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The purpose of this paper is, by using a new hybrid method, to prove a strong convergence
theorem for finding a common element of the set of solutions for a generalized mixed equilibrium
problem, the set of solutions for a variational inequality problem, and the set of common fixed
points for a pair of quasi-¢-asymptotically nonexpansive mappings. Under suitable conditions
some strong convergence theorems are established in a uniformly smooth and strictly convex
Banach space with Kadec-Klee property. The results presented in the paper improve and extend
some recent results.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. We also assume that E is a real Banach space, E* is the dual space of E, C is a
nonempty closed convex subset of E, and (-, -) is the pairing between E and E*.

Let ¢ : C — Rbe areal-valued function, © : C xC — R abifunction,and A: C — E*
anonlinear mapping. The “so-called” generalized mixed equilibrium problem is to find u € C
such that

O(u,y)+{(Au,y—u)+¢(y) —¢pu) >0, VyeC. (1.1)
The set of solutions for (1.1) is denoted by £2, that is,

Q={ueC:0(uy)+(Au,y-u)+¢(y) —¢(u) >0, Vy € C}. (1.2)
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Special examples are as follows.

(I) If ¢ = 0, the problem (1.1) is equivalent to finding u € C such that
O(uy) +(Auy-u) >0, VyeC, (1.3)

which is called the generalized equilibrium problem. The set of solutions for (1.3)
is denoted by GEP.

(I) If A =0, the problem (1.1) is equivalent to finding u € C such that
O(u,y) +¢(y) —¢w) 20, VyeC, (1.4)

which is called the mixed equilibrium problem (MEP) [1]. The set of solutions for
(1.4) is denoted by MEP.

(IIT) If © = O, the problem (1.1) is equivalent to finding u € C such that
(Auwy—u) +¢(y) -¢w) 20, VyeC, (15)

which is called the mixed variational inequality of Browder type (VI) [2]. The set
of solutions for (1.5) is denoted by VI(C, A, ¢).

(IV) If ¢ = 0 and A =0, the problem (1.1) is equivalent to finding u € C such that

©(u,y) >0, VyeC, (1.6)

which is called the equilibrium problem. The set of solutions for (1.6) is denoted by
EP(©).

(V) If ¢ =0 and © = 0, the problem (1.1) is equivalent to finding u € C such that

(Au,y—u) >0, VyeC, (1.7)

which is called the variational inequality of Browder type. The set of solutions for
(1.7) is denoted by VI(C, A).

The problem (1.1) is very general in the sense that numerous problems in physics,
optimiztion and economics reduce to finding a solution for (1.1). Some methods have been
proposed for solving the generalized equilibrium problem and the equilibrium problem in
Hilbert space (see, e.g., [3-6]).

A mapping S : C — E is called nonexpansive if

Isx-syll <llx-yl, vxyec (1)

We denote the fixed point set of S by F(S).

In 2008, S. Takahashi and W. Takahashi [6] proved some strong convergence theorems
for finding an element or a common element of EP, EP(f) N F(S) or VI(C,A) n F(S),
respectively, in a Hilbert space.
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Recently, Takahashi and Zembayashi [7, 8] proved some weak and strong convergence
theorems for finding a common element of the set of solutions for equilibrium (1.6) and the
set of fixed points of a relatively nonexpansive mapping in a Banach space.

In 2010, Chang et al. [9] proved a strong convergence theorem for finding a common
element of the set of solutions for a generalized equilibrium problem (1.3) and the set of
common fixed points of a pair of relatively nonexpansive mappings in a Banach space.

Motivated and inspired by [4-9], we intend in this paper, by using a new hybrid
method, to prove a strong convergence theorem for finding a common element of the set
of solutions for a generalized mixed equilibrium problem (1.1) and the set of common fixed
points of a pair of quasi-¢-asymptotically nonexpansive mappings in a uniformly smooth
and strictly convex Banach space with the Kadec-Klee property.

2. Preliminaries

For the sake of convenience, we first recall some definitions and conclusions which will be
needed in proving our main results.

The mapping ] : E — 2F defined by
J(x) ={x* € E": {x,x") = ||lx|| = |x"[|}, x€E, (2.1)

is called the normalized duality mapping. By the Hahn-Banach theorem, J(x) #@ for each
x€E.

In the sequel, we denote the strong convergence and weak convergence of a sequence
{xn} by x, — x and x,, — x, respectively.

A Banach space E is said to be strictly convexif [|[x+y||/2 < 1forallx,y e U ={z € E:
llz|l = 1} with x #y. E is said to be uniformly convex if, for each ¢ € (0,2], there exists 6 > 0
such that ||x + y||/2 <1-6 for all x, y € U with ||x — y|| > €. E is said to be smooth if the limit

=

lim ; (2.2)

exists for all x, y € U. E is said to be uniformly smooth if the above limit exists uniformly in
x,yel.

Remark 2.1. The following basic properties can be found in Cioranescu [10].

(i) If E is a uniformly smooth Banach space, then ] is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J~! is hemicontinuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach space, then ] is singlevalued,
one-to-one and onto.

(iv) A Banach space E is uniformly smooth if and only if E* is uniformly convex.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {x,} CE, if x, = x € E and ||x,,|| — ||x||, then x,, — x.
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Next we assume that E is a smooth, strictly convex, and reflexive Banach space and C
is a nonempty closed convex subset of E. In the sequel, we always use ¢ : Ex E — R* to
denote the Lyapunov functional defined by

d(x,y) = |IxI> - 2(x, Jy) + |ly|’, Vx,y€E. (2.3)

It is obvious from the definition of ¢ that

(el = llyID® < ¢(xv) < (=l + [lyl)* Vx,y € E. (24)
Following Alber [11], the generalized projection Ilc : E — C is defined by

Ie(x) = arg ingd)(y,x), Vx € E. (2.5)
ve

Lemma 2.2 (see [11, 12]). Let E be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of E. Then, the following conclusions hold:

(@) ¢(x,Icy) + ¢p(Icy,y) < p(x,y) forall x e Cand y € E;
(b) ifx € Eand z € C, then

z=Tlex <= (z-y,Jx-Jz)>0, VyeC; (2.6)

(c) forx,y € E, ¢(x,y) = 0ifand only x = y.

Remark 2.3. If E is a real Hilbert space H, then ¢(x,y) = ||x — y||*> and Tl¢ is the metric
projection Pc of H onto C.

Let E be a smooth, strictly, convex and reflexive Banach space, C a nonempty closed
convex subset of E, T : C — C a mapping, and F(T) the set of fixed points of T. A point
p € Cis said to be an asymptotic fixed point of T if there exists a sequence {x,} C C such that
x, — pand ||x, — Tx,|| — 0. We denoted the set of all asymptotic fixed points of T by F(T).

Definition 2.4 (see [13]). (1) A mapping T : C — C is said to be relatively nonexpansive if
F(T)#0, F(T) = F(T), and

¢(p,.Tx) < Pp(p,x), VxeC, peF(T). (2.7)

(2) A mapping T : C — C is said to be closed if, for any sequence {x,} C C with
Xp — xand Tx, — y, Tx=y.

Definition 2.5 (see [14]). (1) A mapping T : C — C is said to be quasi-¢-nonexpansive if
F(T) #0 and

¢(p,Tx) < Pp(p,x), VYxeC, peF(T). (2.8)
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(2) A mapping T : C — C is said to be quasi-¢-asymptotically nonexpansive if
F(T) #0 and there exists a real sequence {k,} C [1,00) with k, — 1 such that

d(p,T"x) < kup(p,x), VYn2>1, xeC, peF(T). (2.9)

(3) A pair of mappings T1,T, : C — C is said to be uniformly quasi-¢-asymptotically
nonexpansive if F(Ty) (| F(Tz) # @ and there exists a real sequence {k,} C [1, 00) withk, — 1
such that fori=1,2

d(p, T'x) <knp(p,x), VYn>1, xe€C, pe F(T1)NF(T). (2.10)

(4) Amapping T : C — Cis said to be uniformly L-Lipschitz continuous if there exists
a constant L > 0 such that

|T"x -T"y|| <L||jx-y|, Vx,yeC (2.11)

Remark 2.6. (1) From the definition, it is easy to know that each relatively nonexpansive
mapping is closed.

(2) The class of quasi-¢-asymptotically nonexpansive mappings contains properly the
class of quasi-¢-nonexpansive mappings as a subclass, and the class of quasi-¢-nonexpansive
mappings contains properly the class of relatively nonexpansive mappings as a subclass, but
the converse may be not true.

Lemma 2.7 (see [15]). Let E be a uniformly convex Banach space, r > 0 a positive number, and
B, (0) a closed ball of E. Then, for any given subset {x1,x2,...,xn} C B,(0) and for any positive
numbers {A1, Ay, ..., AN} with ijl Ai =1, there exists a continuous, strictly increasing, and convex
function g : [0,2r) — [0, 00) with g(0) = 0 such that, forany i,j € {1,2,..., N} withi < j,

2

N
Z)Lnxn

n=1

N
< allxal® = Xidjg ([l = x4))- (2.12)
n=1

Lemma 2.8 (see [15]). Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property and C a nonempty closed convex subset of E. Let T : C — C be a closed and
quasi-¢-asymptotically nonexpansive mapping with a sequence {k,} C [1,00), k, — 1. Then F(T)
is a closed convex subset of C.

For solving the generalized mixed equilibrium problem (1.1), let us assume that the
function ¢ : C — R is convex and lower semicontinuous, the nonlinear mapping A : C —
E* is continuous and monotone, and the bifunction © : C x C — R satisfies the following
conditions:

(A1) O(x,x) =0, forall x € C,
(A2
(As

© is monotone, that is, O(x,y) + O(y,x) <0, Vx,y € C,

)
)
) limsuptw@(x +iH(z-x),y) <O(x,y) ¥x,z,y € C,
)

(A4) the function y — O(x, y) is convex and lower semicontinuous.
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Lemma 2.9. Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty closed
convex subset of E. Let © : C x C — R a bifunction satisfying the conditions (A1)—(A4). Let r > 0
and x € E. Then, the followings hold.

(i) (Blum and Oettli [3]) there exists z € C such that

@(Z/y)+%<y—szz—]x>20, VyeC. (2.13)
(ii) (Takahashi and Zembayashi [8]) Define a mapping T, : E — C by

T, (x) = {z €C:0(z,y) + %(y—z,]z—]x) >0, Vy € C}, x € E. (2.14)

Then, the following conclusions hold:

(a) T, is single-valued,

(b) T, is a firmly nonexpansive-type mapping, that is, Vz,y € E,
<TrZ_Tryr]Trz_]Try> < <TrZ_Tryr]Z_]y>r (2.15)

() F(T;) = EP(®) = F(T),
(d) EP(®) is closed and convex,
(e) 4’(6], T,x) + (i)(Trx/x) < (,b(q/ x), Vq € F(T;).

Lemma 2.10 (see [16]). Let E be a smooth, strictly convex, and reflexive Banach space, and C a
nonempty closed convex subset of E. Let A : C — E* be a continuous and monotone mapping,
¢ : C — Ralower semicontinuous and convex function, and © : C x C — R a bifunction satisfying
conditions (A1)—(As). Let v > 0 be any given number and x € E any given point. Then, the following
hold.

(i) There exists u € C such that

O(u,y)+ (Auy—u) +¢(y) —¢u) + %(y— u,Ju-Jx) >0, VyeC. (2.16)

(ii) If we define a mapping K, : C — C by

K (x) = {u €C:0(uy) +(Au,y—u) +¢(y) —¢u)
: 2.17)
+;<y—u,]u—]x)20, VyeC}, Vx e C.
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Then, the mapping K, has the following properties:
(a) K, is single valued,

(b) K, is a firmly nonexpansive-type mapping, that is,

(Krz- Ky, JK,z- JK,y) < (K;z- Ky, Jz-Jy), VYz,y€E, (2.18)

(c) F(K,) =Q=F(K,),
(d) Q is closed and convex,

(e)
#(q,K,z) + p(K,z,z) < 9(q,z), VqeF(K,), z€E. (2.19)

Remark 2.11. It follows from Lemma 2.9 that the mapping K, is a relatively nonexpansive
mapping. Thus, it is quasi-¢-nonexpansive.

3. Main Results

In this section, we will prove a strong convergence theorem for finding a common element
of the set of solutions for the generalized mixed equilibrium problem (1.1) and the set of
common fixed points for a pair of quasi-¢-asymptotically nonexpansive mappings in Banach
spaces.

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and monotone
mapping, ¢ : C — R a lower semicontinuous and convex, function, and @ : CxC — Ra
bifunction satisfying conditions (A1)—(As). Let S, T : C — C be two closed and uniformly quasi-
¢-asymptotically nonexpansive mappings with a sequence {k,} C [1,00) and k, — 1. Suppose that
S and T are uniformly L-Lipschitz continuous and that G = F(T) (F(S) N Q is a nonempty and
bounded subset in C. Let {x,} be the sequence generated by

XOEC, C():C, Q0=C/
zZn = ] (@n 20 + (1= ) JT"x),

Yn = ]71 (ﬁn]xn + (1 —ﬂn)]SnZn),
u, € C such that, Vy eC,
1 (3.1)
O (it y) + {Attn,y =) + ¢ (y) = ¢ n) + (Y = thn, Jitn = Jyu) 20,
C, = {U €Cp: (I)(Ur Zy) < ¢(Urxn) +&n, (I)(Urun) < d)(v,x,,) +(1+ kn)(l - ﬁn)én}r
Qn=1{z€Qn1:(xn—2z Jxo - Jxn) 20},

Xn+l = chﬁan()r Vn > Or
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where | : E — E* is the normalized duality mapping, {a,} and {p,} are sequences in [0,1] and

{rn} C [a,00) for some a > 0, &, = sup, . (kn — 1)P(u, x,). Suppose that the following conditions
are satisfied:

(i) liminf, ., ca,(1 —a,) >0,
(ii) liminf, B, (1 = Bu) > 0.

Then {x,} converges strongly to IlrsynrrynaXo, where Ilps)nrr)ng is the generalized projection of
E onto F(S)NF(T) N Q.

Proof. Firstly, we define two functions H : CxC — Rand K, : C — Cby

H(x,y) =0(x,y) + (Ax,y - x) +¢(y) —¢(x), VYx,y€C,

. (3.2)
K. (x) = {ueC:H(u,y) +;(y—u,]u—]x) >0, VyeC}, xeC.

By Lemma 2.10, we know that the function H satisfies conditions (A;)—(A4) and K, has
properties (a)—(e). Therefore, (3.1) is equivalent to

xOEC, C0=C, Q0=C’
Zn = ]_1(0(-,1]36,1 + (1 =-ay)JT"xy),

Yn =] (BuJn+ (1= ) ]S"20),

u, € C such that, VyeC,

1 (3.3)
H(un,y) + r_<y_”nr]”n_]]/n> >0,

Cu={v € Ch1:9(0,20) < P(v,Xn) +&n, P(V,1n) < P(v,x0) + (1 + k) (1= fr)én},
Qn = {Z € Qn—l : <xn -z, Jxo _]xn> > 0},

Xns1 = Ic,n0,%0, Y 2>0.

We divide the proof of Theorem 3.1 into five steps.
(I) First we prove that C,, and Q, are both closed and convex subsets of C for all n > 0.
In fact, it is obvious that Q, is closed and convex for all n > 0. Again we have that

G0, 2n) < P(0,X0) +&n & 2(0, Jxn = J2n) < |1%ull> = |2all* + &,
(;b(v/ uy) < ¢(U, xn) + (1 +ky) (1 - ﬁn)én & 2(v, Jxu — Jun) (3.4)

< Nxull? = lfunl® + (1 + kn) (1= Bu) .

Hence C,,, Yn > 0, is closed and convex, and so C,, N Q,, is closed and convex for all n > 0.
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(II) Next we prove that F(T) N F(S)NQ c C, N Qy,, Vn > 0.

Putting u, = K, y,, Yn > 0, by Lemma 2.10 and Remark 2.11, K, is relatively
nonexpansive. Again since S and T are quasi-¢-asymptotically nonexpansive, for any given
u € F(S)Nn F(T) N Q, we have that

P, z) = ¢ (1,7 (@) o0 + (1= ) JT"x,))
= [[ull® = 2(u, anJoxn + (1= @) JT"xn) + [l ) 20 + (1= ) JT" 2, >
< Jull® = 2a(u, Jon) = 2(1 = ) (1, JT" 2 + et |20 ||

+ (1= an)|IT"xull” = (1 - an) (1 Joxn = JT" )

= (1, x) + (1= ) (1, T"x) — (1 = @) g (1T = JT"xl)
< (1, %) + (1= ) knp (14, 2) = (1 = ) g (|1 J 0 = JT" x5, )
< Knp(, %) — (1= ) (|1 ]2t = JT"x, )
< Pp(u,x,) + igg(k" = 1)p(p, xn) — an(l = an)g(lJxn = JT"x4|)

(3.5)

=@, xn) +én— (1 —an) (| Jxn = JT"x4]|)

< P, xn) + -
From (3.5) we have that

P (u, un) = §(u, Ky, yn) < P, yn)
< ¢(w )7 (BuJxn+ (1= )] S"z))
=l = 2w, BT xn + (1= Pu) JS"2n) + || BuJ 2cn + (1= Bu) JS"2a|?
< Nlull® = 2Bu(u, Jotn) = 2(1 = Bu) (1, JS"2) + Pullxull?
+ (1= B)IIS"zal* = u (1 = ) g (1] 20 = TS"zul)
= Bup(t, %) + (1= ) (14, S"20) = B (1= ) g (Il J X0 = JS"2ul))
< Bup (1, ) + (1= o) knp (1, 20) = B (1 = ) & ([T = JS"2ul)
< (14, 20) + (1= BuYoen (@ (14, %) + &n) = P (1= Bu) (110 = JS"zull)
< Pup (1, xn) + (1= Pn) (@, %) +&n) + (1= Bu) kndn = P (1 = Pu) g (1 X0 = JS"2u)
< ¢, x0) + (1= Pu)én + (1= Pu) knn = Pu(L = Pu) g (1] 2t ~ JS"zul))
<P, ) + (1+ k) (1= Bo)én = Bu(1 = Br) g (1T %0 = TS"24])

<SPpu,x) + L+ kn)(1=Pp)én Yn>0.
(3.6)

This implies that u € C,,, Vn > 0, and so F(T) N F(S)NnQ c C,, Vn > 0.
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Now we prove that F(T) N F(S)NQ c C, N Qy, Yn > 0.

In fact, from Qp = C, we have that F(T) N F(S) N Q C Co N Qo. Suppose that F(T) N
F(S)NQ c CxNQx, for some k > 0. Now we prove that F(T) NF(S) NQ C Cis1 N Qjs1. In fact,
since xy41 = Ilc,ng, X0, we have that

(Xks1 =2, Jx0 = JXpe1) 20, Vz € CpN Q. (3.7)
Since F(T) N F(S) N Q C Cx N Q, for any z € F(T) N F(S) N &2, we have that
(xk+1 =2, Jxo = Jxks1) 2 0. (3.8)
This shows that z € Qk.1, and so F(T) N F(S) N Q C Qk+1. The conclusion is proved.
(III) Now we prove that {x,} is bounded.
From the definition of Q,, we have that x, = Ilg,xo, Vn > 0. Hence, from

Lemma 2.2(1),

P (xn, x0) = P(Ig,x0, x0) < P(u, x0) — p(u, g, xo)

(3.9)
<¢p(u,x0), Yue F(T)NF(S)NQCQ,, Vn>0.
This implies that {¢(x,, x0)} is bounded. By virtue of (2.4), {x,} is bounded. Denote
M = sup{||xn||} < oo. (3.10)

n=0

Since x,+1 = Ilc,ng, %0 € C,NQ, C Q, and x,, = g, xg, from the definition of I1y,, we have
that

P(xn, x0) < P(Xns1,%0) < (M + ||x0]))%,  ¥n>0. (3.11)

This implies that {¢(x,, xo)} is nondecreasing, and so the limit lim,_, . ¢(x,, x9) exists.
Without loss of generality, we can assume that

lim ¢ (x,, x0) =7 > 0. (3.12)

n
By the way, from the definition of {¢,}, (2.4), and (3.10), it is easy to see that

& = sup(ky = 1), %) < sup(ky =) (Jull + M)> — 0 (as n —> oo). (3.13)
eG

ueG u

(IV) Now, we prove that {x,} converges strongly to some pointp € G = F(T)NF(S)NQ.
In fact, since {x,} is bounded in C and E is reflexive, there exists a subsequence {xy,} C
{x,} such that x,, — p. Again since Q,, is closed and convex for each n > 0, it is weakly
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closed, and so p € Q, for each n > 0. Since x,, = I'lg, xo, from the defintion of I'lg,, we have
that

¢ (xn, x0) < Pp(p,x0), n>0. (3.14)
Since

lim inf  (xy,, %0) = lim inf{ |6, = 2(x, Jx0) + [1x0 ]}
e mee (3.15)

> |IplI” = 2(p, Tx0) + lIx0lP* = ¢ (p, x0),

we have that

P(p, x0) < hm mf(j)(xm x0) < limsup ¢ (xp,, x0) < P(p, x0).- (3.16)

nj — oo

This implies that limy,, _, (x4, X0) = ¢(p, x0), thatis, ||x,,|| — ||p||- In view of the Kadec-Klee
property of E, we obtain that lim,, _, . x,,, = p.

Now we first prove that x, — p (n — o0). In fact, if there exists a subsequence
{xn;} C {x,} such that x,, — g, then we have that

$(p,gq) = lim (j)(xn,xn]) < lm  @(xp, x0) - (jb(l_IQn xo,x0>

n—>oon — 00 n,—>oon,é

(3.17)
= lim  ¢(xy, x0) — ¢<an x0> =0 (by (3.12)).
N — 00,1j — 0
Therefore we have that p = g. This implies that
lim x, = p. (3.18)

n—oo

Now we first prove that p € F(T) N F(S). In fact, by the construction of Q,, we have
that x,, = I'lg, xo. Therefore, by Lemma 2.2(a) we have that

P (i1, ) = P(xn1, T, %0) < P(xns1,%0) — P (g, X0, X0)

(3.19)
= ¢(xn+1,%0) = P(xn,x0) — 0 (as n — o0).
In view of x,41 € C, N Q, C C,, and noting the construction of C,, we obtain
(;b(xn+1r Zn) < ¢(xn+1/ xn) + ‘;n/
(3.20)

(,b(xn+1/ un) < ¢(xn+1/ xn) + (1 + kn) (]- - ,Bn)grv
From (3.13) and (3.19), we have that

lim ¢ (xy41,un) =0, lim ¢ (xy41, 24) = 0. (3.21)
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From (2.4) it yields that (|| ||~ [|ual)> — 0and (||xpal|~l1zall)> = 0.Since [|xp|| —
|p|l, we have that

luall = lpll, Nzall = |lpll (a5 n— o0). (3.22)

Hence, we have that
[Juall = |[Jpll,  IJzall = ||Jp|| (as n — o0). (3.23)

This implies that {Jz,} is bounded in E*. Since E is reflexive, and so E* is reflexive,
there exists a subsequence {/z,,} C {Jz,} such that Jz,, — py € E*. In view of the reflexive-
ness of E, we see that J(E) = E*. Hence, there exists x € E such that Jx = p. Since

P (Xna1, Zm) = lxnaa |l = 2041, Tz ) + 20 ]1* = %nat P = 201, J2u) + 1Tz lP,  (3.24)

taking liminf,_,, on both sides of the equality above and in view of the weak lower semi-
continuity of norm || - ||, it yields that

02 [lpll* ~2(p.po) + llpoll” = lIpll* ~2(p, Jx) + 1%

= lpll* - 2(p, Jx) + I = ¢ (p, x),

(3.25)

that is, p = x. This implies that py = Jp, and so Jz, — Jp. It follows from (3.23) and the
Kadec-Klee property of E* that Jz,, — Jp (asn — o). Noting that ]! : E* — E is hemicon-
tinuous, it yields that z,, — p. It follows from (3.22) and the Kadec-Klee property of E that
limy, - 2n, = p.

By the same way as given in the proof of (3.18), we can also prove that

lim z, = p. (3.26)

n—oo

From (3.18) and (3.26), we have that

lx7 — znl] — 0 (as n — o0). (3.27)
Since ] is uniformly continuous on any bounded subset of E, we have that
1Jxn = Jznll — 0 (as n — o). (3.28)
Forany u € F(T) (N F(S) (N <, it follows from (3.5) that

a,(1- “n)g(”]xn =T"x,||) < ()b(u/ Xn) = <I>(u, Zn) + én- (3.29)
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Since

P(u, xu) = p(u, zn) = ”xn”2 - ||Zn||2 = 2(u, Jxn = Jzu)

< [Meall® = llzall®| + 20l - 1720 = J zull (3.30)
< llxn = zall (2l + zall) + 2lfell - 1] xn = J2nll,
From (3.27) and (3.28), it follows that
P, %) = P, z,) — 0 (as n — o). (331)
In view of condition (i) and liminf, , ,a, (1 — a,) > 0, we see that
gUJxn = JT"xull) — 0 (as m — o0). (3.32)
It follows from the property of g that
IJxn = JT"xn|| — 0 (as n — o0). (3.33)

Since x, — p and J is uniformly continuous, it yields that Jx, — Jp. Hence from (3.33) we
have that

JT"x, — Jp (as n — o0). (3.34)

Since ! : E* — E is hemicontinuous, it follows that

T"x, — p. (3.35)
On the other hand, we have that
WIT"xall = lpll| = T x)ll = [I7PNI| < [JT"%0 = TPl — 0 (as n—00).  (3.36)
This together with (3.35) shows that
T"x, — p. (3.37)

Furthermore, by the assumption that T is uniformly L-Lipschitz continuous, we have
that

T"x, - T"x, T x, - T x,01 T X1 = X1 || + 1Xns1 = Xl + |20 = T2l

<

|

< (L + 1) || X1 — 2| + | T Xt — 2 || + 1200 = T

(3.38)
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This together with (3.18) and (3.37), yields ||T""!x, — T"x,|| — 0 (asn — o). Hence
from (3.37) we have that T"*'x,, — p, thatis, TT"x, — p.In view of (3.37) and the closeness
of T, it yields that Tp = p. This implies that p € F(T).

By the same way as given in the proof of (3.23) to (3.31), we can also prove that

nlgn u,=p, ¢, x,)—P(u,u,) —0 (asn— o). (3.39)

Since u, = Ky, from (2.19), (3.6), (3.13), and (3.39), we have that

¢ (Un, yn) = (Ko, Yn, Yn) < (1, yn) — P, un)

<P, xn) = P, un) + (L+ k) (1= Pu)én — 0 (as n— o0). 40
From (2.4) it yields that (|[u,|| - ||yn||)2 — 0. Since ||lu,|| — ||p||, we have that
lvall = llpll (as n — o). (3.41)
Hence we have that
Tyall — 7Pl (as 7 — o0). (342)
By the same way as given in the proof of (3.26), we can also prove that
Tim y, = p. (3.43)
From (3.39) and (3.43) we have that
|ttn = yu]| — 0 (as n — o0). (3.44)
Since J is uniformly continuous on any bounded subset of E, we have that
|Jtn = Jyn|| — 0 (as n — oo). (3.45)
Forany u € F(T) N F(5) (N €, it follows from (3.6), (3.13), and (3.39) that
Pn(1 = Bn) 81T 2w = S"zull) < Pp(ut, xn) = P, un) + (1 + kn) (1 = Pn)én — 0. (3.46)
In view of condition (ii) and liminf, ., .3, (1 - ) > 0, we see that
gJxn = JS"znll) — 0 (as n — o). (3.47)

It follows from the property of g that

|Jxn = JS"zu|| — 0 (as n — c0). (3.48)
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Since x, — p and J is uniformly continuous, it yields, Jx, — Jp. Hence from (3.48) we have
that

JS"zy — Jp (as n — o). (3.49)

Since J7! : E* — E is hemicontinuous, it follows that

Sz, — p. (3.50)
On the other hand, we have that
15" zull =PIl = T (S"2za)ll = |TPI] < [17S"2n = Jpl| — 0 (asn— o). (351)
This together with (3.50) shows that
S"z, — p. (3.52)

Furthermore, by the assumption that S is uniformly L-Lipschitz continuous, we have
that

Sz, — Sz, Sz, — 8§z, 4 + |zns1 — znll + |20 — ™zl

<

n+1
+ ||S Zn+l — Zn+l

< L+ Dlizne = zall + [|8™ 201 = 2| + 120 = S"2all

(3.53)

This together with (3.26) and (3.52), yields that ||S""'z, — S"z,|| — 0 (asn — o0).
Hence from (3.52) we have that S"*'z, — p, thatis, SS"z, — p. In view of (3.52) and the
closeness of T, it yields that Sp = p. This implies that p € F(S).

Next we prove that p € Q. From (3.45) and the assumption that r, > a, Vn > 0, we
have that

lim ”]”r;]y” - 0. (3.54)
Since u,, = K, y,, we have that
H(un,y) + rl(y — U, JUn — Jyn) 20, VYyeC. (3.55)

Replacing n by ny in (3.55), from condition (A;), we have that

1
_<]/ - unk’]unk - ]ynk> 2 _H(u"k/ ]/) 2 H(y/ unk)’ Vy eC. (3'56)

Ty
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By the assumption that y — H(x,y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting ny — oo in (3.55), from (3.54) and condition (A4), we have
that H(y,p) <0,Vy € C.

Fort € (0,1] and y € C, letting y; = ty + (1 — t)p, there are y; € C and H (y;,p) < 0. By
conditions (A1) and (A4), we have that

0=H(y,ye) <tH(yr,y) + (1 -HH(ye,p) <tH(y1,y). (3.57)

Dividing both sides of the above equation by ¢, we have that H(y;, y) > 0, Yy € C. Letting
t | 0, from condition (A3), we have that H(p,y) > 0, Vy € C, thatis, ©(p,y) + (Ap,y —p) +
¢(y) —¢(p) >0,Vy € C. Therefore p € Q,and sop € F(T) N F(S) N Q.

(V) Finally, we prove that x,, — ITr()nF(s)neXo0-

Letw = HF(T)QF(S)QQXO. From w € F(T) ﬂ F(S) ﬂ QcC,NnQ,, and x,.1 = chanxo,
we have that

P (xn4+1,x0) < Pp(w, x0), VYn2>0. (3.58)

Since the norm is weakly lower semicontinuous, this implies that

$(p, x0)

IpI =26, Jx0) + Il < fim_ inf{llx I - 20, J30) + ol
(3.59)

IN

lim inf ¢(xp,, x0) < lim sup ¢(xn,, x0) < P(w, x0).
Nk — 0 g — o0

It follows from the definition of Ity F(s)naXo and (3.59) that we have p = w. Therefore,
x, — Ilpr)nF(s)naxo- This completes the proof of Theorem 3.1. O

Remark 3.2. Theorem 3.1 improves and extends the corresponding results in [7-9].

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property(note that each uniformly convex Banach space
must have the Kadec-Klee property).

(b) For the mappings, we extend the mappings from nonexpansive mappings,
ppng pping P pping
relatively nonexpansive mappings, or weak relatively nonexpansive mappings to a
pair of quasi-¢-asymptotically nonexpansive mappings.

(c) For the equilibrium problem, we extend the generalized equilibrium problem to the
generalized mixed equilibrium problem.

The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and
monotone mapping and © : C x C — R a bifunction satisfying conditions (A1)—(A4). Let S, T :
C — C be two closed and uniformly quasi-¢-asymptotically nonexpansive mappings with a sequence
{kn} C [1,00) and k, — 1. Suppose that S and T are uniformly L-Lipschitz continuous and that
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G = F(T) N F(S) N GEP is a nonempty and bounded subset in C. Let {x,} be the sequence generated
by

JC()GC, COZC, QO:C/
zn = J N @) xn + (1 - ) JT"x,),

Yn = ]_1 (,Bn]xn + (1 - ﬁn)]snzn)/

u, € C such that, Yy eC,
(3.60)

O(un, y) + (Atty, y — up) + %(y = Up, Jun — Jyn) 20,
C,= {‘(J €C,: (,b(U,Zn) < d)(v/ xn) + gn/ (,b(vzun) < (j)(v,xn) + (1 + kn) (1 _ﬂﬂ)én}/
Qn=1{z€Qn1:(xy—2z Jxo—Jxn) 20},

Xp1 = Ic,n0,%0, Y120,

where | : E — E* is the normalized duality mapping, {a,} and {p,} are sequences in [0,1], and
{rn} C [a, o) for some a > 0, &, = sup,.;(kp — 1)p(u, x,). If {a,} and {p,,} satisfy conditions
(1)-(ii) in Theorem 3.1, then {x,} converges strongly to I1rs)nr(r)ncerXo, where GEP is the set for the
solutions of generalized equilibrium problem (1.3).

Proof. Putting ¢¢ = 0 in Theorem 3.1, the conclusion of Theorem 3.3 can be obtained from
Theorem 3.1. O

Theorem 3.4. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let ¢ : C — R be a lower semicontinuous
and convex function and © : C x C — R a bifunction satisfying conditions (A1)—(A4). Let S, T :
C — C be two closed and uniformly quasi-$-asymptotically nonexpansive mappings with a sequence
{kn} C[1,00) and k, — 1. Suppose that S and T are uniformly L-Lipschitz continuous and that G =
F(T) N F(S) NYMEP is a nonempty and bounded subset in C. Let {x,} be the sequence generated by
x0€eC, Co=C, Qy=¢C,
zn = J NanJxy + (1 - a,) JT"x,),
Yn = ]_1 (ﬁn]xn + (1 - ﬂn)]snzn)/
u, € C such that, Yy e€C,

1
O (1, y) + ¢ (y) = ¢ un) + —{y = ttn, Jttn = Jyn) 20,

Ch={v€Cua: (v, z) <PV, Xp) + &, PV, 1) < P(V, xn) + (L +kn) (1= B)én},
Qn = {Z S Qn—l : <xn -z, Jxo _]xn> > 0},

Xn+l = HCnﬁanO/ vn 2 O/

(3.61)

where | : E — E* is the normalized duality mapping, {a,} and {p,} are sequences in [0,1], and
{rn} C [a,00) for some a > 0, & = sup,;(kn — 1)P(u, x,). If {a,} and {p,} satisfy conditions
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(i)-(ii) in Theorem 3.1, then {x,} converges strongly to Il s)nr(r)nmErXo, Where MEP is the set of
solutions for mixed equilibrium problem (1.4).

Proof. Putting A = 0 in Theorem 3.1, the conclusion of Theorem 3.4 can be obtained from
Theorem 3.1. ]

Theorem 3.5. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and
monotone mapping and ¢ : C — R a lower semicontinuous and convex function. Let S,T : C — C
be two closed and uniformly quasi-¢-asymptotically nonexpansive mappings with a sequence
{kn} C [1,00) and k, — 1. Suppose that S and T are uniformly L-Lipschitz continuous and that
G = F(T)NF(S) N\ VI(C, A, ) is a nonempty and bounded subset in C. Let {x,} be the sequence
generated by

xOECI C0=C/ Q0=Cr
zn = J N Jxn + (1 — ) JT"xy,),
Yn = ]_1 (ﬂn]xn + (1 - ﬁn)]snzn)/
u, € C such that, VyeC,
1 (3.62)
<Aunry - un> + (P(y) - (P(un) + r_<y - unr]un - ]yn> > 0/
Cn=1{v€Cu1:9(v,2n) <PV, Xn) +&n, PV, un) < P(v, ) + (1 +kn) (1 = Pr)én},
Qn=1{z€Qn1:(xn—2zJx0— Jxn) 20},

Xn+1 = c,ng, %0, YR 20,

where | : E — E* is the normalized duality mapping, {a,} and {f,} are sequences in [0,1], and
{rn} C [a,00) for some a > 0, &, = sup,;(kn = 1)P(u, x,). If {a,} and {p,} satisfy conditions
(i)-(ii) in Theorem 3.1, then {x,} converges strongly to ITr(s)nr(r)nvi(C,a,4) X0, Where VI(C, A, ) is
the set of solutions for the mixed variational inequality (1.5).

Proof. Putting © = 0 in Theorem 3.1, the conclusion of Theorem 3.5 can be obtained from
Theorem 3.1. O

Theorem 3.6. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let © : C x C — R be a bifunction satisfying
conditions (A1)—(A4). Let S,T : C — C be two closed and uniformly quasi-¢-asymptotically
nonexpansive mappings with a sequence {k,} C [1,00) and k, — 1. Suppose that S and T are
uniformly L -Lipschitz continuous and that G = F(T) ( F(S) ( EP(©) is a nonempty and bounded
subset in C. Let {x,} be the sequence generated by

xOEC, C():C, QO:C/
zn = ] N anJxn + (1 - ) JT"xy,),

Yn =T (BT xn+ (1= Bn)JS"2n),
u, € C such that, Yy e€C,
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1
O(un, y) + r—(y — Un, Jun = Jyn) 20,

Cn = {U S Cn—l : 4)(7]/ Zn) < (,b(v/xn) + gn/ 4)(7]/ un) < (;b(v,xn) + (1 + kn)(l - ,ﬁn)gn}/
Qn=1{z€Qn1:(xy—2z Jxo—Jx,) 20},
Xns1 = Ic,n0, %0, Vn 20,

(3.63)

where | : E — E* is the normalized duality mapping, {a,} and {,} are sequences in [0,1], and
{rn} C [a, ) for some a > 0, &, = sup,;(kn — 1)P(u, xy). If {an} and {p,} satisfy conditions
(i)-(ii) in Theorem 3.1, then {x,} converges strongly to Il s)nr(r)nEP(©) X0, Where EP () is the set of
solutions for the equilibrium problem (1.6).

Proof. Putting ¢ = 0 and A = 0 in Theorem 3.1, the conclusion of Theorem 3.6 can be obtained
from Theorem 3.1. O

Theorem 3.7. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and monotone
mapping and S, T : C — C two closed and uniformly quasi-¢-asymptotically nonexpansive
mappings with a sequence {k,} C [1,00) and k, — 1. Suppose that S and T are uniformly L-
Lipschitz continuous and that G = F(T) ( F(S) N VI(C, A) is a nonempty and bounded subset in C.
Let {x,} be the sequence generated by

XOEC, C():C, QOZCI
zZn = ] (@n 20 + (1= ) JT"x),

Yu =T (Buxn+ (1= Bu)JS"2),
u, € C such that, Vye€C,

1
(Aup, y —up) + r—(y — U, Jttn = Jyn) 20,

n

Cn = {’U S Cn—l : 4)(0/ Zn) < (,b(v/xn) + én/ 4)(7]/ un) < (;b(v,xn) + (1 + kn)(l - ,ﬁn)gn}/
Qn=1{z€Qn1:{(xn—2z Jxo-Jxn) 20},
Xn1 = Ic,ng, %0, Y20,

(3.64)

where | : E — E* is the normalized duality mapping, {a,} and {f,} are sequences in [0,1], and
{rn} C [a, ) for some a > 0, &, = sup,.;(kn — 1)P(u, x,). If {a,} and {p,} satisfy conditions
(i)-(ii) in Theorem 3.1, then {x,} converges strongly to Ilr(s)nr(mynvi(c,a)Xo, where VI(C, A) is the
set of solutions for the variational inequality (1.7)

Proof. Putting ¢¢ = 0 and © = 0 in Theorem 3.1, the conclusion of Theorem 3.7 can be obtained
from Theorem 3.1. O

Theorem 3.8. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and monotone
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mapping, ¢ : C — R a lower semicontinuous and convex function, and © : C x C — R a bifunction
satisfying conditions (A1)—(A4). Let S : C — C be a closed and quasi-¢-asymptotically nonexpansive
mappings with a sequence {k,} C [1,00) and k, — 1. Suppose that S is uniformly L-Lipschitz
continuous and that F(S)(\Q is a nonempty and bounded subset in C. Let {x,} be the sequence
generated by

x0€C, Co=C, Qy=¢C,

Yn=J " (BuJxn+ (1= Bu)JS"xu),
u, € C such that, VyeC,

1
O(un, y) + (Attn, y — un) + ¢(y) — ¢ (un) + r—(y — U, Jttn = Jyn) >0, (3.65)

Cn= {U € Cp1: p(v,up) < P(v,x,) + én}/
Qn = {Z S Qn—l : <xn -z, Jxo _]xn> 20},

Xn+1 = c,n0, %0, VY120,

where | : E — E* is the normalized duality mapping, {a,} and {p,} are sequences in [0,1], and
{r.} C [a, o) for some a > 0, &, = supuep(smg(kn - 1)¢(u, x). If {Pn} satisfy condition (ii) in
Theorem 3.1, then {x,} converges strongly to I1r(synaXo.

Proof. Taking T = I in Theorem 3.1, we have that z, = x,, Vn > 0. Hence, the conclusion of
Theorem 3.8 is obtained. O

Theorem 3.9. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let A : C — E* be a continuous and monotone
mapping, ¢ : C — R a lower semicontinuous and convex function, and © : C x C — R a bifunction
satisfying conditions (A1)—(A4). Suppose that Q is a nonempty subset in C. Let {x,} be the sequence
generated by

X()EC, C():C, QQZC,
u, € C such that, Vy e€C,

1
O(un, y) + (Attn,y = ttn) + ¢ (y) = ¢ (un) + =y = ttn, Jutn = J2tu) 20,
n (3.66)

Crn={veCua:9(v,u;) <P(v,x,)},
Qu=1{z € Qn1:{(xn—2Jx0— Jxn) 20},

Xns+1 = c,n0, %0, Vn 20,

where {r,} C [a, o) for some a > 0. Then {x,} converges strongly to Ilgxy.

Proof. Taking T = S = I in Theorem 3.1, the conclusion is obtained. O



International Journal of Mathematics and Mathematical Sciences 21

Theorem 3.10. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee
property and C a nonempty closed convex subset of E. Let S,T : C — C be two closed and uniformly
quasi-¢-asymptotically nonexpansive mappings with a sequence {k,} C [1,00) and k,, — 1. Suppose
that S and T are uniformly L-Lipschitz continuous and that F(T) () F(S) is a nonempty and bounded
subset in C. Let {x,} be the sequence generated by

XQEC, C():C, Q(]:C,
Zn = ]*1(an]xn + (1 —a,)JT"xy),

Yn =T (BaJn+ (1= ) ]S"20),
un = Icyn, (3.67)
Cn={v€Cp1:P(v,22) <P, Xn) +&n, $(V,un) <P, x0) + (1 +kn) (1= Pu)én},
Qn=1{z€Qn1:(xn—2Jxo—Jxn) 20},

Xni1 = Ic,n0,%0, Vn2>0,

where | : E — E* is the normalized duality mapping, {a,} and {f,} are sequences in [0,1], and
én = supueF(S)mF(T)(kn -Dp(u, x,). If {a,} and {B,} satisfy conditions (i)-(ii) in Theorem 3.1, then
{xn} converges strongly to ITg(s)nr(r)Xo.

Proof. Taking A =0© =0and r, =1, Vn > 0 in Theorem 3.1, the conclusion of Theorem 3.10 is
obtained. O
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