−||un||)2 → 0 and (||xn+1||−||zn||)2 → 0. Since ||xn+1|| →
||p||, we have that

‖un‖ −→ ∥
∥p

∥
∥, ‖zn‖ −→ ∥

∥p
∥
∥ (as n −→ ∞). (3.22)

Hence, we have that

‖Jun‖ −→ ∥∥Jp
∥∥, ‖Jzn‖ −→ ∥∥Jp

∥∥ (as n −→ ∞). (3.23)

This implies that {Jzn} is bounded in E∗. Since E is reflexive, and so E∗ is reflexive,
there exists a subsequence {Jzni} ⊂ {Jzn} such that Jzni ⇀ p0 ∈ E∗. In view of the reflexive-
ness of E, we see that J(E) = E∗. Hence, there exists x ∈ E such that Jx = p0. Since

φ(xni+1, zni) = ‖xni+1‖2 − 2〈xni+1, Jzni〉 + ‖zni‖2 = ‖xni+1‖2 − 2〈xni+1, Jzni〉 + ‖Jzni‖2, (3.24)

taking lim infn→∞ on both sides of the equality above and in view of the weak lower semi-
continuity of norm || · ||, it yields that

0 ≥ ∥∥p
∥∥2 − 2

〈
p, p0

〉
+
∥∥p0

∥∥2 =
∥∥p

∥∥2 − 2
〈
p, Jx

〉
+ ‖Jx‖2

=
∥∥p

∥∥2 − 2
〈
p, Jx

〉
+ ‖x‖2 = φ(p, x),

(3.25)

that is, p = x. This implies that p0 = Jp, and so Jzn ⇀ Jp. It follows from (3.23) and the
Kadec-Klee property of E∗ that Jzni → Jp (as n → ∞). Noting that J−1 : E∗ → E is hemicon-
tinuous, it yields that zni ⇀ p. It follows from (3.22) and the Kadec-Klee property of E that
limni →∞zni = p.

By the same way as given in the proof of (3.18), we can also prove that

lim
n→∞

zn = p. (3.26)

From (3.18) and (3.26), we have that

‖xn − zn‖ −→ 0 (as n −→ ∞). (3.27)

Since J is uniformly continuous on any bounded subset of E, we have that

‖Jxn − Jzn‖ −→ 0 (as n −→ ∞). (3.28)

For any u ∈ F(T)⋂F(S)
⋂
Ω, it follows from (3.5) that

αn(1 − αn)g(‖Jxn − Tnxn‖) ≤ φ(u, xn) − φ(u, zn) + ξn. (3.29)
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Since

φ(u, xn) − φ(u, zn) = ‖xn‖2 − ‖zn‖2 − 2〈u, Jxn − Jzn〉

≤
∣
∣
∣‖xn‖2 − ‖zn‖2

∣
∣
∣ + 2‖u‖ · ‖Jxn − Jzn‖

≤ ‖xn − zn‖(‖xn‖ + ‖zn‖) + 2‖u‖ · ‖Jxn − Jzn‖,

(3.30)

From (3.27) and (3.28), it follows that

φ(u, xn) − φ(u, zn) −→ 0 (as n −→ ∞). (3.31)

In view of condition (i) and lim infn→∞αn(1 − αn) > 0, we see that

g(‖Jxn − JTnxn‖) −→ 0 (as n −→ ∞). (3.32)

It follows from the property of g that

‖Jxn − JTnxn‖ −→ 0 (as n −→ ∞). (3.33)

Since xn → p and J is uniformly continuous, it yields that Jxn → Jp. Hence from (3.33) we
have that

JTnxn −→ Jp (as n −→ ∞). (3.34)

Since J−1 : E∗ → E is hemicontinuous, it follows that

Tnxn ⇀ p. (3.35)

On the other hand, we have that

∣∣‖Tnxn‖ −
∥∥p

∥∥∣∣ =
∣∣‖J(Tnxn)‖ −

∥∥Jp
∥∥∣∣ ≤ ∥∥JTnxn − Jp

∥∥ −→ 0 (as n −→ ∞). (3.36)

This together with (3.35) shows that

Tnxn −→ p. (3.37)

Furthermore, by the assumption that T is uniformly L-Lipschitz continuous, we have
that

∥∥∥Tn+1xn − Tnxn
∥∥∥ ≤

∥∥∥Tn+1xn − Tn+1xn+1
∥∥∥ +

∥∥∥Tn+1xn+1 − xn+1
∥∥∥ + ‖xn+1 − xn‖ + ‖xn − Tnxn‖

≤ (L + 1)‖xn+1 − xn‖ +
∥∥∥Tn+1xn+1 − xn+1

∥∥∥ + ‖xn − Tnxn‖.
(3.38)
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This together with (3.18) and (3.37), yields ||Tn+1xn − Tnxn|| → 0 (as n → ∞). Hence
from (3.37)we have that Tn+1xn → p, that is, TTnxn → p. In view of (3.37) and the closeness
of T , it yields that Tp = p. This implies that p ∈ F(T).

By the same way as given in the proof of (3.23) to (3.31), we can also prove that

lim
n→∞

un = p, φ(u, xn) − φ(u, un) −→ 0 (as n −→ ∞). (3.39)

Since un = Krnyn, from (2.19), (3.6), (3.13), and (3.39), we have that

φ
(
un, yn

)
= φ

(
Krnyn, yn

) ≤ φ(u, yn
) − φ(u, un)

≤ φ(u, xn) − φ(u, un) + (1 + kn)
(
1 − βn

)
ξn −→ 0 (as n −→ ∞).

(3.40)

From (2.4) it yields that (||un|| − ||yn||)2 → 0. Since ||un|| → ||p||, we have that

∥∥yn
∥∥ −→ ∥∥p

∥∥ (as n −→ ∞). (3.41)

Hence we have that

∥∥Jyn
∥∥ −→ ∥∥Jp

∥∥ (as n −→ ∞). (3.42)

By the same way as given in the proof of (3.26), we can also prove that

lim
n→∞

yn = p. (3.43)

From (3.39) and (3.43) we have that

∥∥un − yn
∥∥ −→ 0 (as n −→ ∞). (3.44)

Since J is uniformly continuous on any bounded subset of E, we have that

∥∥Jun − Jyn
∥∥ −→ 0 (as n −→ ∞). (3.45)

For any u ∈ F(T)⋂F(S)
⋂
Ω, it follows from (3.6), (3.13), and (3.39) that

βn
(
1 − βn

)
g(‖Jxn − Snzn‖) ≤ φ(u, xn) − φ(u, un) + (1 + kn)

(
1 − βn

)
ξn −→ 0. (3.46)

In view of condition (ii) and lim infn→∞βn(1 − βn) > 0, we see that

g(‖Jxn − JSnzn‖) −→ 0 (as n −→ ∞). (3.47)

It follows from the property of g that

‖Jxn − JSnzn‖ −→ 0 (as n −→ ∞). (3.48)
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Since xn → p and J is uniformly continuous, it yields, Jxn → Jp. Hence from (3.48)we have
that

JSnzn −→ Jp (as n −→ ∞). (3.49)

Since J−1 : E∗ → E is hemicontinuous, it follows that

Snzn ⇀ p. (3.50)

On the other hand, we have that

∣
∣‖Snzn‖ −

∥
∥p

∥
∥
∣
∣ =

∣
∣‖J(Snzn)‖ −

∥
∥Jp

∥
∥
∣
∣ ≤ ∥

∥JSnzn − Jp
∥
∥ −→ 0 (as n −→ ∞). (3.51)

This together with (3.50) shows that

Snzn −→ p. (3.52)

Furthermore, by the assumption that S is uniformly L-Lipschitz continuous, we have
that

∥∥∥Sn+1zn − Snzn
∥∥∥ ≤

∥∥∥Sn+1zn − Sn+1zn+1
∥∥∥ +

∥∥∥Sn+1zn+1 − zn+1
∥∥∥ + ‖zn+1 − zn‖ + ‖zn − Snzn‖

≤ (L + 1)‖zn+1 − zn‖ +
∥∥∥Sn+1zn+1 − zn+1

∥∥∥ + ‖zn − Snzn‖.
(3.53)

This together with (3.26) and (3.52), yields that ||Sn+1zn − Snzn|| → 0 (as n → ∞).
Hence from (3.52) we have that Sn+1zn → p, that is, SSnzn → p. In view of (3.52) and the
closeness of T , it yields that Sp = p. This implies that p ∈ F(S).

Next we prove that p ∈ Ω. From (3.45) and the assumption that rn ≥ a, ∀n ≥ 0, we
have that

lim
n→∞

∥∥Jun − Jyn
∥∥

rn
= 0. (3.54)

Since un = Krnyn, we have that

H
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.55)

Replacing n by nk in (3.55), from condition (A2), we have that

1
rnk

〈
y − unk , Junk − Jynk

〉 ≥ −H(
unk , y

) ≥ H(
y, unk

)
, ∀y ∈ C. (3.56)
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By the assumption that y �→ H(x, y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting nk → ∞ in (3.55), from (3.54) and condition (A4), we have
thatH(y, p) ≤ 0, ∀y ∈ C.

For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p, there are yt ∈ C andH(yt, p) ≤ 0. By
conditions (A1) and (A4), we have that

0 = H
(
yt, yt

) ≤ tH(
yt, y

)
+ (1 − t)H(

yt, p
) ≤ tH(

yt, y
)
. (3.57)

Dividing both sides of the above equation by t, we have that H(yt, y) ≥ 0, ∀y ∈ C. Letting
t ↓ 0, from condition (A3), we have that H(p, y) ≥ 0, ∀y ∈ C, that is, Θ(p, y) + 〈Ap, y − p〉 +
ψ(y) − ψ(p) ≥ 0, ∀y ∈ C. Therefore p ∈ Ω, and so p ∈ F(T)⋂F(S)

⋂
Ω.

(V) Finally, we prove that xn → ΠF(T)
⋂
F(S)

⋂
Ωx0.

Let w = ΠF(T)
⋂
F(S)

⋂
Ωx0. From w ∈ F(T)⋂F(S)

⋂
Ω ⊂ Cn ∩Qn, and xn+1 = ΠCn∩Qnx0,

we have that

φ(xn+1, x0) ≤ φ(w,x0), ∀n ≥ 0. (3.58)

Since the norm is weakly lower semicontinuous, this implies that

φ
(
p, x0

)
=
∥∥p

∥∥2 − 2
〈
p, Jx0

〉
+ ‖x0‖2 ≤ lim

nk →∞
inf

{
‖xnk‖2 − 2〈xnk , Jx0〉 + ‖x0‖2

}

≤ lim
nk →∞

infφ(xnk , x0) ≤ lim
nk →∞

supφ(xnk , x0) ≤ φ(w,x0).
(3.59)

It follows from the definition of ΠF(T)
⋂
F(S)

⋂
Ωx0 and (3.59) that we have p = w. Therefore,

xn → ΠF(T)
⋂
F(S)

⋂
Ωx0. This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 improves and extends the corresponding results in [7–9].

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property(note that each uniformly convex Banach space
must have the Kadec-Klee property).

(b) For the mappings, we extend the mappings from nonexpansive mappings,
relatively nonexpansive mappings, or weak relatively nonexpansive mappings to a
pair of quasi-φ-asymptotically nonexpansive mappings.

(c) For the equilibrium problem, we extend the generalized equilibrium problem to the
generalized mixed equilibrium problem.

The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C → E∗ be a continuous and
monotone mapping and Θ : C × C → R a bifunction satisfying conditions (A1)–(A4). Let S, T :
C → C be two closed and uniformly quasi-φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂ [1,∞) and kn → 1. Suppose that S and T are uniformly L-Lipschitz continuous and that
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G = F(T)
⋂
F(S)

⋂
GEP is a nonempty and bounded subset in C. Let {xn} be the sequence generated

by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),
yn = J−1

(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.60)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions
(i)-(ii) in Theorem 3.1, then {xn} converges strongly toΠF(S)∩F(T)∩GEPx0, whereGEP is the set for the
solutions of generalized equilibrium problem (1.3).

Proof. Putting ψ = 0 in Theorem 3.1, the conclusion of Theorem 3.3 can be obtained from
Theorem 3.1.

Theorem 3.4. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let ψ : C → R be a lower semicontinuous
and convex function and Θ : C × C → R a bifunction satisfying conditions (A1)–(A4). Let S, T :
C → C be two closed and uniformly quasi-φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂ [1,∞) and kn → 1. Suppose that S and T are uniformly L-Lipschitz continuous and thatG =
F(T)

⋂
F(S)

⋂
MEP is a nonempty and bounded subset in C. Let {xn} be the sequence generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),
yn = J−1

(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+ ψ

(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.61)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions
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(i)-(ii) in Theorem 3.1, then {xn} converges strongly to ΠF(S)∩F(T)∩MEPx0, where MEP is the set of
solutions for mixed equilibrium problem (1.4).

Proof. Putting A = 0 in Theorem 3.1, the conclusion of Theorem 3.4 can be obtained from
Theorem 3.1.

Theorem 3.5. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C → E∗ be a continuous and
monotone mapping and ψ : C → R a lower semicontinuous and convex function. Let S, T : C → C
be two closed and uniformly quasi-φ-asymptotically nonexpansive mappings with a sequence
{kn} ⊂ [1,∞) and kn → 1. Suppose that S and T are uniformly L-Lipschitz continuous and that
G = F(T)

⋂
F(S)

⋂
VI(C,A, ψ) is a nonempty and bounded subset in C. Let {xn} be the sequence

generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),
yn = J−1

(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,
〈
Aun, y − un

〉
+ ψ

(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.62)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions
(i)-(ii) in Theorem 3.1, then {xn} converges strongly to ΠF(S)∩F(T)∩VI(C,A,ψ)x0, where VI(C,A, ψ) is
the set of solutions for the mixed variational inequality (1.5).

Proof. Putting Θ = 0 in Theorem 3.1, the conclusion of Theorem 3.5 can be obtained from
Theorem 3.1.

Theorem 3.6. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let Θ : C × C → R be a bifunction satisfying
conditions (A1)–(A4). Let S, T : C → C be two closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose that S and T are
uniformly L -Lipschitz continuous and that G = F(T)

⋂
F(S)

⋂
EP(Θ) is a nonempty and bounded

subset in C. Let {xn} be the sequence generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),

yn = J−1
(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,
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Θ
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x0, ∀n ≥ 0,

(3.63)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions
(i)-(ii) in Theorem 3.1, then {xn} converges strongly to ΠF(S)∩F(T)∩EP(Θ)x0, where EP(Θ) is the set of
solutions for the equilibrium problem (1.6).

Proof. Putting ψ = 0 andA = 0 in Theorem 3.1, the conclusion of Theorem 3.6 can be obtained
from Theorem 3.1.

Theorem 3.7. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. LetA : C → E∗ be a continuous and monotone
mapping and S, T : C → C two closed and uniformly quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose that S and T are uniformly L-
Lipschitz continuous and that G = F(T)

⋂
F(S)

⋂
VI(C,A) is a nonempty and bounded subset in C.

Let {xn} be the sequence generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),
yn = J−1

(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un ∈ C such that, ∀y ∈ C,
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.64)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈G(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions
(i)-(ii) in Theorem 3.1, then {xn} converges strongly to ΠF(S)∩F(T)∩VI(C,A)x0, where VI(C,A) is the
set of solutions for the variational inequality (1.7)

Proof. Putting ψ = 0 andΘ = 0 in Theorem 3.1, the conclusion of Theorem 3.7 can be obtained
from Theorem 3.1.

Theorem 3.8. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. LetA : C → E∗ be a continuous and monotone
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mapping, ψ : C → R a lower semicontinuous and convex function, and Θ : C ×C → R a bifunction
satisfying conditions (A1)–(A4). Let S : C → C be a closed and quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose that S is uniformly L-Lipschitz
continuous and that F(S)

⋂
Ω is a nonempty and bounded subset in C. Let {xn} be the sequence

generated by

x0 ∈ C, C0 = C, Q0 = C,

yn = J−1
(
βnJxn +

(
1 − βn

)
JSnxn

)
,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ψ

(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, un) ≤ φ(v, xn) + ξn

}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.65)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0, ξn = supu∈F(S)∩Ω(kn − 1)φ(u, xn). If {βn} satisfy condition (ii) in
Theorem 3.1, then {xn} converges strongly toΠF(S)∩Ωx0.

Proof. Taking T = I in Theorem 3.1, we have that zn = xn, ∀n ≥ 0. Hence, the conclusion of
Theorem 3.8 is obtained.

Theorem 3.9. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. LetA : C → E∗ be a continuous and monotone
mapping, ψ : C → R a lower semicontinuous and convex function, and Θ : C ×C → R a bifunction
satisfying conditions (A1)–(A4). Suppose that Ω is a nonempty subset in C. Let {xn} be the sequence
generated by

x0 ∈ C, C0 = C, Q0 = C,

un ∈ C such that, ∀y ∈ C,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ψ

(
y
) − ψ(un) + 1

rn

〈
y − un, Jun − Jxn

〉 ≥ 0,

Cn =
{
v ∈ Cn−1 : φ(v, un) ≤ φ(v, xn)

}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.66)

where {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly toΠΩx0.

Proof. Taking T = S = I in Theorem 3.1, the conclusion is obtained.
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Theorem 3.10. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let S, T : C → C be two closed and uniformly
quasi-φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞) and kn → 1. Suppose
that S and T are uniformly L-Lipschitz continuous and that F(T)

⋂
F(S) is a nonempty and bounded

subset in C. Let {xn} be the sequence generated by

x0 ∈ C, C0 = C, Q0 = C,

zn = J−1(αnJxn + (1 − αn)JTnxn),

yn = J−1
(
βnJxn +

(
1 − βn

)
JSnzn

)
,

un = ΠCyn,

Cn =
{
v ∈ Cn−1 : φ(v, zn) ≤ φ(v, xn) + ξn, φ(v, un) ≤ φ(v, xn) + (1 + kn)

(
1 − βn

)
ξn
}
,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.67)

where J : E → E∗ is the normalized duality mapping, {αn} and {βn} are sequences in [0, 1], and
ξn = supu∈F(S)∩F(T)(kn − 1)φ(u, xn). If {αn} and {βn} satisfy conditions (i)-(ii) in Theorem 3.1, then
{xn} converges strongly toΠF(S)∩F(T)x0.

Proof. Taking A = Θ = 0 and rn = 1, ∀n ≥ 0 in Theorem 3.1, the conclusion of Theorem 3.10 is
obtained.
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