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It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L)/0 is
Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L
satisfies DCC on small elements.

1. Introduction

By a lattice we mean a partially ordered set (L,≤) such that every pair of elements a, b in L
has a greatest lower bound (or a meet) a ∧ b and a least upper bound (or a join) a ∨ b; that is,

(i) a ∧ b ≤ a, a ∧ b ≤ b, and c ≤ a ∧ b for all c ∈ L with c ≤ a, c ≤ b,

(ii) a ≤ a ∨ b, b ≤ a ∨ b, and a ∨ b ≤ d for all d ∈ L with a ≤ d, b ≤ d.

Note that, for given a, b ∈ L, a ∧ b and a ∨ b are unique, and

a ≤ b ⇐⇒ a = a ∧ b ⇐⇒ b = a ∨ b. (1.1)

Let (L,≤,∧,∨) (or just L) be any lattice. Given a, b ∈ L, we set

a ≤′b ⇐⇒ b ≤ a. (1.2)
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Then (L,≤′) is a partially ordered set; moreover, for any a, b ∈ L, a, b have greatest lower
bound a ∨ b and least upper bound a ∧ b. We call (L,≤′,∨,∧) the opposite lattice of L, and
denote it by L◦.

Let (L,≤ ∧,∨) be any lattice. Let a ≤ b in L. We define

b

a
= {x ∈ L : a ≤ x ≤ b}. (1.3)

(Sometimes b frac a is denoted by b/a.)
A lattice (L,≤,∧,∨) has a least element if there exists z ∈ L such that z ≤ a(a ∈ L). In

this case, z is uniquely defined and is usually denoted by 0. The lattice L has a greatest element
if there exists u ∈ L such that a ≤ u(a ∈ L). In this case, u is uniquely defined and is usually
denoted by 1. A lattice L is called complete if every subset of L has a meet and a join, and it is
called modular if a ∧ (b ∨ c) = b ∨ (a ∧ c) for all a, b, c in L with b ≤ a. For more information
about lattice theory, refer to [1–3].

Throughout this paper (L,≤,∨,∧, 0, 1) will be a complete modular lattice. An element
e ∈ L is called an essential element if e ∧ x /= 0 for every nonzero element x ∈ L. An element
s ∈ S is said to be small if s is an essential element of the opposite lattice L◦. Let E(L) denote
the set of all essential elements of L. The set of all small elements of Lwill be denoted by S(L).

A set {ci | i ∈ I} ⊆ L is called a direct set if, for all i, j ∈ I, there exists k ∈ I with
ci ∨ cj ≤ ck. The lattice L is said to be upper continuous if, for every direct set {ci | i ∈ I}
in L and element a ∈ L, we have a ∧ (

∨
i∈Ici) =

∨
i∈I(a ∧ ci). On the other hand, L is said

to be lower continuous if for every inverse set {ci | i ∈ I} (i.e., for all i, j in I, there exists
k ∈ I with ck ≤ ci ∧ cj) and element a ∈ L, a ∨ (

∧
i∈Ici) =

∧
i∈I(a ∨ ci). We will call an

element f in L finitely generated element (or compact element) if whenever f ≤ ∨S, for some
direct set S in L, then there exists x ∈ S such that f ≤ x. Note that 0 is always a finitely
generated element of L. It is known that an element f is finitely generated if and only if
for every nonempty subset U of L with f ≤ ∨U there exists a finite subset F of U such
that f ≤ ∨F. A lattice L is said to be finitely generated (or compact) if 1 is finitely generated.
We call the lattice L compactly generated if each of its elements is a join of finitely generated
elements (see [2]). Note that every compactly generated lattice is upper continuous (see,
e.g., [4, Proposition 2.4]). Moreover, it is shown in [4, Exercises 2.7 and 2.9] that for every
element a of a compactly generated lattice L, the sublattices a/0 and 1/a are again compactly
generated. A lattice L is called a finitely cogenerated (or cocompact) lattice, if for every subset X
of L such that ∧X = 0 there is a finite subset F of X such that ∧F = 0. An element g ∈ L is said
to be finitely cogenerated (or cocompact) if the sublattice g/0 is a finitely cogenerated lattice. If
a < b and a ≤ c < b imply c = a, then we say that a is covered by b (or b covers a). If 0 is
covered by an element a of L, then a is called an atom element of L. A lattice L is said to be
semiatomic if 1 is a join of atoms in L (see [4]). The meet of all maximal elements (different
from 1) in L is denoted by Rad(L), and it is called the radical of L (see [2]). If L is compactly
generated, then Rad(L) is the join of all small elements of L (see [2, Theorem 8]). The join of
all atoms of L, denoted by Soc(L), is called the socle of L. The socle of a compactly generated
lattice is equal to the meet of all essential elements (see [4, Theorem 5.1]).

A non-empty subset S of L is called an independent set if, for every x ∈ S and finite
subset T = {t1, . . . , tn} of S with x /∈ T , x ∧ (t1 ∨ · · · ∨ tn) = 0. We say that a nonzero lattice L
has finite uniform (or Goldie) dimension if L contains no infinite independent sets; equivalently,
sup{k | L contains an independent subset of cardinality equal to k} = n < ∞. In this case L
is said to have uniform (or Goldie) dimension n and this is denoted by u(L). We shall say
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that L has hollow (or dual Goldie) dimension n, provided the opposite lattice L◦ has uniform
dimension n. The lattice L is said to be Artinian (noetherian) if L satisfies the descending
(ascending) chain condition on its elements. A lattice L will be called an E-complemented
lattice if, for each a ∈ L, there exists b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L).

In Section 2 we mainly prove that a lattice L is noetherian if and only if L is E-
complemented and every essential element of L is finitely generated (Corollary 2.4). In
Section 3 we generalize Theorem 5 in [5] to lattice theory (Theorem 3.7).

2. Noetherian Lattices

The following lemma was given us by Patrick F. Smith from his unpublished notes.

Lemma 2.1. Let L be a lattice. Consider the following statements.

(i) L is noetherian.

(ii) L has finite uniform dimension.

(iii) L is E-complemented.

Then (i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii) Suppose L is noetherian but that L does not have finite uniform dimension.
Then there exists an infinite independent set of nonzero elements xn(n ∈ N). Consider the
ascending chain x1 ≤ x1 ∨x2 ≤ · · · in L. Because L is noetherian, there exists a positive integer
n such that x1 ∨ · · · ∨ xn = x1 ∨ · · · ∨ xn ∨ xn+1. This implies that xn+1 ≤ (x1 ∨ · · · ∨ xn)∧ xn+1 = 0,
a contradiction. Therefore L has finite uniform dimension.

(ii) ⇒ (iii) Let a ∈ L. If a ∈ E(L), we are done. If a /∈ E(L), then there exists 0/= b1 ∈ L
such that a ∧ b1 = 0. If a ∨ b1 ∈ E(L), we are done. Otherwise, there exists 0/= b2 ∈ L such
that (a ∨ b1) ∧ b2 = 0. Repeating this argument we produce an independent set {a, b1, b2, . . .}.
Thus this process must stop, so there exists k ∈ N such that a ∧ (b1 ∨ · · · ∨ bk) = 0 and
a ∨ (b1 ∨ · · · ∨ bk) ∈ E(L).

Remark 2.2. Note that if f is a finitely generated element of a lattice L, then for every non-
empty set U with f = ∨U there exists a finite subset F ofU such that f = ∨F.

Proposition 2.3. Let L be a lattice such that x is finitely generated for every x ∈ E(L). Then the
following are equivalent.

(i) L is noetherian.

(ii) L has finite uniform dimension.

(iii) L is E-complemented.

Proof. We only need to prove (iii) ⇒ (i) by Lemma 2.1. Let a be a nonzero element in L. By
(iii), there exists an element b of L such that a∧ b = 0 and a∨ b ∈ E(L). By hypothesis, a∨ b is
finitely generated. Let a = ∨S for a nonempty set S in L. Then a∨ b = ∨(S∪ {b}). Since a∨ b is
finitely generated, a∨b = ∨F ∨b for a finite subset F of S. Since L is modular, we have a = ∨F.
Therefore every element in L is finitely generated. Hence L is noetherian by [4, Proposition
2.3].
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Corollary 2.4. A lattice L is noetherian if and only if L isE-complemented and every essential element
of L is finitely generated.

Lemma 2.5. Every upper continuous lattice L is E-complemented.

Proof. Let a ∈ L. Let S = {b ∈ L | a∧b = 0}. Clearly, 0 ∈ S. Let {ci | i ∈ I} be a chain in S and let
c =

∨
i∈Ici. Then a∧ c = a∧ (

∨
i∈Ici) =

∨
i∈I(a∧ ci) = 0. By Zorn’s lemma, S contains a maximal

member u. Then a ∧ u = 0. Suppose that (a ∨ u) ∧ x = 0 for some x ∈ L. Then a ∧ (u ∨ x) = 0,
and hence u ∨ x ∈ S. Since u ≤ u ∨ x, we have u = u ∨ x and x ≤ u. Thus x = (a ∨ u) ∧ x = 0. It
follows that a ∨ u ∈ E(L). Therefore L is E-complemented.

Corollary 2.6. Let L be an upper continuous lattice. Then L is noetherian if and only if every essential
element in L is finitely generated.

Lemma 2.7 (see [4, Lemmas 7.3 and 7.5]). Let L be a lattice and k a positive integer. Then

(i) if t ∈ S(L), then s ∈ S(L) for every s ≤ t;

(ii) if s1, s2, . . . , sk ∈ S(L), then s1 ∨ s2 ∨ · · · ∨ sk ∈ S(L).

As an easy observation of Lemma 2.7, we can give the following two results.

Proposition 2.8 (see cf. [5, Proposition 2]). Let L be a compactly generated lattice. Then Rad(L)/0
is noetherian if and only if L satisfies ACC on small elements.

Proof. (⇒) By [2, Theorem 8].
(⇐) By assumption, L contains a maximal small element x. Since x is small in L, x ≤

Rad(L). Suppose that x /=Rad(L). Then there exists a small element s of L such that s /∈ x/0.
On the other hand, s ∨ x is a small element of L by Lemma 2.7(ii). By the maximality of x,
we have s ∨ x = x. This gives s ∈ x/0, a contradiction. Thus x = Rad(L). By Lemma 2.7(i),
Rad(L)/0 ⊆ S(L). Consequently, Rad(L)/0 is noetherian.

Proposition 2.9 (see cf. [5, Proposition 3]). Let L be a compactly generated lattice. Then the
following are equivalent.

(i) Rad(L)/0 has finite uniform dimension.

(ii) There exists a positive integer k such that for every small element s of Lwe have u(s/0) ≤ k.

(iii) L does not contain an infinite independent set of nonzero small elements.

Proof. (i) ⇒ (ii) Let s be a small element of L. By [2, Theorem 8], s ≤ Rad(L). Since u(s/0) ≤
u(Rad(L)/0), s/0 has finite uniform dimension. The rest is clear.

(ii) ⇒ (iii) Let {s1, s2, . . .} be an infinite independent set of nonzero small elements
of L. By Lemma 2.7(ii), s1 ∨ s2 ∨ · · · ∨ sk+1 ∈ S(L), and u((s1 ∨ s2 ∨ · · · ∨ sk+1)/0) ≥ k + 1, a
contradiction.

(iii) ⇒ (i) Suppose that Rad(L)/0 does not have finite uniform dimension. Then there
exists an infinite independent set of nonzero elements {x1, x2, . . .} of Rad(L)/0. Let i ≥ 1.
Since Rad(L)/0 is compactly generated, there exists a nonzero finitely generated element ki
of Rad(L)/0 such that ki ≤ xi. So by Lemma 2.7, ki ∈ S(L). Therefore {k1, k2, . . .} is an infinite
independent set of nonzero small elements of L, a contradiction. Thus Rad(L)/0 has finite
uniform dimension.
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3. Artinian Lattices

Lemma 3.1. Let L be a compactly generated semiatomic lattice. Then the following are equivalent.

(i) L is finitely generated.

(ii) L is finitely cogenerated.

(iii) 1 is a finite independent join of atoms.

(iv) L is Artinian.

Proof. (i) ⇔ (ii) ⇔ (iii) By [4, Theorem 11.1].
(iv) ⇒ (ii) By [4, Proposition 11.2].
(iii) ⇒ (iv) Note that if a is an atom in L, then a/0 is Artinian. Assume that 1 =

a1 ∨ a2 ∨ · · · ∨ an such that the join is independent and each ai is atom in L. Since each ai/0 is
Artinian, (a1 ∨ a2 ∨ · · · ∨ an)/0 is Artinian, and hence L is Artinian.

Lemma 3.2. Let L be a compactly generated lattice which satisfies DCC on small elements. If f is a
finitely generated element of Rad(L)/0, then f/0 is Artinian.

Proof. Let f be a finitely generated element of Rad(L)/0. Then f ≤ Rad(L) =
∨

I{si | si ∈ S(L)}
implies that f ≤ ∨

F{si | si ∈ S(L)} for some finite subset F of I. By Lemma 2.7, f ∈ S(L). By
assumption and Lemma 2.7(i), f/0 is Artinian.

Lemma 3.3. Let L be a compactly generated lattice which satisfiesDCC on small elements. Then, for
every k < Rad(L), Soc(Rad(L)/k) is an essential element of Rad(L)/k.

Proof. Let k < Rad(L), and let Soc(Rad(L)/k) = t. Let k ≤ h ≤ Rad(L) such that t ∧ h = k.
Assume that k < h. Since Rad(L)/0 is compactly generated, there exists a nonzero finitely
generated element x in Rad(L)/0 such that x ≤ h but x /∈ k/0. By Lemma 3.2, x/0 is Artinian.
Then x/(x ∧ k) ∼= (k ∨ x)/k implies that (k ∨ x)/k is a nonzero Artinian sublattice. By [4,
Proposition 1.4], (k ∨ x)/k has an atom element p′. Note that k < p′ ≤ x ∨ k ≤ h. Since p′ is
atom in Rad(L)/k, we have p′ ≤ t. Thus k < p′ ≤ t ∧ h. This contradicts the fact that t ∧ h = k.
Therefore k = h and t ∈ E(Rad(L)/k). This completes the proof.

Lemma 3.4. Let a be an element of a compactly generated lattice L. If a is a finitely generated element
of a/0, then a is a finitely generated element of L.

Proof. Since L is compactly generated, a = ∨U whereU is a set of finitely generated elements
in L. Since a is a finitely generated element of a/0, a =

∨
(1≤i≤n)ai for some elements ai(1 ≤ i ≤

n) of U. Therefore a is a finitely generated element of L.

Lemma 3.5. Let L be a compactly generated lattice which satisfies DCC on small elements. Suppose
that the set

Ω =
{

ai | 0 ≤ ai ≤ Rad(L) and
Rad(L)

ai
is not finitely cogenerated

}

(3.1)

is nonempty. Then:

(1) the set Ω has a minimal member p which is a small element of L;

(2) if Soc(Rad(L)/p) = s, then s is not a finitely generated element of Rad(L)/p and s is a
small element of L.
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Proof. (1) Let Γ be any chain in Ω. Let c =
∧

ci∈Γci. If c /∈ Ω, then Rad(L)/c is finitely
cogenerated. Therefore c = ci for some ci ∈ Γ, a contradiction. By Zorn’s Lemma, Ω has a
minimal member p. Let Soc(Rad(L)/p) = s. By Lemma 3.3, s ∈ E(Rad(L)/p). Thus s is not a
finitely generated element of Rad(L)/p by [4, Theorem 11.2]. Let q ∈ L with 1 = p ∨ q. Then
s = s∧1 = s∧(p∨q) = p∨(s∧q). It follows that s/p = [p∨(s∧q)]/p ∼= (s∧q)/(p∧q). Suppose
that p ∧ q /= p. Then Rad(L)/(p ∧ q) is finitely cogenerated. Let Soc(Rad(L)/(p ∧ q)) = α.
Then α is finitely generated in Rad(L)/(p ∧ q) by [4, Theorem 11.2]. Therefore α/(p ∧ q) is
Artinian by Lemma 3.1. Since Rad(L)/p is a sublattice of Rad(L)/(p∧q), we have s ≤ α. Thus
s ∧ q ≤ α ≤ Rad(L). Since α/(p ∧ q) is Artinian, (s ∧ q)/(p ∧ q) is also Artinian by [4,
Proposition 1.5]. This implies that s/p is Artinian, and hence s is a finitely generated element
of s/p by Lemma 3.1. Since Rad(L)/p is compactly generated, s is a finitely generated element
of Rad(L)/p (see Lemma 3.4), a contradiction. So p∧ q = p and hence q∨p = q = 1. This gives
p ∈ S(L).

(2) Note that s is not a finitely generated element of Rad(L)/0 as we prove in (1). Let
υ ∈ L such that 1 = s ∨ υ. Note that s/p is a semiatomic lattice. Then s/[p ∨ (s ∧ υ)] is also
semiatomic by [4, Corollary 6.3]. Therefore,

1
p ∨ υ

=
s ∨ υ

p ∨ υ
=

[
s ∨ (

p ∨ υ
)]

p ∨ υ
∼= s

[
s ∧ (

p ∨ υ
)] =

s
[
p ∨ (s ∧ υ)

] . (3.2)

This implies that 1/(p ∨ υ) is semiatomic. Suppose that 1/= p ∨ υ. By [4, Lemma 6.12], there
exists a maximal element w of 1/(p ∨ υ). Clearly, w is a maximal element of L and υ ≤ w.
Thus 1 = s ∨ υ ≤ s ∨ w. But s ≤ Rad(L) ≤ w. Then w = 1, a contradiction. It follows that
1 = p ∨ υ. Since p ∈ S(L), we have υ = 1. Thus s ∈ S(L).

Remark 3.6. By dualizing [6, Theorem 3.4], we have the fact that if L is upper continuous
and a/0 is Artinian for every small element a of L, then ∨S(L)/0 is Artinian. Therefore for
compactly generated lattices (ii) ⇒ (i) in Theorem 3.7 holds, but our aim is to give a proof in
a different way. We should call attention to the fact that ∨S(L) need not to be the radical of
any upper continuous lattice L.

Theorem 3.7 (see cf. [5, Theorem 5]). Let L be a compactly generated lattice. Then the following
are equivalent.

(i) Rad(L)/0 is Artinian.

(ii) For every small element a of L the sublattice a/0 is Artinian.

(iii) L satisfies DCC on small elements.

Proof. (i) ⇒ (ii) Clear by [2, Theorem 8].
(ii) ⇒ (iii) This is immediate.
(iii) ⇒ (i) Suppose that Rad(L)/0 is not Artinian. By [4, Proposition 11.2], there

exists an element g in L with g ≤ Rad(L) such that Rad(L)/g is not finitely cogenerated.
By Lemma 3.5, the set

Ω =
{

ai | 0 ≤ ai ≤ Rad(L) and
Rad(L)

ai
is not finitely cogenerated

}

(3.3)
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has a minimal member p such that Soc(Rad(L)/p) = s ∈ S(L) and s is not a finitely generated
element of Rad(L)/p. By (iii) and Lemma 2.7(i), s/0 is Artinian. By Lemma 3.1, s/0 is finitely
generated. Therefore s is a finitely generated element of Rad(L)/p by Lemma 3.4. This is a
contradiction. Therefore Rad(L)/0 is Artinian.

Corollary 3.8. Let L be a compactly generated lattice. If 1/s is finitely cogenerated for every small
element s of L, then Rad(L)/0 is Artinian.

Proof. Consider the descending chain

x1 ≥ x2 ≥ · · · (3.4)

of small elements of L. Put x =
∧

i≥1xi. Thus x is small in L. By assumption, 1/x is finitely
cogenerated. So there exists an integer n such that x =

∧n
i=1xi = xn. Hence L has DCC on small

elements. By Theorem 3.7, Rad(L)/0 is Artinian.

Let a and b be elements of L. Then b is called a supplement of a in L if b is minimal
with respect to a ∨ b = 1. Equivalently, b is a supplement of a if and only if a ∨ b = 1 and
a ∧ b ∈ S(a/0) (see [4, Proposition 12.1]). The lattice L is said to be supplemented if every
element a of L has a supplement in L.

The following result may be proved in much the same way as [5, Lemma 6], and
1/Rad(L) is a semiatomic lattice by [4, Proposition 12.3] already.

Lemma 3.9. Let L be a compactly generated supplemented lattice withDCC on supplement elements.
Then 1/Rad(L) is a finitely generated semiatomic lattice.

By using Theorem 3.7 and Lemma 3.9, we get the following theorem.

Theorem 3.10. Let L be a compactly generated lattice. Then L is Artinian if and only if L is
supplemented and L satisfies DCC on supplement elements and small elements.

Proof. The necessity is clear. Conversely, suppose that L is a supplemented lattice which
satisfies DCC on supplement elements and small elements. By Theorem 3.7, Rad(L)/0 is
Artinian, and by Lemmas 3.1 and 3.9, 1/Rad(L) is Artinian. Thus L is Artinian.
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