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Let Ω � 0 be an-open bounded domain in R
N(N ≥ 3) and p∗ = (pN/(N − p)). We consider the

following quasilinear elliptic system of two equations inW
1,p
0 (Ω)×W1,p

0 (Ω): −Δpu = λf(x)|u|q−2u+
(α/(α + β))h(x)|u|α−2u|v|β,−Δpv = μg(x)|v|q−2v + (β/(α + β))h(x)|u|α|v|β−2v, where λ, μ > 0, Δp

denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α + β ≤ p∗, and f, g, h

are continuous functions on Ω which are somewhere positive but which may change sign on Ω.
We establish the existence and multiplicity results of positive solutions to (the above mentioned
quasilinear elliptic system equations) by variational methods.

1. Introduction and Main Results

Let Ω � 0 be a smooth-bounded domain in R
N with N ≥ 3. In this paper, we study the

existence and multiplicity of positive solutions for the following quasilinear elliptic system:

−Δpu = λf(x)|u|q−2u +
α

α + β
h(x)|u|α−2u|v|β in Ω,

−Δpv = μg(x)|v|q−2v +
β

α + β
h(x)|u|α|v|β−2v in Ω,

u = v = 0 on ∂Ω,

(Sλf,μg,h)
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where λ, μ > 0, 1 ≤ q < p < N,Δpu = div(|∇u|p−2∇u) is the p-Laplacian, α > 1, β > 1 satisfy
p < α + β ≤ p∗, p∗ = (pN)/(N − p) denotes the critical Sobolev exponent, and the weight
functions f, g, h are satisfying the following assumptions:

(A1) f, g ∈ C(Ω), f+ = max{f, 0}/≡ 0, g+ = max{g, 0}/≡ 0 and |f |∞ = |g|∞ = 1;

(A2) h ∈ C(Ω), h+ = max{h, 0}/≡ 0 and |h|∞ = 1;

(A3) there exist a0, b0, r0 > 0 and x0 ∈ Ω such that B(x0, 2r0) ⊂ Ω, f(x) ≥ a0 and
g(x) ≥ b0 for all x ∈ B(x0, 2r0), without loss of generality, we assume below that
x0 = 0;

(A4) h(x) > 0 for all x ∈ Ω, |h|∞ = h(0) and there exists δ0 > N/(p − 1) such that

h(x) = h(0) + o
(
|x|δ0

)
as x −→ 0. (1.1)

System (Sλf,μg,h) is posed in the framework of the Sobolev spaceW = W
1,p
0 (Ω)×W1,p

0 (Ω)with
the standard norm

‖(u, v)‖ =
(∫

Ω
|∇u|pdx +

∫

Ω
|∇v|pdx

)1/p

. (1.2)

Moreover, a pair of functions (u, v) ∈ W is said to be a weak solution of System (Sλf,μg,h) if

∫

Ω
|∇u|p−2∇u∇ϕ1dx +

∫

Ω
|∇v|p−2∇v∇ϕ2dx

− λ

∫

Ω
f(x)|u|q−2uϕ1dx − μ

∫

Ω
g(x)|v|q−2vϕ2dx

− α

α + β

∫

Ω
h(x)|u|α−2u|v|βϕ1dx − β

α + β

∫

Ω
h(x)|u|α|v|β−2vϕ2dx = 0

(1.3)

for all (ϕ1, ϕ2) ∈ W . Thus, the corresponding energy functional of System (Sλf,μg,h) is defined
by

Iλ,μ(u, v) =
1
p
‖(u, v)‖p − 1

q

∫

Ω

(
λf(x)|u|q + μg(x)|v|q)dx − 1

α + β

∫

Ω
h(x)|u|α|v|βdx. (1.4)

Semilinear and quasilinear scalar elliptic equations with concave-convex nonlineari-
ties are widely studied: we refer the reader to Ambrosetti et al. [1], de Figueiredo et al. [2],
Azorero and Peral [3], Azorero et al. [4], EL Hamidi [5], Hirano et al. [6], Hsu [7], and Wu
[8], and so forth. For the nonlinear elliptic systems, we refer to Adriouch and EL Hamidi
[9], Ahammou [10], Alves et al. [11], Bozhkov and Mitidieri [12], Clément et al. [13], de
Figueiredo and Felmer [14], EL Hamidi [15], Hsu and Lin [16, 17], Squassina [18], Vélin
[19], and Wu [20], and so forth.

Recently, in [8], the author has considered a semilinear scalar elliptic equation
involving concave-convex nonlinearities and sign-changing weight functions and showed
multiplicity results with respect to the parameter via the extraction of Palais-Smale sequences
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in the Nehair manifold, and for the definition of Nehair manifold we refer the reader to see
Nehari [21] or Willem [22].

More recently, in [20] the author extends the method of [8] to system (Sλf,μg,h) in the
semilinear case p = 2 with the subcritical case 2 < α + β < 2∗ and the sign-changing weight
functions f, g. In [16] the author also extends the method of [8] to system (Sλf,μg,h) in the
quasilinear case 1 < p < N with critical case α + β = p∗ and the constant weight functions
f ≡ g ≡ h ≡ 1. In the present paper, motivated by [16, 20] we extend and improve the papers
by Hsu [16] and Wu [20]. First, we deal with more general weight functions f, g, h which
may be changing sign, and second, we also deal with quasilinear elliptic systems involving
subcritical or critical Sobolev exponents.

Let S be the best Sobolev constant for the embedding of W1,p
0 (Ω) in Lα+β(Ω) defined

by

S = inf
u∈W1,p

0 (Ω)\{0}

∫
Ω |∇u|pdx

(∫
Ω |u|α+βdx

)p/(α+β) , (1.5)

and set

Λ1 =
(

p − q

α + β − q

)p/(α+β−p)(α + β − q

α + β − p
|Ω|(α+β−q)/(α+β)

)−p/(p−q)
Sp(α+β−q)/(p−q)(α+β−p) > 0, (1.6)

where |Ω| is the Lebesgue measure of Ω. Our main results are as follows.

Theorem 1.1 (existence of one positive solution). Assume that (A1)-(A2) hold. If 1 ≤ q < p <
N, p < α + β ≤ p∗, and λ, μ > 0 satisfy 0 < λp/(p−q) + μp/(p−q) < Λ1, then system (Sλf,μg,h) has at
least one positive solution in W

1,p
0 (Ω) ×W

1,p
0 (Ω).

Theorem 1.2 (second positive solution in the subcritical case). Assume that (A1)-(A2) hold. If
1 ≤ q < p < N, p < α + β < p∗, and λ, μ > 0 satisfy 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then
System (Sλf,μg,h) has at least two positive solutions in W

1,p
0 (Ω) ×W

1,p
0 (Ω).

Theorem 1.3 (second positive solution in the critical case). Assume that (A1)–(A4) hold. If
1 ≤ q < p < N, α+β = p∗, and λ, μ > 0 satisfy 0 < λp/(p−q) +μp/(p−q) < (q/p)p/(p−q)Λ1, then System
(Sλf,μg,h) has at least two positive solutions in W

1,p
0 (Ω) ×W

1,p
0 (Ω).

This paper is organized as follows. In Section 2, we give some notations and pre-
liminaries. The proofs of Theorems 1.1 and 1.2 are in Section 3. In Section 4, we manage
to give the proof of Theorem 1.3. Throughout this paper, (A1) and (A2) will be assumed.

2. Notations and Preliminaries

In this section, we give some notations and necessary preliminary results.

Notations. We make use of the following notation.

Ls(Ω), 1 ≤ s < ∞, denote Lebesgue spaces; the norm Ls is denoted by | · |s for
1 ≤ s ≤ ∞;
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W = [W1,p
0 (Ω)]

2
, endowed with norm ‖z‖p = ‖(u, v)‖p = |∇u|pp + |∇v|pp;

The dual space of a Banach space W will be denoted by W−1;

tz = t(u, v) = (tu, tv) for all z = (u, v) ∈ W and t ∈ R;

|z| = (|u|, |v|) for all z = (u, v) ∈ W ;

z = (u, v) is said to be nonnegative in Ω if u ≥ 0 and v ≥ 0 in Ω;

z = (u, v) is said to be positive in Ω if u > 0 and v > 0 in Ω;

|Ω| is the Lebesgue measure of Ω;

B(x0, r) = {x ∈ R
N | |x − x0| < r} is the ball in R

N ;

O(εt) denotes |O(εt)|/εt ≤ C as ε → 0 for t ≥ 0;

on(1) denotes on(1) → 0 as n → ∞;

C, Ci will denote various positive constants, the exact values of which are not
important;

p∗ = pN/(N − p)(1 < p < N) is the critical Sobolev exponent;

Let J,Kλ,μ : W → R be the functionals defined by

J(z) =
∫

Ω
h(x)|u|α|v|βdx,

Kλ,μ(z) =
∫

Ω

(
λf(x)|u|q + μg(x)|v|q)dx

(2.1)

for all z = (u, v) ∈ W .

As the energy functional Iλ,μ is not bounded below on W , it is useful to consider the
functional on the Nehari manifold

Nλ,μ =
{
z ∈ W \ {0} |

〈
I ′λ,μ(z), z

〉
= 0
}
. (2.2)

Thus, z = (u, v) ∈ Nλ,μ if and only if

〈I ′λ,μ(z), z〉 = ‖z‖p −Kλ,μ(z) − J(z) = 0. (2.3)

Note thatNλ,μ contains every nonzero solution of System (Sλf,μg,h). Moreover, we have
the following results

Lemma 2.1. The energy functional Iλ,μ is coercive and bounded on Nλ,μ.

Proof. If z = (u, v) ∈ Nλ,μ, then by (2.3), the Hölder inequality, and the Sobolev embedding
theorem,

Iλ,μ(z) =
α + β − p

p
(
α + β

) ‖z‖p − α + β − q

q
(
α + β

)Kλ,μ(z) (2.4)
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≥ α + β − p

p
(
α + β

) ‖z‖p − α + β − q

q
(
α + β

)S−q/p|Ω|(α+β−q)/(α+β)(λp/(p−q) + μp/(p−q))
(p−q)/p‖z‖q. (2.5)

Thus, Iλ,μ is coercive and bounded on Nλ,μ.

Define

Φλ,μ(z) = 〈I ′λ,μ(z), z〉. (2.6)

Then for u ∈ Nλ,μ,

〈
Φ′

λ,μ(z), z
〉
= p‖z‖p − qKλ,μ(z) −

(
α + β

)
J(z)

=
(
p − q

)‖z‖p − (α + β − q
)
J(z)

(2.7)

=
(
α + β − q

)
Kλ,μ(z) −

(
α + β − p

)‖z‖p. (2.8)

Similar to the method used in Tarantello [23], we split Nλ,μ into three parts:

N+
λ,μ =

{
z ∈ Nλ,μ :

〈
Φ′

λ,μ(z), z
〉
> 0
}
,

N0
λ,μ =

{
z ∈ Nλ,μ :

〈
Φ′

λ,μ(z), z
〉
= 0
}
,

N−
λ,μ =

{
z ∈ Nλ,μ :

〈
Φ′

λ,μ(z), z
〉
< 0
}
.

(2.9)

Then, we have the following results.

Lemma 2.2. Assume that z0 is a local minimizer for Iλ,μ on Nλ,μ and z0 /∈ N0
λ,μ. Then I ′λ,μ(z0) = 0

inW−1.

Proof. Our proof is almost the same as that in [24, Theorem 2.3].

Lemma 2.3. One has the following:

(i) if z ∈ N+
λ,μ, then Kλ,μ(z) > 0;

(ii) if z ∈ N0
λ,μ, then Kλ,μ(z) > 0 and J(z) > 0;

(iii) if z ∈ N−
λ,μ

, then J(z) > 0.

Proof. The proof is immediate from (2.7) and (2.8).

Moreover, we have the following result.

Lemma 2.4. If 0 < λp/(p−q) + μp/(p−q) < Λ1, thenN0
λ,μ

= ∅ where Λ1 is the same as in (1.6).

Proof. We argue by contradiction. Assume that there exist λ, μ > 0 with

0 < λp/(p−q) + μp/(p−q) < Λ1 (2.10)
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such that N0
λ,μ /= ∅. Then by (2.7) and (2.8), for u ∈ N0

λ,μ, on has the following:

‖z‖p =
α + β − q

p − q
J(z),

‖z‖p =
α + β − q

α + β − p
Kλ,μ(z).

(2.11)

By |f |∞ = |g|∞ = |h|∞ = 1, the Hölder inequality, and the Sobolev embedding theorem, we
have

‖z‖ ≥
(

p − q

α + β − q
S(α+β)/p

)1/(α+β−p)
,

‖z‖ ≤
(
α + β − q

α + β − p
S−q/p|Ω|(α+β−q)/(α+β)

)1/(p−q)(
λp/(p−q) + μp(p−q)

)1/p
.

(2.12)

This implies

λp/(p−q) + μp/(p−q)λp/(p−q) + μp/(p−q) ≥
(

p − q

α + β − q

)p/(α+β−p)(α + β − q

α + β − p
|Ω|(α+β−q)/(α+β)

)−p/(p−q)

× S(α+β)/(α+β−p)+q/(p−q) = Λ1,

(2.13)

which contradicts 0 < λp/(p−q) + μp/(p−q) < Λ1.

By Lemma 2.4, we write Nλ,μ = N+
λ,μ

∪N−
λ,μ

and define

θλ,μ = inf
z∈Nλ,μ

Iλ,μ(z); θ+
λ,μ = inf

z∈N+
λ,μ

Iλ,μ(z); θ−
λ,μ = inf

z∈N−
λ,μ

Iλ,μ(z). (2.14)

Then we get the following result.

Theorem 2.5. (i) If 0 < λp/(p−q) + μp/(p−q) < Λ1, then one has θλ,μ ≤ θ+
λ,μ < 0;

(ii) if 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then θ−
λ,μ

> d0 for some positive constant d0

depending on λ, μ, p, q,N, S, |Ω|, |f |∞, |g|∞ and |h|∞.

Proof. (i) Let z = (u, v) ∈ N+
λ,μ

. By (2.7)

p − q

α + β − q
‖z‖p > J(z) (2.15)
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and so

Iλ,μ(z) =
(
1
p
− 1
q

)
‖z‖p +

(
1
q
− 1
α + β

)
J(z)

<

[(
1
p
− 1
q

)
+
(
1
q
− 1
α + β

)
p − q

α + β − q

]
‖z‖p

= −
(
p − q

)(
α + β − p

)

pq
(
α + β

) ‖z‖p < 0.

(2.16)

Therefore, from the definitions of θλ,μ, θ+
λ,μ, we can deduce that θλ,μ ≤ θ+

λ,μ < 0.
(ii) Let z ∈ N−

λ,μ
. By (2.7)

p − q

α + β − q
‖z‖p < J(z). (2.17)

Moreover, by |h|∞ = 1, the Hölder inequality, and the Sobolev embedding theorem,

J(z) ≤ S−(α+β)/p‖z‖α+β. (2.18)

This implies

‖z‖ >

(
p − q

α + β − q

)1/(α+β−p)
S(α+β)/p(α+β−p) ∀z ∈ N−

λ,μ. (2.19)

By (2.5), one has the following:

Iλ,μ(z) ≥ ‖z‖q
[
α + β − p

p
(
α + β

) ‖z‖p−q − α + β − q

q
(
α + β

)S−q/p|Ω|(α+β−q)/(α+β)
(
λp/(p−q) + μp/(p−q)

)(p−q)/p]

>

(
p − q

α + β − q

)q/(α+β−p)
Sq(α+β)/p(α+β−p)

×
[
α + β − p

p
(
α + β

)S(p−q)(α+β)/p(α+β−p)
(

p − q

α + β − q

)p−q/(α+β−p)

−α + β − q

q
(
α + β

)S−q/p|Ω|(α+β−q)/(α+β)
(
λp/(p−q) + μp/(p−q)

)(p−q)/p]
.

(2.20)

Thus, if 0 < λp/(p−q) + μp/(p−q) < (q/p) p/(p−q)Λ1, then

Iλ,μ(z) > d0 ∀z ∈ N−
λ,μ, (2.21)

for some positive constant d0 = d0(λ, μ, p, q,N, S, |Ω|, |f |∞, |g|∞, |h|∞). This completes the
proof.
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For each z ∈ W with J(z) > 0, we write

tmax =

( (
p − q

)‖z‖p(
α + β − q

)
J(z)

)1/(α+β−p)
> 0. (2.22)

Then the following lemma holds.

Lemma 2.6. Let λp/(p−q) + μp/(p−q) ∈ (0,Λ1). For each z ∈ W with J(z) > 0, one has the following:

(i) if Kλ,μ(z) ≤ 0, then there exists a unique t− > tmax such that t−z ∈ N−
λ,μ

and

Iλ,μ
(
t−z
)
= sup

t≥0
Iλ,μ(tz); (2.23)

(ii) ifKλ,μ(z) > 0, then there exist unique 0 < t+ < tmax < t− such that t+z ∈ N+
λ,μ, t

−z ∈ N−
λ,μ

and

Iλ,μ(t+z) = inf
0≤t≤tmax

Iλ,μ(tz); Iλ,μ
(
t−z
)
= sup

t≥0
Iλ,μ(tz). (2.24)

Proof. The proof is almost the same as that in [25, Lemma 2.6] and is omitted here.

For each z ∈ W with Kλ,μ(z) > 0, we write

tmax =

((
α + β − q

)
Kλ,μ(z)(

α + β − p
)‖z‖p

)1/(p−q)
> 0. (2.25)

Then we have the following lemma.

Lemma 2.7. Let λp/(p−q) + μp/(p−q) ∈ (0,Λ1). For each z ∈ W with Kλ,μ(z) > 0, one has the
following:

(i) if J(z) ≤ 0, then there exists a unique 0 < t+ < tmax such that t+z ∈ N+
λ,μ and

Iλ,μ(t+z) = inf
t≥0

Iλ,μ(tz); (2.26)

(ii) if J(z) > 0, then there exist unique 0 < t+ < tmax < t− such that t+z ∈ N+
λ,μ, t

−z ∈ N−
λ,μ

and

Iλ,μ(t+z) = inf
0≤t≤tmax

Iλ,μ(tz); Iλ,μ
(
t−z
)
= sup

t≥0
Iλ,μ(tz). (2.27)

Proof. The proof is almost the same as that in [25, Lemma 2.7] and is omitted here.
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3. Proofs of Theorems 1.1 and 1.2

First, we give the following definitions about (PS)c-sequence.

Definition 3.1. Let c ∈ R, W be a Banach space and I ∈ C1(W,R).

(i) {zn} is a (PS)c-sequence in W for I if I(zn) = c + on(1) and I ′(zn) = on(1) strongly
inW−1 as n → ∞.

(ii) We say that I satisfies the (PS)c condition if any (PS)c-sequence {zn} inW for I has
a convergent subsequence.

Now, we use the idea of Tarantello [23] to get the following results.

Proposition 3.2. Let 1 ≤ q < p < N and p < α + β ≤ p∗, we have

(i) if 0 < λp/(p−q) + μp/(p−q) < Λ1, then there exists a (PS)θλ,μ -sequence {zn} ⊂ Nλ,μ inW for
Iλ,μ;

(ii) if 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then there exists a (PS)θ−
λ,μ
-sequence {zn} ⊂

Nλ,μ inW for Iλ,μ,

where Λ1 is the positive constant given in (1.6).

Proof. The proof is almost the same as that in [8, Proposition 9].

Now, we establish the existence of a local minimum for Iλ,μ on N+
λ,μ

.

Theorem 3.3. Let Λ1 be the same positive constant as in (1.6). If 1 ≤ q < p < N, p < α + β ≤ p∗,
and 0 < λp/(p−q) + μp/(p−q) < Λ1, then Iλ,μ has a minimizer z1

λ,μ
inN+

λ,μ
and it satisfies the following:

(i) Iλ,μ(z1λ,μ) = θλ,μ = θ+
λ,μ < 0;

(ii) z1
λ,μ

is a positive solution of System (Sλf,μg,h);

(iii) Iλ,μ(z1λ,μ) → 0 as λ → 0+, μ → 0+.

Proof. By Proposition 3.2 (i), there exists a minimizing sequence {zn} for Iλ,μ on Nλ,μ such
that

Iλ,μ(zn) = θλ,μ + on(1), I ′λ,μ(zn) = on(1) in W−1. (3.1)

Since Iλ,μ is coercive on Nλ,μ (see Lemma 2.1), we get that {zn} is bounded in W . Then there
exist a subsequence {zn = (un, vn)} and z1

λ,μ
= (u1

λ,μ
, v1

λ,μ
) ∈ W such that

un ⇀ u1
λ,μ, vn ⇀ v1

λ,μ weakly in W
1,p
0 (Ω),

un −→ u1
λ,μ, vn −→ v1

λ,μ almost everywhere in Ω,

un −→ u1
λ,μ, vn −→ v1

λ,μ strongly in Ls(Ω) ∀1 ≤ s < p∗.

(3.2)
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This implies

Kλ,μ(zn) = Kλ,μ

(
z1
λ,μ

)
+ on(1) as n −→ ∞. (3.3)

First, we claim that z1
λ,μ

is a nontrivial solution of System (Sλf,μg,h). By (3.1) and (3.2), it is

easy to verify that z1λ,μ is a weak solution of System (Sλf,μg,h). From zn ∈ Nλ,μ and (2.4), we
deduce that

Kλ,μ(zn) =
q
(
α + β − p

)

p
(
α + β − q

)‖zn‖p −
q
(
α + β

)

α + β − q
Iλ,μ(zn). (3.4)

Let n → ∞ in (3.4), by (3.1), (3.3), and θλ,μ < 0, we get

Kλ,μ

(
z1λ,μ

)
≥ − q

(
α + β

)

α + β − q
θλ,μ > 0. (3.5)

Thus, z1
λ,μ

∈ Nλ,μ is a nontrivial solution of System (Sλf,μg,h). Now we prove that zn → z1
λ,μ

strongly in W and Iλ,μ(z1λ,μ) = θλ,μ. By (3.4), if z ∈ Nλ,μ, then

Iλ,μ(z) =
α + β − p

p
(
α + β

) ‖z‖p − α + β − q

q
(
α + β

)Kλ,μ(z). (3.6)

In order to prove that Iλ,μ(z1λ,μ) = θλ,μ, it suffices to recall that z1λ,μ ∈ Nλ,μ, by (3.6), and apply
Fatou’s lemma to get

θλ,μ ≤ Iλ,μ
(
z1λ,μ

)
=

α + β − p

p
(
α + β

)
∥∥∥z1λ,μ

∥∥∥
p − α + β − q

q
(
α + β

)Kλ,μ

(
z1λ,μ

)

≤ lim inf
n→∞

(
α + β − p

p
(
α + β

) ‖zn‖p −
α + β − q

q
(
α + β

)Kλ,μ(zn)

)

≤ lim inf
n→∞

Iλ,μ(zn) = θλ,μ.

(3.7)

This implies that Iλ,μ(z1λ,μ) = θλ,μ and limn→∞‖zn‖p = ‖z1
λ,μ

‖p. Let z̃n = zn−z1λ,μ, then by Brézis
and Lieb lemma [26] implies

‖z̃n‖p = ‖zn‖p −
∥∥∥z1λ,μ

∥∥∥
p
. (3.8)

Therefore, zn → z1
λ,μ

strongly in W . Moreover, we have z1
λ,μ

∈ N+
λ,μ

. Thus θλ,μ = θ+
λ,μ

. On the

contrary, if z1
λ,μ

∈ N−
λ,μ

, then by (2.17), (3.5), we have that J(z1
λ,μ

) > 0 andKλ,μ(z1λ,μ) > 0. Thus,
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from Lemma 2.6 (ii), there exist unique t+1 and t−1 such that t+1z
1
λ,μ ∈ N+

λ,μ and t−1z
1
λ,μ ∈ N−

λ,μ. In
particular, we have t+1 < t−1 = 1. Since

d

dt
Iλ,μ
(
t+1z

1
λ,μ

)
= 0,

d2

dt2
Iλ,μ
(
t+1z

1
λ,μ

)
> 0, (3.9)

there exists t+1 < t ≤ t−1 such that Iλ,μ(t+1z
1
λ,μ

) < Iλ,μ(tz1λ,μ). By Lemma 2.6,

Iλ,μ
(
t+1z

1
λ,μ

)
< Iλ,μ

(
tz1λ,μ

)
≤ Iλ,μ

(
t−1z

1
λ,μ

)
= Iλ,μ

(
z1λ,μ

)
= θλ,μ, (3.10)

which is a contradiction. Since Iλ,μ(z1λ,μ) = Iλ,μ(|z1λ,μ|) and |z1λ,μ| ∈ N+
λ,μ, by Lemma 2.2 we may

assume that z1λ,μ is a nontrivial nonnegative solution of System (Sλf,μg,h).

In particular u1
λ,μ /≡ 0, v1

λ,μ /≡ 0. Indeed, without loss of generality, we may assume that

v1
λ,μ ≡ 0. Then as u1

λ,μ is a nontrivial nonnegative solution of

−Δpu = λf(x)|u|q−2u in Ω,

u = 0 on ∂Ω.
(3.11)

By the standard regularity theory, we have u1
λ,μ

> 0 in Ω and

∥∥∥(u1
λ,μ, 0)

∥∥∥
p
= Kλ,μ

(
u1
λ,μ, 0

)
> 0. (3.12)

Moreover, by conditions (A1), (A2) and u1
λ,μ > 0 inΩ, we may choosew ∈ W

1,p
0 (Ω)\ {0} such

that

‖(0, w)‖p = Kλ,μ(0, w) > 0,

J
(
u1
λ,μ,w

)
≥ 0.

(3.13)

Now

Kλ,μ

(
u1
λ,μ,w

)
= Kλ,μ

(
u1
λ,μ, 0

)
+Kλ,μ(0, w) > 0, (3.14)

and so by Lemma 2.7 there is unique 0 < t+ < tmax such that (t+u1
λ,μ

, t+w) ∈ N+
λ,μ

. Moreover,

tmax =

⎛
⎜⎝
(
α + β − q

)
Kλ,μ

(
u1
λ,μ

,w
)

(
α + β − p

)∥∥∥
(
u1
λ,μ

,w
)∥∥∥

p

⎞
⎟⎠ =

(
α + β − q

α + β − p

)
> 1,

Iλ,μ
(
t+u1

λ,μ, t
+w
)
= inf

0≤t≤tmax

Iλ,μ
(
tu1

λ,μ, tw
)
.

(3.15)
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This implies

θ+
λ,μ ≤ Iλ,μ

(
t+u1

λ,μ, t
+w
)
≤ Iλ,μ

(
u1
λ,μ,w

)
< Iλ,μ

(
u1
λ,μ, 0

)
= θ+

λ,μ (3.16)

which is a contradiction.
By a standard bootstrap argument, it is proved that a weak solution for System

(Sλf,μg,h) is in the space C2(Ω) × C2(Ω), and it is really a classical solution. Finally, by
the Harnack inequality [27] we deduce that z1

λ,μ
is a positive solution of System (Sλf,μg,h).

Moreover, by Theorem 2.5 (i) and (2.5)we have

0 > θ+
λ,μ = Iλ,μ

(
z1λ,μ

)
> −α + β − q

q
(
α + β

)S−q/p|Ω|(α+β−q)/(α+β)
(
λp/(p−q) + μp/(p−q)

)(p−q)/p∥∥∥z1λ,μ
∥∥∥
q
.

(3.17)

This implies that Iλ,μ(z1λ,μ) → 0 as λ → 0+, μ → 0+.

Next, we establish the existence of a local minimum for Iλ,μ on N−
λ,μ

in the subcritical
case p < α+β < p∗. This implies that there exists the second positive solution in the subcritical
case p < α + β < p∗.

Theorem 3.4. Let Λ1 be the same positive constant as in (1.6). If 1 ≤ q < p < N, p < α + β < p∗,
and 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then Iλ,μ has a minimizer z2

λ,μ
in N−

λ,μ
and it satisfies

the following:

(i) Iλ,μ(z2λ,μ) = θ−
λ,μ

;

(ii) z2λ,μ is a positive solution of System (Sλf,μg,h);

Proof. Let {zn} be a minimizing sequence for Iλ,μ on N−
λ,μ

. Then by Iλ,μ coercive on Nλ,μ

and the compact imbedding theorem, there exist a subsequence {zn = (un, vn)} and z2λ,μ =
(u2

λ,μ
, v2

λ,μ
) ∈ W such that

un ⇀ u2
λ,μ, vn ⇀ v2

λ,μ weakly in W
1,p
0 (Ω),

un −→ u2
λ,μ, vn −→ v2

λ,μ strongly in Lq(Ω), Lα+β(Ω).
(3.18)

This implies

Kλ,μ(zn) = Kλ,μ

(
z2λ,μ

)
+ on(1), J(zn) = J

(
z2λ,μ

)
+ on(1). (3.19)

By (2.17) and (2.19) there exists a positive number C such that

J(zn) > C. (3.20)
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This implies

J
(
z2λ,μ

)
≥ C. (3.21)

Now, we prove that zn → z2
λ,μ

strongly in W . Suppose otherwise, then ‖z2
λ,μ

‖ <

lim infn→∞‖zn‖. By Lemma 2.6, there exists a unique t−2 such that t−2z
2
λ,μ ∈ N−

λ,μ. Since
zn ∈ N−

λ,μ, Iλ,μ(zn) ≥ Iλ,μ(tzn) for all t ≥ 0, we have

θ−
λ,μ ≤ Iλ,μ

(
t−z2λ,μ

)
< lim

n→∞
Iλ,μ
(
t−zn

) ≤ lim
n→∞

Iλ,μ(zn) = θ−
λ,μ, (3.22)

and this is a contradiction. Hence

zn −→ z2λ,μ strongly in W. (3.23)

This implies

Iλ,μ
(
z2λ,μ

)
= lim

n→∞
Iλ,μ(zn) = θ−

λ,μ. (3.24)

Since Iλ,μ(z2λ,μ) = Iλ,μ(|z2λ,μ|) and |z2
λ,μ

| ∈ N−
λ,μ

, by Lemma 2.2 and (3.21)we may assume z2
λ,μ

is
a nontrivial nonnegative solution of System (Sλf,μg,h). Finally, by using the same arguments
as in the proof of Theorem 3.3, for all 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, we have that z2

λ,μ

is a positive solution of System (Sλf,μg,h).

Now, we complete the proofs of Theorems 1.1 and 1.2: Theorem 1.1 follows from
Theorem 3.3. By Theorems 3.3 and 3.4, we obtain that for all 1 ≤ q < p < N, p < α + β < p∗,
λ, μ > 0, and 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1. System (Sλf,μg,h) has two positive
solutions z1λ,μ, z

2
λ,μ with z1λ,μ ∈ N+

λ,μ, z
2
λ,μ ∈ N−

λ,μ. Since N+
λ,μ ∩ N−

λ,μ = ∅, this implies that

z1λ,μ and z2λ,μ are distinct. This completes the proofs of Theorems 1.1 and 1.2.

4. Proof of Theorem 1.3

For the existence of a second positive solution of System (Sλf,μg,h) in the critical case α+β = p∗,
we will however need here a stronger restriction on h(x), namely, h(x) > 0 inΩ but f(x) and
g(x) may be also allowed to change sign in Ω. Now, we will establish the existence of a local
minimum for Iλ,μ onN−

λ,μ in the critical case α + β = p∗ to obtain a second positive solution of
System (Sλf,μg,h).

Lemma 4.1. If {zn} ⊂ W is a (PS)c-sequence for Iλ,μ, then {zn} is bounded inW .

Proof. Let zn = (un, vn). We argue by contradiction. Assume that ‖zn‖ → ∞. Let

ẑn = (ûn, v̂n) =
zn
‖zn‖ =

(
un

‖zn‖ ,
vn

‖zn‖
)
. (4.1)
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We may assume that ẑn ⇀ ẑ = (û, v̂) in W . This implies that ûn → û, v̂n → v̂ strongly in
Ls(Ω) for all 1 ≤ s < p∗ and

Kλ,μ(ẑn) = Kλ,μ(ẑ) + on(1). (4.2)

Since {zn} is a (PS)c-sequence for Iλ,μ and ‖zn‖ → ∞, there hold

1
p
‖ẑn‖p − ‖zn‖q−p

q
Kλ,μ(ẑn) − ‖zn‖α+β−p

α + β
J(ẑn) = on(1), (4.3)

‖ẑn‖p − ‖zn‖q−pKλ,μ(ẑn) − ‖zn‖α+β−pJ(ẑn) = on(1). (4.4)

From (4.2)–(4.4), we can deduce that

‖ẑn‖p =
p
(
α + β − q

)

q
(
α + β − p

)‖zn‖q−pKλ,μ(ẑn) + on(1). (4.5)

Since 1 ≤ q < p and ‖zn‖ → ∞, (4.5) implies

‖ẑn‖p −→ 0, as n −→ ∞, (4.6)

which is contrary to the fact ‖ẑn‖ = 1.

Denote

Sα,β = inf
u,v∈W1,p

0 (Ω)\{0}

∫
Ω

(|∇u|p + |∇v|p)dx
(∫

Ω|u|α|v|βdx
)p/(α+β) . (4.7)

Modifying the proof of Alves et al. [11, Theorem 5], we can easily deduce that

Sα,β =

((
α

β

)β/(α+β)

+
(
β

α

)α/(α+β)
)
S, (4.8)

where S is the best constant defined by

S = inf
u∈W1,p

0 (Ω)\{0}

∫
Ω |∇u|pdx

(∫
Ω |u|α+βdx

)p/(α+β) . (4.9)

When α + β = p∗, it is well known that S is achieved if and only if Ω = R
N by the function
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Uε(x) = CN

(
ε1/p

ε + |x|p/(p−1)
)(N−p)/p

, ε > 0, (4.10)

where CN = [((N − p)/(p − 1))p−1N]
(N−p)/p2

.

Lemma 4.2. Let c∞ = (1/N)SN/p

α,β |h|−(N−p)/p
∞ . If {zn} ⊂ W is a (PS)c-sequence for Iλ,μ with c ∈

(0, c∞), then there exists a subsequence of {zn} converging weakly to a nontrivial solution of System
(Sλf,μg,h).

Proof. Let {zn} ⊂ W be a (PS)c-sequence for Iλ,μ with c ∈ (0, c∞). Write zn = (un, vn). We know
from Lemma 4.1 that {zn} is bounded in W , and then zn ⇀ z = (u, v) up to a subsequence,
when z is a critical point of Iλ,μ. Furthermore, we may assume un ⇀ u, vn ⇀ v in W

1,p
0 (Ω)

and un → u, vn → v in Ls(Ω) for all 1 ≤ s < p∗ and un → u, vn → v a.e. on Ω. Hence we
have that I ′λ,μ(z) = 0 and

Kλ,μ(zn) = Kλ,μ(z) + on(1). (4.11)

Next we verify that u/≡ 0 or v /≡ 0. Arguing by contradiction, we assume u ≡ 0 and v ≡ 0. Set

l = lim
n→∞

J(zn). (4.12)

Since I ′
λ,μ

(zn) = on(1) and {zn} is bounded inW , then by (4.11), we can deduce that

0 =
〈
lim
n→∞

I ′λ,μ(zn), zn
〉

= lim
n→∞

(‖zn‖p − J(zn)
)
= lim

n→∞
‖zn‖p − l, (4.13)

that is,

lim
n→∞

‖zn‖p = l. (4.14)

If l = 0, then we get c = limn→∞ Iλ,μ(zn) = 0, which contradicts with c > 0. Thus we conclude
that l > 0. By (4.7) and (4.12), we obtain

Sα,βl
p/p∗ = Sα,β lim

n→∞

(∫

Ω
h(x)|un|α|vn|βdx

)p/p∗

≤ Sα,β lim
n→∞

(∫

Ω
|h|∞|un|α|vn|βdx

)p/p∗

≤ |h|p/p∗∞ lim
n→∞

‖zn‖p

= |h|p/p∗∞ l,

(4.15)
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which implies that

l ≥ S
N/p

α,β
|h|−(N−p)/p

∞ . (4.16)

Hence, from (4.11)–(4.16) we get

c = lim
n→∞

Iλ,μ(zn)

= lim
n→∞

(
1
p
‖zn‖p − 1

q
Kλ,μ(zn) − 1

α + β
J(zn)

)

=
(
1
p
− 1
α + β

)
l

≥ 1
N

S
N/p

α,β
|h|−(N−p)/p

∞ = c∞.

(4.17)

This is a contradiction to c < c∞. Therefore z is a nontrivial solution of System (Sλf,μg,h).

Lemma 4.3. Assume that (A1)–(A4) hold. Then for any λ, μ > 0, there exist a nonnegative function
zλ,μ ∈ W \ {0} such that

sup
t≥0

Iλ,μ
(
tzλ,μ

)
< c∞, (4.18)

where c∞ is the constant given in Lemma 4.2.
In particular, θ−

λ,μ < c∞ for all 0 < λp/(p−q) + μp/(p−q) < Λ1, where Λ1 is as in (1.6).

Proof. From (A4), we know that there exists 0 < ρ0 ≤ r0 such that, for all x ∈ B(0, 2ρ0),

h(x) = h(0) + o
(
|x|δ0

)
for some δ0 >

N

p − 1
. (4.19)

Now, we consider the functional Q : W → R defined by

Q(z) =
1
p
‖z‖p − 1

α + β
J(z) ∀z = (u, v) ∈ W (4.20)

and define a cut-off function η(x) ∈ C∞
0 (Ω) such that η(x) = 1 for |x| < ρ0, η(x) = 0 for

|x| > 2ρ0, 0 ≤ η ≤ 1, and |∇η| ≤ C. For ε > 0, let

uε(x) =
ε(N−p)/p2η(x)

(
ε + |x|p/(p−1)

)(N−p)/p . (4.21)

From Hsu [7, Lemma 4.3], we have

|∇uε|pp =
∫

RN

|∇U|pdx +O
(
ε(N−p)/p

)
(4.22)
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∫
Ω |∇uε|pdx

(∫
Ω h(x)|uε|p∗

)p/p∗ = S +O
(
ε(N−p)/p

)
, (4.23)

where U(x) = (1 + |x|p/(p−1))−(N−p)/p.
Set u0 = p

√
αuε, v0 = p

√
βuε, and z0 = (u0, v0) ∈ W . Then, from (4.8), (4.23), and |h|∞ = 1,

we conclude that

sup
t≥0

Q(tz0) ≤ 1
N

⎛
⎜⎝

(
α + β

) ∫
Ω |∇uε|pdx

(
αα/pββ/p

∫
Ω h(x)|uε|p∗

)p/p∗

⎞
⎟⎠

N/p

≤ 1
N

((
α

β

)β/(α+β)

+
(
β

α

)α/(α+β)
)N/p(

S +O
(
ε(N−p)/p

))N/p

=
1
N

((
α

β

)α/(α+β)

+
(
β

α

)α/(α+β)
)N/p(

SN/p +O
(
ε(N−p)/p

))

=
1
N

S
N/p

α,β
+O
(
ε(N−p)/p

)
,

(4.24)

where the following fact has been used:

sup
t≥0

(
tp

p
A − tα+β

α + β
B

)
=

1
N

A

(
A

B

)(N−p)/p
=

1
N

(
A

Bp/p∗

)N/p

, A, B > 0. (4.25)

Using the definitions of Iλ,μ, z0 and by (A3) and (A4), we get

Iλ,μ(tz0) ≤ tp

p
‖z0‖p =

α + β

p
tp|∇uε|pp ∀t ≥ 0, λ, μ > 0. (4.26)

Combining this with (4.22), let ε ∈ (0, 1), then there exists t0 ∈ (0, 1) independent of ε such
that

sup
0≤t≤t0

Iλ,μ(tz0) < c∞, ∀λ, μ > 0, ∀ε ∈ (0, 1). (4.27)

Using the definitions of Iλ,μ, z0 and by α, β > 1, (4.24) and (A3), we have
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sup
t≥t0

Iλ,μ(tz0) = sup
t≥t0

(
Q(tz0) − tq

q
Kλ,μ(tz0)

)

≤ 1
N

S
N/p

α,β +O
(
ε(N−p)/p

)
− t

q

0

q

(
a0α

q/pλ + b0β
q/pμ

)∫

B(0,ρ0)
|uε|qdx

≤ 1
N

S
N/p

α,β
+O
(
ε(N−p)/p

)
− t

q

0

q
γ0
(
λ + μ

) ∫

B(0,ρ0)
|uε|qdx,

(4.28)

where γ0 = min{a0α
q/p, b0β

q/p}.
Let 0 < ε ≤ ρ

p/(p−1)
0 ; we have

∫

B(0,ρ0)
|uε|qdx =

∫

B(0,ρ0)

εq(N−p)/p2

(
ε + |x|p/(p−1)

)((N−p)/p)q dx

≥
∫

B(0,ρ0)

εq(N−p)/p2

(
2ρp/(p−1)0

)((N−p)/p)q dx

= C1
(
N,p, q, ρ0

)
εq(N−p)/p2 .

(4.29)

Combining with (4.28) and (4.29), for all ε ∈ (0, ρp/(p−1)0 ), we get

sup
t≥t0

Iλ,μ(tz0) ≤ 1
N

S
N/p

α,β
+O
(
ε(N−p)/p) − t

q

0

q
C1γ0

(
λ + μ

)
εq(N−p)/p2 . (4.30)

Hence, for any λ, μ > 0, we can choose small positive constant ελ,μ < min{1, ρp/(p−1)0 } such that

O
(
ε
(N−p)/p
λ,μ

)
− t

q

0

q
C1γ0

(
λ + μ

)
ε
q(N−p)/p2
λ,μ < 0. (4.31)

Now, we fix ελ,μ and let zλ,μ = ( p
√
αuελ,μ ,

p
√
βuελ,μ). From (4.27), (4.30), (4.31), we can deduce

that, for any λ, μ > 0, there exists a nonnegative function zλ,μ ∈ W \ {0} such that

sup
t≥0

Iλ,μ
(
tzλ,μ

)
< c∞. (4.32)

Finally, we prove that θ−
λ,μ < c∞ for all 0 < λp/(p−q)+μp/(p−q) < Λ1. Recall that zλ,μ = (uλ,μ, vλ,μ) =

( p
√
αuελ,μ ,

p
√
βuελ,μ). By (A3), (A4), and the definition of uελ,μ , we have

J
(
zλ,μ
)
> 0, Kλ,μ

(
zλ,μ
)
> 0. (4.33)
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Combining this with Lemma 2.6 (ii), from the definition of θ−
λ,μ and (4.32), for all 0 < λp/(p−q) +

μp/(p−q) < Λ1, we obtain that there exists tλ,μ > 0 such that tλ,μzλ,μ ∈ N−
λ,μ

and

θ−
λ,μ ≤ Iλ,μ

(
tλ,μzλ,μ

) ≤ sup
t≥0

Iλ,μ
(
tzλ,μ

)
< c∞. (4.34)

This completes the proof.

Theorem 4.4. Assume that (A1)–(A4) hold. If 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then Iλ,μ
satisfies the (PS)θ−

λ,μ
condition. Moreover, Iλ,μ has a minimizer z2λ,μ inN−

λ,μ and satisfies the following:

(i) Iλ,μ(z2λ,μ) = θ−
λ,μ;

(ii) z2λ,μ is a positive solution of System (Sλf,μg,h), where Λ1 is the same as in (1.6).

Proof. If 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1, then by Theorem 2.5 (ii), Proposition 3.2 (ii),
and Lemma 4.3, there exists a (PS)θ−

λ,μ
-sequence {zn} ⊂ N−

λ,μ in W for Iλ,μ with θ−
λ,μ ∈ (0, c∞).

From Lemma 4.2, there exist a subsequence still denoted by {zn} and a nontrivial solution
z2
λ,μ

= (u2
λ,μ

, v2
λ,μ

) ∈ W of System (Sλf,μg,h) such that zn ⇀ z2
λ,μ

weakly in W . Now we prove
that zn → z2λ,μ strongly in W and Iλ,μ(z2λ,μ) = θ−

λ,μ. By (3.4), if z ∈ Nλ,μ, then

Iλ,μ(z) =
p∗ − p

p∗p
‖z‖p − p∗ − q

p∗q
Kλ,μ(z). (4.35)

First, we prove that z2λ,μ ∈ N−
λ,μ. On the contrary, if z2λ,μ ∈ N+

λ,μ, then by N−
λ,μ closed in W , we

have ‖z2
λ,μ

‖ < limn→∞‖zn‖. By Lemma 2.3 (i) and (A4), we obtain that

Kλ,μ

(
z2λ,μ

)
> 0, J

(
z2λ,μ

)
> 0. (4.36)

By Lemma 2.7, there exists a unique t− such that t−z2
λ,μ

∈ N−
λ,μ

. Since zn ∈ N−
λ,μ

, Iλ,μ(zn) ≥
Iλ,μ(tzn) for all t ≥ 0 and by (4.35), we have

θ−
λ,μ ≤ Iλ,μ

(
t−z2λ,μ

)
< lim

n→∞
Iλ,μ
(
t−zn

) ≤ lim
n→∞

Iλ,μ(zn) = θ−
λ,μ, (4.37)

and this is a contradiction.
In order to prove that Iλ,μ(z2λ,μ) = θ−

λ,μ, it suffices to recall that zn, z2λ,μ ∈ N−
λ,μ for all n,

by (4.35). and apply Fatou’s lemma to get

θ−
λ,μ ≤ Iλ,μ

(
z2λ,μ

)
=

p∗ − p

p∗p

∥∥∥z2λ,μ
∥∥∥
p − p∗ − q

p∗q
Kλ,μ

(
z2λ,μ

)

≤ lim inf
n→∞

(
p∗ − p

p∗p
‖zn‖p −

p∗ − q

p∗q
Kλ,μ(zn)

)

≤ lim inf
n→∞

Iλ,μ(zn) = θ−
λ,μ.

(4.38)
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This implies that Iλ,μ(z2λ,μ) = θ−
λ,μ and limn→∞‖zn‖p = ‖z2λ,μ‖

p. Let z̃n = zn − z2λ,μ, then by
Brézis and Lieb lemma [26] implies

‖z̃n‖p = ‖zn‖p −
∥∥∥z2λ,μ

∥∥∥
p
. (4.39)

Therefore, zn → z2λ,μ strongly in W .
Since Iλ,μ(z2λ,μ) = Iλ,μ(|z2λ,μ|) and |z2

λ,μ
| ∈ N−

λ,μ
, by Lemmas 2.2, and 2.3 (iii), we may

assume that z2λ,μ is a nontrivial nonnegative solution of System (Sλf,μg,h). Finally, by using the

same arguments as in the proof of Theorem 3.3, for all 0 < λp/(p−q) + μp/(p−q) < (q/p)p/(p−q)Λ1,
we have that z2λ,μ is a positive solution of System (Sλf,μg,h).

Proof of Theorem 1.3. By Theorems 3.3, and 4.4, we obtain that for all λ, μ > 0 and 0 < λp/(p−q) +
μp/(p−q) < (q/p)p/(p−q)Λ1, (Sλf,μg,h) has two positive solutions z1

λ,μ
, z2

λ,μ
with z1

λ,μ
∈ N+

λ,μ
, z2

λ,μ
∈

N−
λ,μ

. Since N+
λ,μ

∩ N−
λ,μ

= ∅, this implies that z1
λ,μ

and z2
λ,μ

are distinct. This completes the
proof of Theorem 1.3.

References

[1] A. Ambrosetti, H. Brezis, and G. Cerami, “Combined effects of concave and convex nonlinearities in
some elliptic problems,” Journal of Functional Analysis, vol. 122, no. 2, pp. 519–543, 1994.

[2] D. G. de Figueiredo, J.-P. Gossez, and P. Ubilla, “Local “superlinearity” and “sublinearity” for the
-Laplacian,” Journal of Functional Analysis, vol. 257, no. 3, pp. 721–752, 2009.

[3] J. G. Azorero and I. P. Peral, “Some results about the existence of a second positive solution in a
quasilinear critical problem,” Indiana University Mathematics Journal, vol. 43, no. 3, pp. 941–957, 1994.

[4] J. P. G. Azorero, I. Peral, and J. J. Manfredi, “Sobolev versus Hölder local minimizers and global
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[22] M. Willem,Minimax Theorems, Birkhäuser Boston, Boston, Mass, USA, 1996.
[23] G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Annales
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