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One-parameter families of Newton’s iterative method for the solution of nonlinear equations and
its extension to unconstrained optimization problems are presented in the paper. These methods
are derived by implementing approximations through a straight line and through a parabolic
curve in the vicinity of the root. The presented variants are found to yield better performance
than Newton’s method, in addition that they overcome its limitations.

1. Introduction

Newton’s method is one of the most fundamental tools in computational mathematics,
operations research, optimization, and control theory. It has many applications in man-
agement science, industrial and financial research, chaos and fractals, dynamical systems,
variational inequalities and equilibrium-type problems, stability analysis, data mining, and
even to random operator equations. Its role in optimization theory cannot be overestimated
as the method is the basis for the most effective procedures in linear and nonlinear
programming. For a more detailed survey, one can refer to [1] and the references cited
therein.
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Let f(x) be a sufficiently continuous differentiable function of a single variable x. One
of themost basic problems in numerical analysis is to find the solution of frequently occurring
nonlinear equation of the form

f(x) = 0. (1.1)

Let

y = f(x), (1.2)

represent the graph of the function f(x).
A large number of iterative methods have been developed for finding out the solution

of single variable nonlinear equations as well for the solution of a system of nonlinear
equations. One important reason for these methods is that none of them works for all types
of problems. For a more detailed survey of these most important methods, many excellent
textbooks are available in the literature [2–4].

Newton’s method is probably the simplest, most flexible, best known, and most used
numerical method. However, as it is well known, a major difficulty in the application of
Newton’s method is the selection of initial guess which must be chosen sufficiently close to
the true solution in order to guarantee the convergence. Finding a criterion for choosing initial
guess is quite cumbersome and the method may fail miserably if at any stage of computation,
the derivative of the function f(x) is either zero or sufficiently small. Due to this reason, it
exhibits poor convergence and falls in stability problems.

Also for solving nonlinear, univariate, and unconstrained optimization problems,
Newton’s method [1] is an important and basic method which converges quadratically. The
idea behind Newton’s method is to approximate the objective function locally by a quadratic
function which at x = xn agrees with the function f(x) up to second derivatives. Again,
the condition f ′′(x)/= 0 in a neighborhood of the root is required for the success of Newton’s
method.

The purpose of this paper is to eliminate the defects of Newton’s method by the simple
modification of iteration processes. Numerical results indicate that the proposed iterative
formulae are effective and comparable to the well-known Newton’s method. Furthermore,
the presented techniques have guaranteed convergence unlike Newton’s method and are as
simple as this known technique.

2. Proposed Methods for Single-Variable Nonlinear Equations

In this section, we shall derive two families by applying approximation via a straight line and
via a parabolic curve.

(a) Approximation by a Straight Line.

Consider the equation of a straight line having slope equal to pf(x0) and passing through the
point (x0, 0), in the form

y = pf(x0)(x − x0), (2.1)
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where x0 is an initial guess to an exact root r of (1.1) and p ∈ R, | p | < ∞. Let

x1 = x0 + h, |h| < 1, (2.2)

be the better approximation to the root. Assume that the straight line (2.1) intersects the
graph of the function (1.2) at a point (x1, f(x0 +h)). Now the straight line (2.1)while passing
through the point (x1, f(x0 + h)) takes the form

f(x0 + h) = hpf(x0). (2.3)

Expanding the left-hand side by means of Taylor’s expansion about the point x = x0 and
simplifying (retaining the terms up to O(h)), we get an iteration formula given by

x1 = x0 −
f(x0)

f ′(x0) − pf(x0)
. (2.4)

The general formula for successive approximations is given by

xn+1 = xn −
f(xn)

f ′(xn) − pf(xn)
. (2.5)

This is the one-parameter family of Newton’s method. This formula was independently
derived earlier by Mamta et al. [5] and Kanwar and Tomar [6] by using different approaches.
In order to obtain the quadratic convergence of the method, the sign of entity p should be
chosen so that the denominator is the largest in magnitude. This formula is well defined,
even if f ′(x) is zero unlike Newton’s method.

(b) Approximation by a Parabola

Consider a parabola in the form

y = p2f(x0)(x − x0)2. (2.6)

Adopting the same procedure as done in the previous case (a), one can obtain the following
iterative formula given by

xn+1 = xn −
2f(xn)

f ′(xn) ±
√
f ′2(xn) + 4p2f2(xn)

. (2.7)

In (2.7), the sign in the denominator should be chosen so that the denominator is the
largest in magnitude. This is a parabolic version of Newton’s method [6] and does not fail
if f ′(xn) = 0. Note that for p = 0, the classical Newton’s formula can be recovered from the
formulae (2.5) and (2.7).
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(c) Exponential Iteration Formulae.

Exploiting the main idea of Mamta et al. [5], Chen and Li [7] derived new classes of
quadratically convergent exponential iterative methods. On the similar lines, we can also
derive exponential iterative formulae for solving nonlinear equations.

If letting xn+1 = xn exp(−h/xn) be the better approximation to the exact root r, then
from (2.5) and (2.7), we obtain the following exponential iteration formulae:

xn+1 = xn exp

(
− f(xn)
xn

(
f ′(xn) − pf(xn)

)
)
,

xn+1 = xn exp

⎛
⎜⎝− 2f(xn)

xn

(
f ′(xn) ±

√
f ′2(xn) + 4p2f2(xn)

)

⎞
⎟⎠,

(2.8)

respectively. Letting p = 0 in these formulae, we obtain another exponential iterative formula
given by

xn+1 = xn exp
(
− f(xn)
xnf ′(xn)

)
. (2.9)

Note that by taking the first-order Taylor’s expansion of exp(−f(xn )/xnf
′(xn)) in (2.9),

Newton’s formula can be achieved. The idea can further be generalized (similar to Mir and
Rafiq [8, 9]) to the case of multiple zeros of nonlinear equations.

3. Extension to Unconstrained Optimization Problems

In this section, we shall extend the formulae (2.5) and (2.7) to solve nonlinear, univariate and
unconstrained optimization problems.

Consider the nonlinear optimization problem: minimize {f(x), x ∈ R, f : R → R},
where the function f(x) is nonlinear twice-differentiable function.

(a) Extension of Formula (2.5).

Assume that f(x) is sufficiently smooth function and has an extremum (maxima or minima)
at a point x = α. From (2.3), consider the auxiliary function with parameter p as

q(x) = f(x) − phf(xn). (3.1)

It is possible to construct a quadratic function q(x) which agrees with f(x) up to second
derivatives in the neighborhood of a point x = xn, that is,

q(x) = f(xn) + f ′(xn)(x − xn) +
1
2
f ′′(xn)(x − xn)2 − p(x − xn)f(xn). (3.2)
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We may calculate an estimate of f(x) at x = xn+1 by finding the point where the derivative of
q(x) vanishes [1, 10], that is, q′(xn+1) = 0, we have

f ′(xn) + f ′′(xn)(xn+1 − xn) − pf ′(xn)(xn+1 − xn) = 0. (3.3)

This gives the following iterative formula given by

xn+1 = xn −
f ′(xn)

f ′′(xn) − pf ′(xn)
. (3.4)

This is a one-parameter family of Newton’s method for unconstrained optimization problem
and do not fail even if f ′′(xn) = 0 unlike Newton’s method.

(b) Extension of Formula (2.7).

Similarly, it is possible to construct a quadratic function q(x) from (2.6) which agrees with
f(x) up to second derivatives in the neighborhood of a point x = xn, that is,

q(x) = f(xn) + (x − xn) f ′(xn) +
(x − xn)2

2
f ′′(xn) − p2(x − xn)2f(xn). (3.5)

Taking into account that q′(xn+1) = 0, we get

xn+1 = xn −
2f ′(xn)

f ′′(xn) ±
√
f ′′2(xn) + 4p2f ′2(xn)

. (3.6)

This is themodification over the formula (2.7) for unconstrained optimization problemwhich
again does not fail even if f ′′(xn) = 0. In (3.4) and (3.6), the sign in the denominator should
be chosen so that the denominator is largest in magnitude. If we let p = 0 in (3.4) and (3.6),
we obtain Newton’s iteration formula for unconstrained optimization problem [1].

Adopting the same procedure as in exponential iteration formulae, we can also derive
exponential quadratically convergent iterative formulae for unconstrained optimization.
Recently, Kahya [10] also derived similar formulae, namely, (3.4) and (3.6) by using the
different approach based on the ideas of Mamta et al. [5].

4. Convergence Analysis

Here, we shall present the mathematical proof for the order of convergence of iterative
formulae (3.4) and (3.6), respectively.

Theorem 4.1. Let f : I → R be a sufficiently differentiable function defined on I, and let x =
α ∈ I be an optimum point of f(x). Assume that the initial guess x = xn is sufficiently close to α
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and f ′′(xn) − pf ′(xn)/= 0 in I. Then the iteration scheme defined by formula (3.4) is quadratically
convergent and satisfies the following error equation:

en+1 =
(
3A3 − p

)
e2n +O

(
e3n

)
, (4.1)

where en = xn − α and

Ak =
(

1
k!

)
fk(α)
f ′′(α)

, k = 3, 4, . . . . (4.2)

Proof. Since x = α is an optimum point of f(x), that is, f ′(α) = 0 and f ′′(α)/= 0. Expanding
f ′(xn) and f ′′(xn) about x = α by Taylor’s expansion, we obtain

f
′(xn) = f ′′(α)

⌊
en + 3A3e

2
n +O

(
e3n

)⌋
, (4.3)

and

f ′′(xn) = f ′′(α)
⌊
1 + 6A3en +O

(
en

2
)⌋

. (4.4)

Furthermore,

f ′(xn)
f ′′(xn) − pf ′(xn)

= en −
(
3A3 − p

)
e2n +O

(
e3n

)
. (4.5)

Using (4.5) in (3.4), we get

en+1 =
(
3A3 − p

)
e2n +O

(
e3n

)
. (4.6)

This proves the quadratic convergence of the formula (3.4).

Theorem 4.2. Let f : I → R be a sufficiently differentiable function defined on I, and let x = α ∈ I
be an optimum point of f(x). Assume that initial guess x = xn is sufficiently close to α in I. Then the
iteration scheme defined by formula (3.6) is quadratically convergent and satisfies the following error
equation:

en+1 = 3A3e
2
n +O

(
e3n

)
. (4.7)

Proof. Using (4.3) and (4.4), we have

2f ′(xn)

f ′′(xn) ±
√(

f ′′2(xn) + 4p2f ′2(xn)
) = en − 3A3en

2 +O
(
e3n

)
. (4.8)
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Table 1: Test problem (nonlinear equations).

No. Examples [a, b] Initial guesses Root (r)

(1) xe−x − 0.1 = 0 [0, 2] 0.8 0.111832559108734
(2) sinx = 0 1.0

[−1, 1.6] 1.51 0.000000000000000
1.52

(3) e−x − sinx = 0 [5, 7] 5.0 6.285049438476562
(4) ex

2+7x−30 − 1 = 0 [2, 3.5] 2.0 3.000000000000000
2.8

(5) (x − 1)6 − 1 = 0 [1, 3] 1.0
1.5 2.000000000000000
2.5

Table 2: Comparison table for nonlinear equations.

Examples NM Method (2.5) Method (2.7)

(1) 9 5 5
Fails 5 5

(2) Converges to undesired root (−5 π) 7 5
Converges to undesired root (−6 π) 7 5

(3) Converges to undesired root (9.424696922302246) 6 4
3 5 3

(4) Divergent 2 2
11 11 11

Fails 1 1
(5) 14 7 7

6 7 6

Using (4.8) in (3.6), we get

en+1 = 3A3e
2
n +O

(
e3n

)
. (4.9)

It is interesting to note that this error equation is the same as that of Newton’s method. This
completes the proof of the theorem.

5. Numerical Examples

Here we consider some examples to compare the number of iterations needed in the
traditional Newton’s method and its modifications, namely, (2.5), (2.7), (3.4), and (3.6)
respectively, for solving nonlinear equation (Table 1 and Table 2) as well as unconstrained
optimization problems (Table 3 and Table 4). Here, for simplicity, the formulae are tested for
|p| = 1. Computations have been performed using C++ in double-precision arithmetic.

In the following problems, we are to find the root of equations in the given interval
[a, b].
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Table 3: Unconstrained optimization problems.

No. Examples Initial guesses Optimum point (β)

(1) x3 − 6x2 + 9x − 8 2 3
3.5

(2) 3774.522
x

+ 2.27x − 181.529
32 40.777259826660156
45

(3) (x − 2)2 + cos(x)
1 2.3542480166260
3

(4) ex − 3x2 −1 0.204481452703476
1

(5) 10.2
x

+ 6.2x3, x > 0
0.5 0.860541462898254
2.0

Table 4: Comparison table for unconstrained optimization problems.

Examples NM Method (3.4) Method (3.6) Optimum value

(1) Fails 1 1 −8
4 5 4

(2) 4 15 13 3.599765349958602
4 10 8

(3) 4 6 4 −0.580237420585759
3 5 4

(4) 4 6 5 1.1014507066670358
4 5 4

(5) 5 5 5 15.804002928482971
4 6 5

6. Discussion and Conclusions

This study presents several iterative formulae of second order for solving scalar nonlinear
equations and unconstrained optimization problems. The numerical examples considered in
Table 1, Table 2, Table 3, and Table 4 above show that in many cases our methods are efficient
alternative to Newton’s method which may converge slowly or even fail. These are the
simple extensions of Newton’s formula and have well-known geometric derivations. These
methods remove the severe conditions f ′(x)/= 0 or f ′′(x)/= 0 of Newton’s method for the case
of nonlinear equations or for the case of nonlinear unconstrained optimization problems,
respectively. The behaviors of Newton’s method and the proposed modifications can be
compared by their correction factors. For example, Newton’s correction factor f(xn )/f ′(xn)
is now modified by f(xn)/(f ′(xn) − pf(xn)), where the parameter p is chosen such that the
corresponding function values f ′(xn) and pf(xn) have opposite signs. However, for p = 0
and if derivatives of the function f(xn) are singular or almost singular, Newton’s method will
either fail or diverge. Therefore, these modifications have two remarkable advantages over
Newton’s method, namely, (i) if p /= 0, the modified denominator of proposedmodifications is
well defined and never zero, provided xn is not accepted as an approximation to the required
root or optima, respectively, and hence, they are well defined even if f ′(x) = 0 or f ′′(xn) = 0
happens; (ii) the absolute value of the modified denominator of modified techniques is
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always greater than the denominator of Newton’s method, that is, |f ′(xn)|, provided xn is not
accepted as an approximation to the required root or optima, respectively. This means that the
proposed methods are numerically more stable unlike Newton’s method. Finally numerical
experiments demonstrate that the parabolic methods outperform Newton’s method and the
one-parameter family of Newton’s method.
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