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Let Q 5 0 be an-open bounded domain in RN (N > 3) and p* = (pN/(N - p)). We consider the
following quasilinear elliptic system of two equations in Wé P(Q) x W& P(Q): —Apu = Af (x)[u]2u+
(a/ (a + ﬁ))h(x)|u|“‘2u|v|ﬂ,—ApU = pug(x)[v]77%v + (B/ (a + B))h(x)|u|*|v/f~?v, where A, p > 0, A,
denotes the p-Laplacian operator, 1 < g < p < N,a,p > 1l satisfyp < a+p < p*,and f, g, h
are continuous functions on Q which are somewhere positive but which may change sign on Q.
We establish the existence and multiplicity results of positive solutions to (the above mentioned
quasilinear elliptic system equations) by variational methods.

1. Introduction and Main Results

Let Q 3 0 be a smooth-bounded domain in RN with N > 3. In this paper, we study the
existence and multiplicity of positive solutions for the following quasilinear elliptic system:

[24

-Apu = Af () )T u + mh(x)|u|“_2u|v|ﬂ in Q,
—Ap0 = pg(x)[o|" 0 + aLiph(x)|u|“|v|ﬂ-zv in Q, (Safugh)

u=v=0 on 0L,
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where L, >0,1<g<p<N,Au= div(|Vul’"*Vu) is the p-Laplacian, & > 1, > 1 satisfy
p<a+p<p,p° = (pN)/(N —p) denotes the critical Sobolev exponent, and the weight
functions f, g, h are satisfying the following assumptions:

(A1) f, g€ C(Q), f* = max{f,0}#0, ¢g" = max{g,0} #0and |f], = gl = 1;
(A2) h € C(Q), h* = max{h,0}#0and |h|, = 1;

(A3) there exist ag, by, o > 0 and x¢ € Q such that B(xp,2r9) C Q, f(x) > ap and
g(x) > by for all x € B(xg,2rp), without loss of generality, we assume below that
Xp = O;

(A4) h(x) > 0forall x € Q, |h|,, = h(0) and there exists 69 > N/(p — 1) such that
h(x) = h(0) +o(|x*) as x — 0, (1.1)

System (S)f,ug,n) is posed in the framework of the Sobolev space W = Wg P(Q) x Wg P (Q) with
the standard norm

1/p
l(w,0)|| = (J‘ |Vu|pdx+f |Vv|pdx> . (1.2)
Q Q
Moreover, a pair of functions (u,v) € W is said to be a weak solution of System (S, fq.1) if

J |Vu|p_2VuV(p1dx+j |VolP2VoVg,dx
Q Q

[ F@uupdx - p [ gGolelogads (13)
Q Q

a
a+p

[ neotuduto - Lo [ nputol 2ogadx o
Q a+pla

for all (¢1,¢2) € W. Thus, the corresponding energy functional of System (S, f,,¢,n) is defined
by

) = o = 2 [ Af @M+ pglel)dx - — [ neolulloldx.  (14)

Semilinear and quasilinear scalar elliptic equations with concave-convex nonlineari-
ties are widely studied: we refer the reader to Ambrosetti et al. [1], de Figueiredo et al. [2],
Azorero and Peral [3], Azorero et al. [4], EL Hamidi [5], Hirano et al. [6], Hsu [7], and Wu
[8], and so forth. For the nonlinear elliptic systems, we refer to Adriouch and EL Hamidi
[9], Ahammou [10], Alves et al. [11], Bozhkov and Mitidieri [12], Clément et al. [13], de
Figueiredo and Felmer [14], EL Hamidi [15], Hsu and Lin [16, 17], Squassina [18], Vélin
[19], and Wu [20], and so forth.

Recently, in [8], the author has considered a semilinear scalar elliptic equation
involving concave-convex nonlinearities and sign-changing weight functions and showed
multiplicity results with respect to the parameter via the extraction of Palais-Smale sequences
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in the Nehair manifold, and for the definition of Nehair manifold we refer the reader to see
Nehari [21] or Willem [22].

More recently, in [20] the author extends the method of [8] to system (Syfgn) in the
semilinear case p = 2 with the subcritical case 2 < a + f < 2* and the sign-changing weight
functions f, g. In [16] the author also extends the method of [8] to system (Syfgn) in the
quasilinear case 1 < p < N with critical case & + f = p* and the constant weight functions
f = g =h=1.In the present paper, motivated by [16, 20] we extend and improve the papers
by Hsu [16] and Wu [20]. First, we deal with more general weight functions f, g, h which
may be changing sign, and second, we also deal with quasilinear elliptic systems involving
subcritical or critical Sobolev exponents.

Let S be the best Sobolev constant for the embedding of Wé’p(Q) in L (Q) defined

by
) Jo IVulPdx
S=  inf Pl @)’ (1.5)
uew,” (@)\{0} <fg |u|a+[5dx>
and set
_ /(a+p=p) _ -p/(p=q)
A = (u)” e (LM|Q|<a+ﬂq>/<a+ﬂ)> SPEb-0/G-D@hp) 5 o (1.6)
a+p-q a+p-p

where |Q] is the Lebesgue measure of Q. Our main results are as follows.

Theorem 1.1 (existence of one positive solution). Assume that (A1)-(A2) hold. If 1 < g <p <
N, p<a+p<p*,and A, p > 0satisfy 0 < AP/~ + P/ ®P=0) < Ay, then system (Sifugn) has at
least one positive solution in Wé’p (Q) x W;’p(Q).

Theorem 1.2 (second positive solution in the subcritical case). Assume that (Al)-(A2) hold. If

1<q<p<N, p<a+p<p* and A pu>O0satisfy 0 < \P/®~D 4 yp/ =0 < (q/p)P’ P~ DA, then
System (Sifug,n) has at least two positive solutions in Wg’p(Q) X Wé’p(Q).

Theorem 1.3 (second positive solution in the critical case). Assume that (A1)—(A4) hold. If
1<q<p<N,a+pf=p* and A, u> 0satisfy 0 < \P/ =D 4 yp/P=0) < (q/p)P/ P~D Ay, then System
(Sufugn) has at least two positive solutions in Wé’p(Q) X WS’F(Q).

This paper is organized as follows. In Section 2, we give some notations and pre-
liminaries. The proofs of Theorems 1.1 and 1.2 are in Section 3. In Section 4, we manage
to give the proof of Theorem 1.3. Throughout this paper, (Al) and (A2) will be assumed.

2. Notations and Preliminaries
In this section, we give some notations and necessary preliminary results.

Notations. We make use of the following notation.

L(Q), 1 < s < oo, denote Lebesgue spaces; the norm L* is denoted by |- |, for
1<s< o
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W = [WS’P(Q)]z, endowed with norm ||z||P = ||(u,0)|]F = |Vu|§ + |Vv|5;
The dual space of a Banach space W will be denoted by W~;

tz = t(u,v) = (tu,tv) forall z = (u,v) e W and t € R;

|z| = (Jul, |v]) forall z = (u,v) e W;

z = (u,v) is said to be nonnegative in Q if u > 0 and v > 0in &;

z = (u,v) is said to be positive in Q if u > 0 and v > 0in Q;

|| is the Lebesgue measure of Q;

B(xo,7) = {x € RN | |x — x| < r} is the ball in RY;

O(g') denotes |O(e!)|/ef < Case — 0fort >0;

0,(1) denotes 0,,(1) — 0asn — oo;

C, C; will denote various positive constants, the exact values of which are not
important;

p*=pN/(N -p)(1 <p < N) is the critical Sobolev exponent;
Let J, K, : W — R be the functionals defined by

J(z) = fQ h()lullol dx,
@2.1)

Kip(2) = fg(lf(x)lul" + ug(x)[ol")dx

forall z = (u,v) € W.

As the energy functional I , is not bounded below on W, it is useful to consider the
functional on the Nehari manifold

My, = {zeW\{O} | <I'W(z),z>=0}. (2.2)
Thus, z = (u,v) € N, , if and only if
(I',(2),2) = ||zlIP = Kyu(2) - J(2) = 0. (2.3)

Note that W, , contains every nonzero solution of System (S, ,¢,1). Moreover, we have
the following results

Lemma 2.1. The energy functional I, , is coercive and bounded on NV, ,.

Proof. If z = (u,v) € N, then by (2.3), the Holder inequality, and the Sobolev embedding
theorem,

a+p-
I(z) = S Py -

p(a+p)

a+p-q

e Kyu(2) (2.4)
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+p- +p- -
> a—ﬂp”Z”p - MS-q/ﬂm(uw—q)/(Mﬂ) (AP/(P=9) +#p/(p—q))(” q)/p”Z”q. (2.5)

“pa+p) q(a+p)
Thus, I, , is coercive and bounded on WV, ;. O]
Define
Dy u(z) = (1) ,(2), 2). (2.6)

Then for u € N

(@,,(2),2) = pllzll” - 4Ky (2) - (2 + )] (2)
=(p-lzllP - (a+p-q)](2)
= (a+p-q)Kiu(z) - (a+p-p)lz" (2.8)

2.7)

Similar to the method used in Tarantello [23], we split WV, , into three parts:

./UX/# = {Z € My : <(I)’)L/#(z),z> > 0},
ng,# {z € Nyy: <(D’W(z),z> = 0}, (2.9)
,/UX/M {z €Ny, <(D’)l,#(z),z> < 0}.

Then, we have the following results.

Lemma 2.2. Assume that zo is a local minimizer for 1), on N, , and zo ¢ ./Ug " Then 1 ;#(zo) =0
in WL

Proof. Our proof is almost the same as that in [24, Theorem 2.3]. O

Lemma 2.3. One has the following:
(i) ifze ,/U+,#, then K ,(z) > 0;
(ii) ifz € _/UO,#, then K, ,(z) > 0and J(z) > 0;
(iii) if z € ,/UX/#, then J(z) > 0.

Proof. The proof is immediate from (2.7) and (2.8). O
Moreover, we have the following result.
Lemma 2.4. If0 < AP/ 4 yp/ (=9 < Ay, then ,/US)LH = () where A\ is the same as in (1.6).

Proof. We argue by contradiction. Assume that there exist A, > 0 with

0 < AP/ =) 4 P/ =D < A, (2.10)
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such that A° #0. Then by (2.7) and (2.8), for u € A , on has the following:
Au y Au g

Izl = ———J(2),

ﬁ q
1 @.11)

|uw——:f—ngu>

By |fl., = Igl., = |hl, = 1, the Holder inequality, and the Sobolev embedding theorem, we
have

1/(a+p-p)
Izl > <u5(fx+ﬂ)/r1) oy ,
a+f-q

1/(p-a) (2.12)
llz|| < <ws—q/p|g|(a+ﬂ—q)/(a+ﬂ)> <)Lp/(r’—q) + HP(P“?))”’U'
“\a+p-p
This implies
_ /(a+p-p) _ -p/(p-q)
AP/ =) g o/ =) \p/ (0=0) 4 P/ (=) > <u)p e (LM|Q|(“+ﬁ—q)/(a+ﬂ)>
“\a+pf-¢q a+p-p
x Glatp)/(a+p-p)+a/(p-q) _ =N\,
(2.13)
which contradicts 0 < AP/ P~ + P/ (=9 < A;. O
By Lemma 2.4, we write N, , = ,/UXI# U ,/UX,# and define
— 1 . + 3 . - _— 3

O = el%ﬂ I u(2); Oy = zelﬂbfw Iu(2); O, = zelﬂf;# Lu(z). (2.14)

Then we get the following result.

Theorem 2.5. (i) If0 < A\P/#P=9) 4 P/ (®P=40) < Ay, then one has 6, ,, < 91,4 <0;
(i) if 0 < \P/P=D) 4 P/ P=0) < (q/p)P/ PV, then 0y, > do for some positive constant do
depending on A, u,p,q, N, S,|Q|, |f|.,,Igl,, and |h|.

Proof. (i) Letz = (u,v) € ,/UX,#. By (2.7)

P LN O 215)
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and so

IMA@==<%—%>HﬂW+<; ﬂ>]()

WG e

Therefore, from the definitions of 6, ,, G)t#’ we can deduce that 0, , < GI,” <0.
(ii) Let z € JUX#. By (2.7)

mrp Al <), 217)

Moreover, by |h|, = 1, the Holder inequality, and the Sobolev embedding theorem,

J(z) < ST®P/p| 7|, (2.18)

This implies

poq \V@bp
Izl > <— S@P/rebr) vz e 7 (2.19)
a+f-q Ap

By (2.5), one has the following:

a+pf-p g a+tP-g. / (a+p-q)/ (a+p) /(p-q) /(p-q) (P-9)/p
Iu(z) 2 IIZIIQ[—Hzll” 1 — 2 57/p|QlFa AP/ =) 4 P/ (P=q
g p(a+p) qa+p) ( )

_ /(aspp)
N (&)q PP catastptarop)
a+p-q
—q/ (a+p—
X [M S(p-a)(@+p) /pla+p- p)(ﬂ)p ey
p(a+p) a+f-q

a+p- arP=9s a/p|Q|@+P-)/ (x+p) <)Lp/(19—q) " ‘up/(p_q)>(lﬂ—q)/P '
q(a+p)
(2.20)

Thus, if 0 < AP/ (=9 1 P/ P9 < (q/p) /PP A, then

L(z)>dy Vze Ny, (2.21)

for some positive constant dy = do(A, 1, p,q9, N, S,1Q|,|fl.., 18|, |hls). This completes the
proof. O
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For each z € W with J(z) > 0, we write

1/ (a+p-p)
Fnax = <M> ' > 0. (2.22)
(a+p-9)](z)

Then the following lemma holds.

Lemma 2.6. Let A\P/#P=0 + yp/(P=9 € (0, Ay). For each z € W with J(z) > 0, one has the following:

(i) if Kyu(z) <0, then there exists a unique t~ > tmay such that t™z € ./UX,# and

L (tz) = sup I ,(tz); (2.23)
£20

(ii) if Ky u(z) > 0, then there exist unique 0 < t* < tma, <t~ such thatt*z € ,/U*ﬂ, tze N,

and
L(t'z) = Osigfm Lyu(tz); Lu(tz) = Stlzl(? I u(tz). (2.24)
Proof. The proof is almost the same as that in [25, Lemma 2.6] and is omitted here. O

For each z € W with K| ,(z) > 0, we write

_ (a+p-q)Kyu(z) Vip-a
tmax = < ([X +ﬂ _ p)”z”p > > 0. (225)

Then we have the following lemma.

Lemma 2.7. Let AP/#~9) + yp/®=9 € (0,Aq). For each z € W with K, ,(z) > 0, one has the
following:

(i) if J(z) < 0, then there exists a unique 0 < t* < tyax such that t*z € N y and

Luu(t"2) = inf L, (t2); (2.26)

(ii) if J(z) > O, then there exist unique 0 < t* < bmax <~ such that ttz € ,/Ux,#, tze ,/UX,#
and

Ly(t'z) = inf I(tz); Lu(tz)= sup Iu(tz). (2.27)

Proof. The proof is almost the same as that in [25, Lemma 2.7] and is omitted here. O
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3. Proofs of Theorems 1.1 and 1.2

First, we give the following definitions about (PS) .-sequence.

Definition 3.1. Let c € R, W be a Banach space and I € C'(W,R).

(i) {zn} is a (PS).-sequence in W for I if I(z,) = ¢ + 0,(1) and I'(z,) = 0,(1) strongly
inWlasn — .

(ii) We say that I satisfies the (PS). condition if any (PS)_-sequence {z,} in W for I has
a convergent subsequence.

Now, we use the idea of Tarantello [23] to get the following results.
Proposition 3.2. Let 1 <g<p < Nandp < a + p < p*, we have

(i) if 0 < AP/(P=@) 4 P/ ®P=0) < Ay, then there exists a (PS)g,,-sequence {z,} C Ny, in W for
I)L,‘u;

(i) if 0 < AP/ =D 4 yp/ =9 < (q/p)P/ P~V A, then there exists a (PS)g; -sequence {z,} C
Ny inW for 1,

where A is the positive constant given in (1.6).
Proof. The proof is almost the same as that in [8, Proposition 9]. O
Now, we establish the existence of a local minimum for I, , on _/UX#.

Theorem 3.3. Let Ay be the same positive constant as in (1.6). f 1< g<p <N, p<a+p<p’,

and 0 < AP/ #P=0) 4 yp/ =0 < Ay, then 1, ,, has a minimizer z}ll# in AV}, and it satisfies the following:
(i) Duu(zy,) =010 =6y, <0

(ii) z}w is a positive solution of System (Syfugh);

(iii) IM,.(Z}L/”) —0asA — 0%,y — 0"

Proof. By Proposition 3.2 (i), there exists a minimizing sequence {z,} for I,, on A, , such
that

Liyu(zn) = 01 +0u(1), I (24) =04(1) in wL (3.1)

Since I, , is coercive on N, , (see Lemma 2.1), we get that {z,} is bounded in W. Then there
exist a subsequence {z, = (u,, v,)} and Z}L# = (ui #,v}#) € W such that

1 | : Lp
Up = Uy, Un =0, weakly in W,"(£2),
1 1 .
Up — Uy, Up — 0, almost everywhere in Q, (3.2)

Uy — Uy, Uy, strongly in L°(Q) V1<s <p”.
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This implies

Kyu(zn) = Ky (Z}W> +0,(1) asn— oo. (3.3)
First, we claim that z}\ﬂ is a nontrivial solution of System (S,f,g). By (3.1) and (3.2), it is
easy to verify that z}w is a weak solution of System (S ,g,n). From z, € NV, , and (2.4), we
deduce that

_q(a+p-p) q(a+p)
K/\,/A(Zn) = m”znﬂp p +ﬂ IJ\,‘M(ZTI)‘ (3~4)
Letn — oo in (3.4), by (3.1), (3.3), and 6, , <0, we get
a+
Kiy(zh,) 2~ Z(+ 5 P 27 > 0. (3.5)

Thus, zi/ﬂ € N, is a nontrivial solution of System (S, f,,,1). Now we prove that z, — z}w

strongly in W and I’\'#(Z}.,y) =0,,. By (34),if z € /N, then

a+p-p
(/5)

+f-q

———<=l" - q(a+ﬁ)

IM(Z) = K/\,#(Z)‘ (3.6)

In order to prove that I M(z}\ﬂ) = 0,4, it suffices to recall that z}L# € Ny, by (3.6), and apply
Fatou’s lemma to get

O < I)LH<ZM> ;(Zﬁjﬁi)ﬂ“z}‘”“ Z(:[iﬂ; <zl>

.. fa+p-p a+p-q
< llﬂglf<w||zn“p - mKA,y(Zn)>

< hﬂgfh'ﬂ(z") = 91,#.

(3.7)

This implies that Iw(z}ﬂ) = 0, and lim,, _, oo || z,||” = ||z}lﬂ||p. LetZ, = z,— z}L , then by Brézis
and Lieb lemma [26] implies

IEall” = Dzl - |23, (3.8)

Therefore, z, — z! L strongly in W. Moreover, we have z} u € ,/U . Thus 0, , = 92#. On the
contrary, if z € N 7 , then by (2.17), (3.5), we have that ](z ”) > 0 and KM,(Z}L#) > 0. Thus,
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from Lemma 2.6 (ii), there exist unique ¢ and t; such that t*z € ./UI,# and t] Z}W € ,/ULM In
particular, we have t] <t] = 1. Since

j Lu(2,) =0, j; Lu(£2,) >0, (3.9)

there exists t] < t< t; such that I ,(t]z, ) <I #(tz ) By Lemma 2.6,

I)L,M <t{z}wﬂ> < I)L,y (EZ}/ﬂ) < Lw, <tIZ}L,‘u> = I)L,[/l <Z}t,ﬂ> = 9,\,#, (3.10)

which is a contradiction. Since I )""(Z}w) =1 M(|Z}/ﬂ |) and |z}w| € A}, by Lemma 2.2 we may
assume that z}w is a nontrivial nonnegative solution of System (S, ,¢,1)-
In particular u}w #0,0; A Indeed, without loss of generality, we may assume that

U}L# = 0. Then as u} . 1s anontrivial nonnegative solution of

~Apu=Af()|u"u  in Q,

(3.11)
u=0 on 0Q.
By the standard regularity theory, we have ui/ﬂ > 0in Q and
p
21,0 0" = K (#,,0) > 0. (3.12)

Moreover, by conditions (A1), (A2) and u}LH > 0in Q, we may choose w € Wg’p(Q) \ {0} such
that

100, 0)|IP = Ky,u(0,w) >0,

J (1, w) > 0. (3.13)

Now

Kiu(u},w) = Kiyi(14],0) + Ki(0,0) > 0, (3.14)

and so by Lemma 2.7 there is unique 0 < t* < Fmax such that (£ u! Ap ,Hrw) € ./U Moreover,

_ (a+ﬂ—q)KW<u}L,,w> _fa+P-q
ol ) (50

max —
Iy (t*uiﬂ, t+w> = inf I,\ﬂ<tuw, tw)
0<t<tmax

(3.15)
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This implies
9;# <L (Fu}l,,u t+w> <Ly <u}w,w> <Dy <u}w,0> = GI,# (3.16)

which is a contradiction.

By a standard bootstrap argument, it is proved that a weak solution for System
(Sifpugn) is in the space C%(Q) x C¥(Q), and it is really a classical solution. Finally, by
the Harnack inequality [27] we deduce that Z}w is a positive solution of System (Syfugn)-
Moreover, by Theorem 2.5 (i) and (2.5) we have

.o 1\ o X P o @b /@B (ol o-a) o -\ TP ||
0>6;,=0,(z,) > ERY) S/P|Q) (x o) EHE
(3.17)

This implies that I ,(z; ,) — 0asA — 0, u — 0. O

Next, we establish the existence of a local minimum for I Lpon ,/UX# in the subcritical
case p < a+p < p*. This implies that there exists the second positive solution in the subcritical
casep <a+f <p*.

Theorem 3.4. Let Ay be the same positive constant as in (1.6). If 1 <g<p <N, p<a+p <p*,
and 0 < AP/ =0 4 /=0 < (q/p)P/ PV A, then I, ,, has a minimizer zjzw in Ay, and it satisfies
the following:

(i) Iu(22,) = 6,

(ii) zi,# is a positive solution of System (Syfugh);
Proof. Let {z,} be a minimizing sequence for I, on N Then by I,, coercive on N, ,

and the compact imbedding theorem, there exist a subsequence {z, = (u,,v,)} and ziﬂ =
(”i,,u viﬂ) € W such that

. 1,
U, — ui v, — vi/ﬂ weakly in W, p(Q),

o (3.18)
Uy, — ”i,w Uy — vi# strongly in L1(Q), L***(Q).
This implies
Kiu(za) = Kiu(22,) +0u(),  J(za) =J(Z2,) +ou(D). (319)

By (2.17) and (2.19) there exists a positive number C such that

J(zn) > C. (3.20)
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This implies
J(,)=C. (3.21)

Now, we prove that z, — zj strongly in W. Suppose otherwise, then ||z} || <
lim inf, _ ||z,|l. By Lemma 2.6, there exists a unique #, such that t;zirﬂ € ,/UI,H. Since
Z, € -/UX,/IW(Z") > 1, ,(tz,) for all t > 0, we have

01, < Lu(£2,) < lim [, (£2,) < lim 1,(z,) = 67, (3.22)

and this is a contradiction. Hence

z, — z}, strongly in W. (3.23)
This implies
Lu(2,) = lim L(z,) = 65, (3.24)

Since I W(ziﬂ) =1 )L,#(|Zi/ﬂ|) and |Z§,#| € N} . by Lemma 2.2 and (3.21) we may assume zi/ﬂ

a nontrivial nonnegative solution of System (S, f,e,1). Finally, by using the same arguments
as in the proof of Theorem 3.3, for all 0 < \P/ P9 + /P9 < (q/p)? /=D A, we have that zi”
is a positive solution of System (Syfuqh)- O

is

Now, we complete the proofs of Theorems 1.1 and 1.2: Theorem 1.1 follows from
Theorem 3.3. By Theorems 3.3 and 3.4, we obtain that forall1 < g<p < N,p<a+p <p*,
A p>0,and 0 < \W/@D 4 /-0 < (q/p)P/PDA,. System (Sifugn) has two positive
solutions zi/ﬂ, zi’# with z}w € ,/UI,#, zi/ﬂ € ,/UX,#. Since ,/UL‘ N ,/Ux,ﬂ = {), this implies that
1

2, and zi,ﬂ are distinct. This completes the proofs of Theorems 1.1 and 1.2.

4. Proof of Theorem 1.3

For the existence of a second positive solution of System (S ,,¢) in the critical case a+p = p*,
we will however need here a stronger restriction on h(x), namely, h(x) > 0in Q but f(x) and
g(x) may be also allowed to change sign in Q. Now, we will establish the existence of a local
minimum for I , on My, in the critical case a + = p* to obtain a second positive solution of

System (S)Lf,‘ug,h)-
Lemma 4.1. If {z,} C W is a (PS) -sequence for 1, ,, then {z,} is bounded in W.

Proof. Let z,, = (uy, v,). We argue by contradiction. Assume that ||z,|| — oo. Let

2= (8 = 2 = (2, 2. (4.1)

Izall ~ \lizall” l1zal
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We may assume that z, — z = (4,9) in W. This implies that 11, — #, v, — v strongly in

L(Q) forall1 <s <p*and

K)l,y(/z\n) = K/\,p(f) +0,(1).
Since {z,} is a (PS) -sequence for I, , and ||z,|| — oo, there hold

B2 |z PP

Sz - Bk e - Bl - o),

IZall” =zl 7P Koo (Zn) = Izall PP T (20) = 0n(1).
From (4.2)—(4.4), we can deduce that

pla+p-q)
g(a+p-p)

||2n||p = ||Zn||q_pKl,/4(2n) +on(1).

Since 1 < g <p and ||z,|| — oo, (4.5) implies

IZa]P — 0, asn— oo,

which is contrary to the fact || Z,|| = 1.

Denote

Vulf +|VolP)d
Sap = inf Jo(IVul +] U|/() +J§‘
u,veWé'p(Q)\[O} (J‘Q|u|a|v|ﬂdx)p aﬂ

Modifying the proof of Alves et al. [11, Theorem 5], we can easily deduce that

()

where S is the best constant defined by

Jo IVulPdx

S = inf TR

ueW,” (@)\(0) < f, |u|fx+ﬂdx>

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

When a + = p*, it is well known that S is achieved if and only if Q = RY by the function
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/p (N-p)/p
= R 4.10
Ue(x) cN<£+|x|P/(p_1)> . e>0, (410)

where Cn = [((N -p)/(p - 1))p—1N](N*P)/p2‘

Lemma 4.2. Letf ¢y, = (1/N)Sf:£p|h|;§N7p)/p. If {zn} C W is a (PS) -sequence for I, with c €
(0, coo), then there exists a subsequence of {z,} converging weakly to a nontrivial solution of System

(S)Lf,‘ug,h)'

Proof. Let {z,} C W be a (PS)_-sequence for I, , with ¢ € (0, ¢,,). Write z,, = (4, v,,). We know
from Lemma 4.1 that {z,} is bounded in W, and then z, — z = (1,v) up to a subsequence,

when z is a critical point of I, ,. Furthermore, we may assume u, — u, v, — v in W&’p (Q)
and u, — u,v, — vinL*(Q) foralll <s < p*and u, — u, v, — vae. on Q. Hence we
have that I’A”(z) =0and

Kiu(zn) = Kyu(z) +0a(1). (4.11)
Next we verify that u#0 or v#0. Arguing by contradiction, we assume u =0 and v = 0. Set
I= lim ] (zn). (4.12)

Since I ilﬂ(zn) = 0,(1) and {z,} is bounded in W, then by (4.11), we can deduce that

0= (Jim 1}, (z0), 22 ) = lim (=l = ] (22)) = im0 =1 (413)
that is,
Tim [z, = 1 (4.14)

If I = 0, then we get ¢ = lim,, ., I, ;,(z,) = 0, which contradicts with ¢ > 0. Thus we conclude
that I > 0. By (4.7) and (4.12), we obtain

. p/p*
Sogl?’” = Sup i (| nGolusonax )
Soplim ([l finfo,Pa )W
< Suplim ol tn|*|on| dx
plim (] (4.15)
<|RLP lim ||z,

= |nP'l,
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which implies that

1> Sung|h|;§N_”)/ P, (4.16)

Hence, from (4.11)—(4.16) we get

c= lim I) ,(z,)
n— oo

1 1 1
- T 2z p_ = =
tim (2l - S Koz - 5T ) )
NERY (4.17)
“(5-77)
L oN/py —(N-p)/p _
> NSW |h] oo = Ceo.

This is a contradiction to ¢ < c... Therefore z is a nontrivial solution of System (S,f,g). O

Lemma 4.3. Assume that (A1)—(A4) hold. Then for any A, u > O, there exist a nonnegative function
zyu € W\ {0} such that

Sup I)L,‘u (tz)t,l,{) < Coo/s (418)

t>0

where co, is the constant given in Lemma 4.2.
In particular, 91,4 < Coo forall 0 < AP/ ®P=0) 4 yp/®P=0) < Ay, where Ay is as in (1.6).

Proof. From (A4), we know that there exists 0 < py < 1y such that, for all x € B(0,2py),

_ 6o
h(x) = h(0) + o<|x| ) for some &g > -y (4.19)
Now, we consider the functional Q : W — R defined by
Q(z) = 1||z||’” - 1 J(z) Vz=(uv)eW 4.20
p a+p T (4.20)

and define a cut-off function 7(x) € C{(Q) such that 7(x) = 1 for |x| < po, n(x) = 0 for
|x| >2pg, 0<1<1,and |Vy| < C.Fore >0, let

S(N_P)/pzrl(x) ot
<g+|x|p/<p—1>>(N‘P)/’” (4.21)

U (x) =

From Hsu [7, Lemma 4.3], we have

|Vis]}, = f VU Pdx + o(g<N—P>/P) (4.22)
RN
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=S+ o(g(N-WP), (4.23)

where U (x) = (1 + |x[P/P7D)~(N=p)/p,
Setug = {/au,, vy = {/Pue,and zo = (19, v9) € W. Then, from (4.8), (4.23), and |h|,, =1,
we conclude that

N/p

1 a+p) [, |VuePdx
supQ(tzo) < N ( o N
£0 <aa/pﬂﬁ/p [o B el >

B/ (a+p) a/(a+p) N/p
(GO e
- %<<%>”‘/<‘”ﬂ) + <§)W(“+m>wp (SN/P + O(g(N—P)/P>>

- %S%"’ + O(g(N‘P)/’”>,

where the following fact has been used:

t gap 1 /A\NNPP 17 A N\NP
Fa_ - 1a(2 = (2= A,B>0. 4.25
8333<PA a+ﬂB> ) ~(pw) oA 429

Using the definitions of I, ;,, zo and by (A3) and (A4), we get

P
I, (tzo) < ;||z0||P = t#|Vul, Vt>0, A, pu>0. (4.26)

a+p
p
Combining this with (4.22), let € € (0,1), then there exists t; € (0,1) independent of ¢ such

that

sup Iy, (tzo) < €, YA, u>0, Ye € (0,1). (4.27)

0<t<ty

Using the definitions of I, ,, zo and by a, > 1, (4.24) and (A3), we have
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supl ,(tzo) = sup (Q(tzo) - EKA#(tZO)>

>t

¢
<_5N/P O(eNP/P) = 2(aua®/P ) + bop/P f |ug|7dx (4.28)
N ( ) ‘7< ) B(0.po)
#1
N/p (N-p)/ 0 q
<—S +O(ePP)—=yo(A+pu [ue|dx,
N ( ) q (+) BOm)

where Yo = min{aga?/?,byf/?}.
LetO<e< pp/(p ), we have

[ upax= | AL

U, X = - x

B(0,p0) B(0,p0) <g+ |x|P/(P71)>((N p)/p)q

a(N-p)/p* 4.29
zf S dx (4.29)
B(0,p0) (2,:5“"‘”)“ PP

=Ci(N,p,q, po)gq(N—p)/Pz‘

Combining with (4.28) and (4.29), for all € € (0, pp/(p )) we get

4
supl),,(tzo) < %S%F +O(eN-P/P) - Eoclyo (A + p)edN-p)/P, (4.30)

t>ty

Hence, for any A, u > 0, we can choose small positive constant ¢, , < min{1, pp/ - 1)} such that

(N-p)/ (N-p)/p*
(e, ") - ;)Clro(Aw)sf’ ) (431)

Now, we fix ¢, , and let z) , = ({au,,, (/ﬁuw). From (4.27), (4.30), (4.31), we can deduce
that, for any A, u > 0, there exists a nonnegative function z, , € W'\ {0} such that

suplyu(tzip) < Coo- (4.32)
>0

Finally, we prove that 6):,4 < o forall 0 < AP/ P~ 4P/ (=0 < Ay Recall that z , = (1), D p) =
(Y/aue,,, {/Pue,,). By (A3), (A4), and the definition of u, ,, we have

](ZM‘-) >0, K)l,‘u(zj\,#) > 0. (433)
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Combining this with Lemma 2.6 (ii), from the definition of 91# and (4.32), for all 0 < AP/ (=) 4
pP/ (=D < A, we obtain that there exists t,,, > 0 such that t, ,z) , € _/UX# and

Oy, < Lu(bupzap) < SE(I)’IA,# (t2140) < Coo (4.34)

This completes the proof. O

Theorem 4.4. Assume that (A1)—(A4) hold. If 0 < AP/®P=0) 4 yp/(P=0) < (q/p)"’/(p_")Al, then I,
satisfies the (PS)g. condition. Moreover, 1, has a minimizer ziﬂ n N, and satisfies the following:
v 7 1)

() Iuu(23,) = 65,

(ii) zi p is a positive solution of System (Syfuqn), Where Ay is the same as in (1.6).

Proof. 1f 0 < \P/®#=49) 4+ up/ =0 < (q/p)?’ PP A;, then by Theorem 2.5 (ii), Proposition 3.2 (ii),
and Lemma 4.3, there exists a (PS)Q- -sequence {z,} C M} 1r1 W for I, with (f)A € (0,¢e)-
From Lemma 4.2, there exist a subsequence still denoted by {zn} and a nontr1v1a1 solution

z e = (13 p ) € W of System (S f,ug,n) such that z, — zw weakly in W. Now we prove

that z, — zi” strongly in W and IW(ZW) o .By (3.4), if z € N, , then

Lu(z) = E 2Pl - K 2) (435)

p*q

First, we prove that zi ” € ,/UXH. On the contrary, if zi# € _/UI W then by _/UXH closed in W, we
have ||z} ) | < limy— o ||zn||. By Lemma 2.3 (i) and (A4), we obtain that

Ky(Z,)>0  J(&,)>0. (4.36)

By Lemma 2.7, there exists a unique t~ such that t‘ziﬂ € _/UX/#. Since z, € ,/UX,#, Lu(zn) 2
I, (tzy) for all t > 0 and by (4.35), we have

07, < Lu(23,) < lim 1, (£2,) < lim L (2,) =67, (4.37)

and this is a contradiction.
In order to prove that I W(ziﬂ) = 6);#, it suffices to recall that z,,, zi# € ,/UX,# for all n,
by (4.35). and apply Fatou’s lemma to get

Ou <I“‘(Zi#> v P“ H P;*—_qux,y(Zi»
< h,grgglf(%uznnp -2 K (438)

< hrllllglf I)L,/x. (zn) = 9;;:
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This implies that I W(Zi;) = 9)1# and lim, oo ||z,|IF = ||z§,#||p. Letz, = z, - Zi,,u then by
Brézis and Lieb lemma [26] implies

1Zall = lzall” = ||, (4.39)

Therefore, z, — Zi,y strongly in W.
Since I W(Zi,y) =1 W(|zi/ﬂ|) and |zilﬂ| € N, ,, by Lemmas 2.2, and 2.3 (iii), we may
assume that zi/# is a nontrivial nonnegative solution of System (S, ¢ 4). Finally, by using the

same arguments as in the proof of Theorem 3.3, for all 0 < AP/ ®=9) 4 P/ (=9 < (q/p)P/ P~ DA,
we have that zi,ﬂ is a positive solution of System (Syfq.1)- O

Proof of Theorem 1.3. By Theorems 3.3, and 4.4, we obtain that forall A, > 0and 0 < AP/(P~9) +

w0 < (q/p)P! PV, (Sy f.ug,h) has two positive solutions z}w, ziﬂ with Z}Ll# € JUL{, Zi,y €

M, .- Since ,/UXM nw, = @, this implies that z}tl# and zi# are distinct. This completes the
proof of Theorem 1.3. O
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