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The aim of the present work is to suggest and establish a numerical algorithm based on matrix
multiplications for computing approximate inverses. It is shown theoretically that the scheme
possesses seventh-order convergence, and thus it rapidly converges. Some discussions on the
choice of the initial value to preserve the convergence rate are given, and it is also shown in
numerical examples that the proposed scheme can easily be taken into account to provide robust
preconditioners.

1. Introduction

Let us consider the square matrix AN×N with real or complex elements which is nonsingular.
It is well known that its inverse is available and could be found by the direct methods such
as LU or QR decompositions, see for example [1]. When the matrix inverse is computed, the
method of choice should be probably Gaussian elimination with partial pivoting (GEPP). The
resulting residual bounds and possible backward errors may be much smaller in this case, see
[2] (subsection on the “Use and abuse of the matrix inverse”).

An effective tool to compute approximate inverses of the matrix A is to use iteration-
type methods for this purpose which are based on matrix multiplications and are of great
interest and accuracy when implementing on parallel machines. In fact, one way is to
construct iterative methods of high order of convergence to findmatrix inversion numerically
for all types of matrices (especially for ill-conditioned ones).

A clear use of such schemes is that one may apply them to find A−1 and then, by an
easy matrix-vector multiplication, compute the solution of the linear system of the equations
Ax = b. However another use is in constructing approximate inverse preconditioners; that is,
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a very robust approximate preconditioner can easily be constructed using one, two, or three
steps of such iterative methods, and the resulting left preconditioned systems would be

Ax = b, (1.1)

wherein A = P−1A, b = P−1b, and P−1 ≈ A−1.
Such obtained approximate inverse preconditioners could be robust competitors to

the classical or modern methods such as AINV or FAPINV; see for example [3, 4]. The
approximate inverse (AINV) and the factored approximate inverse (FAPINV) are two known
algorithms in the field of preconditioning of linear systems of equations. Both of these
algorithms compute a sparse approximate inverse of matrix A in the factored form and are
based on computing two sets of vectors which are A biconjugate.

In this paper, in order to challenge with very ill-conditioned matrices or to find the
preconditioner P−1 in less number of iterations and having high accuracy, we will propose
an efficient iterative method for finding A−1 numerically. Theoretical analysis and numerical
experiments show that the new method is more effective than the existing ones in the case of
constructing approximate inverse preconditioners.

The rest of the paper is organized as follows. Section 2 is devoted to a brief review
of the available literature. The main contribution of this paper is given in Section 3.
Subsequently, the method is examined in Section 4. Finally, concluding remarks are presented
in Section 5.

2. Background

Several methods of various orders were proposed for approximating (rectangular or square)
matrix inverses, such as those according to the minimum residual iterations [5] and
Hotelling-Bodewig algorithm [6].

The Hotelling-Bodewig algorithm [6] is defined as

Vn+1 = Vn(2I −AVn), n = 0, 1, 2, . . . , (2.1)

where I is the identity matrix. Note that throughout this paper we consider matrices of the
same dimension unless it is stated obviously.

In 2011, Li et al. in [7] presented the following third-order method:

Vn+1 = Vn(3I −AVn(3I −AVn)), n = 0, 1, 2, . . . , (2.2)

and also proposed another third-order iterative method for approximatingA−1 as comes next

Vn+1 =
[
I +

1
4
(I − VnA)(3I − VnA)2

]
Vn, n = 0, 1, 2, . . . . (2.3)

It is intersecting to mention that the method (2.2) can be found in the Chapter 5 of [8].
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As an another method from the existing literature, Krishnamurthy and Sen suggested
the following sixth-order iteration method [8] for the above purpose:

Vn+1 = Vn(2I −AVn)(3I −AVn(3I −AVn))(I −AVn(I −AVn))

= Vn(I + (I−AVn)(I+(I−AVn)(I+ (I−AVn)(I + (I −AVn)(I + (I −AVn)(I + (I −AVn))))))),
(2.4)

where n = 0, 1, 2, . . . .
For further reading refer to [9, 10].

3. An Accurate Seventh-Order Method

This section contains a new high-order algorithm for findingA−1 numerically. In order to deal
with very ill-conditioned linear systems, to find efficient preconditioners rapidly, or to find
robust approximate inverses, we suggest the following matrix multiplication-based iterative
method:

Vn+1 =
1
16

Vn(120I +AVn(−393I +AVn(735I +AVn(−861I

+AVn (651I +AVn(−315I +AVn(93I +AVn(−15I +AVn)))))))),
(3.1)

for any n = 0, 1, 2, . . ., wherein I is the identity matrix, and the sequence of iterates {Vn}n=∞n=0
converges to A−1 for a good initial guess.

Theorem 3.1. Assume that A = [ai,j]N×N be an invertible matrix with real or complex elements. If
the initial guess V0 satisfies

‖I −AV0‖ < 1, (3.2)

then the iteration (3.1) converges to A−1 with at least seventh convergence order.

Proof. In order to prove the convergence behavior of (3.1), we assume that ‖I − AV0‖ < 1,
E0 = I −AV0, and En = I −AVn. We then have

En+1 = I −AVn+1

= I −A

[
1
16

Vn(120I +AVn(−393I +AVn(735I +AVn(−861I +AVn(651I +AVn(−315I

+AVn(93I +AVn(−15I +AVn))))))))
]

= I −A

[
1
16

Vn

(
120I − 393AVn + 735(AVn)2 − 861(AVn)3 + 651(AVn)4 − 315(AVn)5
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+93(AVn)6 − 15(AVn)7 + (AVn)8
)]

= − 1
16

(−4I +AVn)2(−I +AVn)7

=
1
16

(3I + I −AVn)2(I −AVn)7

=
1
16

(3I + En)2(En)7

=
1
16

(
9I + 6En + E2

n

)
(En)7

=
1
16

(
E9
n + 6E8

n + 9E7
n

)
.

(3.3)

Hence, it is now and according to the above simplifications easily to have

‖En+1‖ ≤ 1
16

(∥∥∥E9
n + 6E8

n + 9E7
n

∥∥∥) ≤ 1
16

(
‖En‖9 + 6‖En‖8 + 9‖En‖7

)
. (3.4)

Furthermore, since ‖E0‖ < 1, and ‖E1‖ ≤ ‖E0‖7 < 1, we get that

‖En+1‖ ≤ ‖En‖7 ≤ ‖En−1‖7
2 ≤ · · · ≤ ‖E0‖7

n+1
< 1, (3.5)

where (3.5) tends to zero when n → ∞. That is to say

I −AVn −→ 0, (3.6)

when n → ∞, and thus for (3.6), we obtain

Vn −→ A−1, as n −→ ∞. (3.7)

We must now illustrate the seventh order of convergence for (3.1) due to the obtained
theoretical discussions that (3.1) converges under the assumption made in Theorem 3.1 to
A−1. To do this aim, we denote εn = Vn − A−1, as the error matrix in the iterative procedure
(3.1). We have

I −AVn+1 =
1
16

(
(I −AVn)9 + 6(I −AVn)8 + 9(I −AVn)7

)
. (3.8)

Equation (3.8) yields in



International Journal of Mathematics and Mathematical Sciences 5

A
(
A−1 − Vn+1

)
=

1
16

(
A9

(
A−1 − Vn

)9
+ 6A8

(
A−1 − Vn

)8
+ 9A7

(
A−1 − Vn

)7
)
, (3.9)

A−1 − Vn+1 =
1
16

(
A8

(
A−1 − Vn

)9
+ 6A7

(
A−1 − Vn

)8
+ 9A6

(
A−1 − Vn

)7
)
. (3.10)

Using (3.10), we attain

εn+1 =
1
16

(
A8(εn)9 − 6A7(εn)8 + 9A6(εn)7

)
, (3.11)

which simplifies by taking norm from both sides

‖εn+1‖ ≤ 1
16

[∥∥∥A8ε9n

∥∥∥ +
∥∥∥6A7ε8n

∥∥∥ +
∥∥∥9A6ε7n

∥∥∥], (3.12)

and consequently

‖εn+1‖ ≤
(

1
16

[
9‖A‖6 + 6‖A‖7‖εn‖ + ‖A‖8‖εn‖2

])
‖εn‖7. (3.13)

This shows that the method (3.1) converges toA−1 with at least seventh order of convergence.
This concludes the proof.

Remark 3.2. For the above Theorem 3.1, we can conclude some points as follows.

(1) From (3.4), one knows that the condition (3.2) may be weakened. In fact, we only
need that the spectral radius of AV0 be less than one for the convergence of the
above newmethod (3.1). In this case, the choice of V0 may be obtained according to
the estimate formulas for the spectral radius ρ(AV0) (see, e.g., [11])

(2) In some experiments and to reduce the computational cost, wemay solve thematrix
multiplications, based on the vector and parallel processors.

(3) Finally, for the choice of V0, there exist many of different forms. We will describe
this problem after Theorem 3.3 based on some literatures.

We now give a property about the scheme (3.1). This property shows that {Vn}n=∞n=0 of
(3.1)may be applied to not only the left preconditioned linear system VnAx = Vnb but also to
the right preconditioned linear system AVny = b, where y = Vnx.

Theorem 3.3. Let again A = [ai,j]N×N be a nonsingular real or complex matrix. If

AV0 = V0A, (3.14)

is valid, then, for the sequence of {Vn}n=∞n=0 of (3.1), one has that

AVn = VnA, (3.15)

holds, for all n = 1, 2, . . . .
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Proof. The mathematical induction is taken into account herein. First, since AV0 = V0A, we
have

AV1 = A

(
1
16

V0(120I +AV0(−393I +AV0(735I +AV0(−861I +AV0(651I

+AV0(−315I +AV0(93I +AV0(−15I +AV0))))))))
)

=
1
16

V0A(120I + V0A(−393I + V0A(735I + V0A(−861I + V0A(651I

+V0A(−315I + V0A(93I + V0A(−15I + V0A))))))))

=
1
16

V0(120I + V0A(−393I + V0A(735I + V0A(−861I + V0A(651I

+V0A(−315I + V0A(93I + V0A(−15I + V0A))))))))A

= V1A.

(3.16)

Equation (3.16) shows that when n = 1, (3.15) is true. At the moment, suppose that AVn =
VnA is true, and then a straightforward calculation using (3.16) shows that, for all n ≥ 1,

AVn+1 = A

[
1
16

Vn(120I +AVn(−393I +AVn(735I +AVn(−861I +AVn(651I

+AVn(−315I +AVn(93I +AVn(−15I +AVn))))))))
]

=
1
16

VnA(120I + VnA(−393I + VnA(735I + VnA(−861I + VnA(651I

+VnA(−315I + VnA(93I + VnA(−15I + VnA))))))))

= Vn+1A.

(3.17)

This concludes the proof.

Note that according to the literatures [7, 9, 12, 13] and to find an initial value V0

to preserve the convergence order of such iterative methods, we need to fulfill at least the
condition given in Remark 3.2. or Theorem 3.1. We list some ways for this purpose in what
follows.

WAY 1 If a matrix is strictly diagonally dominant, then choose V0 as V0 =
diag(1/a11, 1/a22, . . . , 1/ann), where aii are the diagonal elements of A.

WAY 2 For the matrix A, choose V0 as V0 = AT/(‖A‖1 ‖A‖∞), wherein T stands for
transpose, ‖A‖1 = maxj{Σn

i=1|aij |} and ‖A‖∞ = maxi{Σn
j=1|aij |}.

WAY 3 If the ways 1-2 fail, then use V0 = αI, where I is the identity matrix, and α ∈ R
should adaptively be determined such that ‖I − αA‖ < 1.
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4. Numerical Testing

In this section, experiments are presented to demonstrate the capability of the suggested
method. For solving a square linear system of equations of the general form Ax = b, wherein
A ∈ C

N×N , we can now propose the following efficient algorithm: xn+1 = Vn+1b while n =
0, 1, 2, . . . .

The programming package MATHEMATICA 8, [14, 15], has been used in this section.
For numerical comparisons, we have used the methods (2.1), (2.2), the sixth-order method of
Krishnamurthy and Sen (2.4), and the new algorithm (3.1).

As noted in Section 1, such high order schemes are somuch fruitful in providing robust
preconditioners to the linear systems. In fact, we believe that only one full iteration of the
scheme (3.1) for even large sparse systems and by defining SparseArray[mat] to reduce the
computational load of matrix multiplications is enough to find acceptable preconditioners
to the linear systems. Anyhow, using parallel computations with simple commands for this
purpose in MATHEMATICA 8 may reduce the computational burden much more.

Test Problem 1

Consider the linear system Ax = b, wherein A is the large sparse complex matrix defined by

n = 1000;

A = SparseArray[{Band[{1, 120}] -> -2., Band[{950, 1}] -> 2. - I,

Band[{-700, 18}] -> 1., Band[{1, 1}] -> 23.,

Band[{1, 100}] -> 0.2, Band[{214, -124}] -> 1.,

Band[{6, 800}] -> 1.1},{n, n}, 0.].

The dimension of this matrix is 1000 with complex elements in its structure. The right hand
side vector is considered to be b = (1, 1, . . . , 1)T . Although page limitations do not allow us
to provide the full form of such matrices, the structure of such matrices can easily be drawn.
Figure 1 illustrates the plot and also the array plot of this matrix.

Now, we expect to find robust approximate inverses for A in less iterations by the
high-order iterative methods. Furthermore, as we described in the previous sections, the
approximate inverses could be considered for left or right preconditioned systems.

Table 1 clearly shows the efficiency of the proposed iterative method (3.1) in finding
approximate inverses by manifesting the number of iterations and the obtained residual
norm. When working with sparse matrices, an important factor which affects clearly
on the computational cost of the iterative method is the number of nonzeros elements.
The considered sparse complex matrix A, in test problem 1, has 3858 nonzero elements
at the beginning. We list the number of nonzero elements for different iteration matrix
multiplication-based schemes in Table 1. It is obvious that the new scheme is much better
than (2.1) and (2.2), but when comparing to (2.4) its number of nonzero elements are higher;
however, this is completely satisfactory due to the better numerical results we have obtained
for the residual norm. In fact, if one let the (2.4) to cycle more in order to reach the residual
norm which is correct up to seven decimal places, then the obtained nonzero elements will
be more than the corresponding one of (3.1).

At this time, if the user is satisfied of the obtained residual norm for solving the large
sparse linear system then can be stopped, else, one can use the attained approximate inverse
as a left or right preconditioner and solve the resulting preconditioned linear system with
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Figure 1: The matrix plot (a) and the array plot (b) of the coefficient complex matrix in test problem 1.

Table 1: Results of comparisons for the test problem 1.

Iterative methods (2.1) (2.2) (2.4) (3.1)
Number of iterations 3 2 1 1
Number of nonzero elements 126035 137616 65818 119792
Residual norm 3.006 × 10−7 2.628 × 10−7 1.428 × 10−5 9.077 × 10−7

low condition number using the LinearSolve command. Note that the written code in order to
implement the test problem 1 for the method (3.1) is given as follows:

b = SparseArray[Table[1,{k, n}]];DA = Diagonal[A];

B = SparseArray[Table[(1/DA[[i]]),{i, 1, n}]];
Id = SparseArray[{{i , i } -> 1},{n, n}];
X = SparseArray[DiagonalMatrix[B]];

Do[X1 = SparseArray[X];AV = Chop[SparseArray[A.X1]];

X = Chop[(1/16) X1.SparseArray[(120 Id +AV.(-393 Id

+AV.(735 Id +AV.(-861 Id +AV.(651 Id +AV.(-315 Id+

AV.(93 Id + AV.(-15 Id + AV))))))))]];

Print[X];L[i] = Norm[b - SparseArray[A.(X.b)]];

Print["The residual norm of the linear system solution is:"

Column[{i}, Frame -> All, FrameStyle -> Directive[Blue]]

Column[{L[i]}, Frame -> All, FrameStyle -> Directive[Blue]]];

, {i, 1}].

In what follows, we try to examine the matrix inverse-finding iterative methods of this
paper on a dense matrix which is of importance in applications.
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Figure 2: The matrix plot (a) and the array plot (b) of the coefficient complex matrix in test problem 2.

Table 2: Results of comparisons for the test problem 2 with condition number 18137.2.

Iterative methods (2.1) (2.2) (2.4) (3.1)
Number of iterations 29 18 11 10
The condition number of VnA 1.00135 1.01234 1.01780 1.00114
Residual norm 6.477 × 10−7 5.916 × 10−6 8.517 × 10−6 5.482 × 10−7

Test Problem 2

Consider the linear system Ax = b, wherein A is the dense matrix defined by

n = 40;

A = Table[Sin[(x∗y)]/(x + y) - 1.,{x, n},{y, n}].

The right hand side vector is again considered to be b = (1, 1, . . . , 1)T . Figure 2 illustrates the
plot and array plot of this matrix. Due to the fact that, for dense matrices, such plots will not
be illustrative, we have drawn the 3-D plots of the coefficient dense matrix using the zero-
order interpolation in test problem 2, alongside its approximate inverse obtained from the
method (3.1) after 11 iterations in Figure 3. We further expect to have a similar identity-like
behavior for the multiplication of A to its approximate inverse, and this is clear in part (c) of
Figure 3.

Table 2 shows the number of iterations and the obtained residual norm for different
methods in order to reveal the efficiency of the proposed iteration. There is a clear reduction
in computational steps for the proposed method (3.1) in contrast to the other existing well-
known methods of various orders in the literature. Table 2 further confirms the use of such
iterative inverse finders in order to find robust approximate inverse preconditioners again.
Since, the condition number of the coefficient matrix in Test Problem 2 is 18137.2, which is
quite high for a 40 × 40 matrix. But as can be furnished in Table 2, the obtained condition
number of the preconditioned matrix after the specified number of iterations is very small.

We should here note that the computational time requiring for implementing all the
methods in Tables 1 and 2 for the Test Problems 1 and 2 is less than one second, and due
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Figure 3: The 3D plot of the structure of the coefficient matrix (a) in the Test Problem 2, its approximate
inverse (b) by the method (3.1) and their multiplication to obtain a similar output to the identity matrix
(c).

to this we have not listed them herein. For the second test proplem, we have used V0 =
AT/(‖A‖1‖A‖∞)

5. Concluding Remarks

In the present paper, the author along with the helpful suggestions of the reviewers has
developed an iterative method in inverse finding of matrices. Note that such high order-
iterative methods are so efficient for very ill-conditioned linear systems or to find robust
approximate inverse preconditioners. We have shown analytically that the suggested method
(3.1), reaches the seventh order of convergence. Moreover, the efficacy of the new scheme
was illustrated numerically in Section 4 by applying to a sparse matrix and an ill-conditioned
densematrix. All the numerical results confirm the theoretical aspects and show the efficiency
of (3.1).
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