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We give some interesting identities on the Bernoulli numbers and polynomials, on the Genocchi
numbers and polynomials by using symmetric properties of the Bernoulli and Genocchi
polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
the algebraic closure of Qp. Let N be the set of natural numbers and Z+ = N ∪ {0}. The p-adic
norm on Cp is normalized so that |p|p = p−1. Let C(Zp) be the space of continuous functions
on Zp. For f ∈ C(Zp), the fermionic p-adic integral on Zp is defined by Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x (1.1)

(see [1–16]). From (1.1), we have

I−1
(
f1
)
= −I−1

(
f
)
+ 2f(0) (1.2)

(see [1–16]), where f1(x) = f(x + 1).
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Let us take f(x) = ext. Then, by (1.2), we get

t

∫

Zp

extdμ−1(x) =
2t

et + 1
=

∞∑

n=0

Gn
tn

n!
, (1.3)

where Gn are the nth ordinary Genocchi numbers (see [8, 15]).
From the same method of (1.3), we can also derive the following equation:

t

∫

Zp

e(x+y)tdμ−1
(
y
)
=

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
, (1.4)

where Gn(x) are called the nth Genocchi polynomials (see [14, 15]).
By (1.3), we easily see that

Gn(x) =
n∑

l=0

(
n
l

)
Glx

n−l (1.5)

(see [15]). By (1.3) and (1.4), we get Witt’s formula for the nth Genocchi numbers and
polynomials as follows:

∫

Zp

xndμ−1(x) =
Gn+1

n + 1
,

∫

Zp

(
x + y

)n
dμ−1

(
y
)
=

Gn+1(x)
n + 1

, for n ∈ Z+. (1.6)

From (1.2), we have

∫

Zp

(x + 1)ndμ−1(x) +
∫

Zp

xndμ−1(x) = 2δ0,n, (1.7)

where the symbol δ0,n is the Kronecker symbol (see [4, 5]).
Thus, by (1.5) and (1.7), we get

(G + 1)n +Gn = 2δ1,n (1.8)

(see [15]). From (1.4), we can derive the following equation:

∫

Zp

(
1 − x + y

)n
dμ−1

(
y
)
= (−1)n

∫

Zp

(
x + y

)n
dμ−1

(
y
)
. (1.9)

By (1.6) and (1.9), we see that

Gn+1(1 − x)
n + 1

= (−1)nGn+1(x)
n + 1

. (1.10)

Thus, by (1.10), we get Gn+1(2)/(n + 1) = (−1)n(Gn+1(−1)/(n + 1)).
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From (1.5) and (1.8), we have

Gn+1(2)
n + 1

= 2 − Gn+1(1)
n + 1

= 2 +
Gn+1

n + 1
− 2δ1,n+1. (1.11)

The Bernoulli polynomials Bn(x) are defined by

t

et − 1
ext = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
(1.12)

(see [6, 9, 12]) with the usual convention about replacing Bn(x) by Bn(x).
In the special case, x = 0, Bn(0) = Bn is called the n-th Bernoulli number. By (1.12), we

easily see that

Bn(x) =
n∑

l=0

(
n
l

)
xn−lBl = (B + x)n (1.13)

(see [6]). Thus, by (1.12) and (1.13), we get reflection symmetric formula for the Bernoulli
polynomials as follows:

Bn(1 − x) = (−1)nBn(x), (1.14)

B0 = 1, (B + 1)n − Bn = δ1,n (1.15)

(see [6, 9, 12]). From (1.14) and (1.15), we can also derive the following identity:

(−1)nBn(−1) = Bn(2) = n + Bn(1) = n + Bn + δ1,n. (1.16)

In this paper, we investigate some properties of the fermionic p-adic integrals on Zp. By using
these properties, we give some new identities on the Bernoulli and the Euler numbers which
are useful in studying combinatorics.

2. Identities on the Bernoulli and Genocchi Numbers and Polynomials

Let us consider the following fermionic p-adic integral on Zp as follows:

I1 =
∫

Zp

Bn(x)dμ−1(x) =
n∑

l=0

(
n
l

)
Bn−l

∫

Zp

xldμ−1(x)

=
n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
, for n ∈ Z+ = N ∪ {0}.

(2.1)
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On the other hand, by (1.14) and (1.15), we get

I1 = (−1)n
∫

Zp

Bn(1 − x)dμ−1(x)

= (−1)n
n∑

l=0

(
n
l

)
Bn−l

∫

Zp

(1 − x)ldμ−1(x)

= (−1)n
n∑

l=0

(
n
l

)
Bn−l(−1)l Gl+1(−1)

l + 1

= (−1)n
n∑

l=0

(
n
l

)
Bn−l

(
2 +

Gl+1

l + 1
− 2δ1,l+1

)

= 2(−1)n(Bn + δ1,n) + (−1)n
n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
+ 2(−1)n+1Bn.

(2.2)

Equating (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

(
1 + (−1)n+1

) n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
= 2(−1)nδ1,n. (2.3)

By using the reflection symmetric property for the Euler polynomials, we can also
obtain some interesting identities on the Euler numbers.

Now, we consider the fermionic p-adic integral on Zp for the polynomials as follows:

I2 =
∫

Zp

Gn(x)dμ−1(x)

=
n∑

l=0

(
n
l

)
Gn−l

∫

Zp

xldμ−1(x)

=
n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
, for n ∈ Z+.

(2.4)

On the other hand, by (1.8), (1.10), and (1.11), we get

I2 = (−1)n−1
∫

Zp

Gn(1 − x)dμ−1(x)

= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

∫

Zp

(1 − x)ldμ−1(x)

= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l(−1)l Gl+1(−1)

l + 1
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= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

(
2 +

Gl+1

l + 1
− 2δ1,l+1

)

= 2(−1)n−1(2δ1,n −Gn) + 2(−1)nGn

+ (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
.

(2.5)

Equating (2.4) and (2.5), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

(
1 + (−1)n)

n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
= 4(−1)nGn + 4(−1)n+1δ1,n. (2.6)

Let us consider the fermionic p-adic integral on Zp for the product of Bn(x) and Gn(x)
as follows:

I3 =
∫

Zp

Bm(x)Gn(x)dμ−1(x)

=
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

∫

Zp

xk+ldμ−1(x)

=
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1
.

(2.7)

On the other hand, by (1.10) and (1.14), we get

I3 =
∫

Zp

Bm(x)Gn(x)dμ−1(x)

= (−1)n+m−1
∫

Zp

Bm(1 − x)Gn(1 − x)dμ−1(x)

= (−1)n+m−1
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

∫

Zp

(1 − x)k+ldμ−1(x)

= 2(−1)n+m−1Bm(1)Gn(1) + 2(−1)m+nBmGn

+ (−1)n+m−1
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1
.

(2.8)
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By (2.7) and (2.8), we easily see that

(
1 + (−1)n+m+1

) m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1

= 2(−1)m+n−1(δ1,m + Bm)(2δ1,n −Gn) + 2(−1)m+nBmGn

= 4(−1)m+n−1Bmδ1,n + 2(−1)m+nBmGn + 4(−1)m+n−1δ1,mδ1,n

+ 2(−1)m+nδ1,mGn + 2(−1)m+nBmGn.

(2.9)

Therefore, by (2.9), we obtain the following theorem.

Theorem 2.3. For n,m ∈ Z+, one has

(
1 + (−1)n+m+1

) m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−k

Gn−l+1
n − l + 1

Gk+l+1

k + l + 1

= 4(−1)m+nBmGn + 4(−1)m+n−1Bmδ1,n + 4(−1)m+n−1δ1,mδ1,n

+ 2(−1)m+nδ1,mGn.

(2.10)

Corollary 2.4. For n,m ∈ N, one has

2m∑

k=0

2n∑

l=0

(
2m
k

)(
2n
l

)
B2m−kG2n−l

Gk+l+1

k + l + 1
= 2B2mG2n. (2.11)

Let us consider the fermionic p-adic integral on Zp for the product of the Bernoulli
polynomials and the Bernstein polynomials. For n, k ∈ Z+, with 0 ≤ k ≤ n, Bk,n(x) =
( n
k )x

k(1 − x)n−k are called the Bernstein polynomials of degree n, see [11]. It is easy to show
that Bk,n(x) = Bn−k,n(1 − x),

I4 =
∫

Zp

Bm(x)Bk,n(x)dμ−1(x)

=
(
n
k

) m∑

l=0

(
m
l

)
Bm−l

∫

Zp

xk+l(1 − x)n−kdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

∫

Zp

xk+l+jdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

Gk+l+j+1

k + l + j + 1
.

(2.12)



International Journal of Mathematics and Mathematical Sciences 7

On the other hand, by (1.14) and (2.12), we get

I4 = (−1)m
∫

Zp

Bm(1 − x)Bn−k,n(1 − x)dμ−1(x)

= (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

∫

Zp

(1 − x)n−k+l+jdμ−1(x)

= (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

×
(
2 − 2δ1,n−k+l+j+1 +

Gn−k+l+j+1
n − k + l + j + 1

)

= 2(−1)m
(
n
k

)
Bm(1)δ0,k + 2(−1)m+1

(
n
k

)
Bmδk,n

+ (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.13)

Equating (2.12) and (2.13), we see that

m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

Gk+l+j+1

k + l + j + 1

= 2(−1)mBm(1)δ0,k + 2(−1)m+1Bmδk,n

+ (−1)m
m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.14)

Thus, from (2.14), we obtain the following theorem.

Theorem 2.5. For n,m ∈ N, one has

2m∑

l=0

n∑

j=0

(
2m
l

)(
n
j

)
(−1)jB2m−l

Gl+j+1

l + j + 1
= 2B2m(1) +

2m∑

l=0

(
2m
l

)
B2m−l

Gn+l+1

n + l + 1
. (2.15)

Finally, we consider the fermionic p-adic integral on Zp for the product of the Euler
polynomials and the Bernstein polynomials as follows:

I5 =
∫

Zp

Gm(x)Bk,n(x)dμ−1(x)

=
(
n
k

) m∑

l=0

(
m
l

)
Gm−l

∫

Zp

xk+l(1 − x)n−kdμ−1(x)
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=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

∫

Zp

xk+l+jdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

Gk+l+j+1

k + l + j + 1
.

(2.16)

On the other hand, by (1.10) and (2.12), we get

I5 = (−1)m−1
∫

Zp

Gm(1 − x)Bn−k,n(1 − x)dμ−1(x)

= (−1)m−1
(
n
k

) m∑

l=0

(
m
l

)
Gm−l

k∑

j=0

(
k
j

)
(−1)j

∫

Zp

(1 − x)n−k+l+jdμ−1(x)

= (−1)m−1
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

×
(
2 +

Gn−k+l+j+1
n − k + l + j + 1

− 2δ1,n−k+l+j+1
)

= 2(−1)m−1
(
n
k

)
Gm(1)δ0,k + 2(−1)m

(
n
k

)
Gmδk,n

+ (−1)m−1
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.17)

Equating (2.16) and (2.17), we obtain

m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

Gk+l+j+1

k + l + j + 1

= 2(−1)m−1Gm(1)δ0,k + 2(−1)mGmδk,n

+ (−1)m−1
m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.18)

Therefore, by (2.18), we obtain the following theorem.

Theorem 2.6. For n,m ∈ N, one has

2m∑

l=0

n∑

j=0

(
2m
l

)(
n
j

)
(−1)jG2m−l

Gl+j+1

l + j + 1
= −2G2m(1) −

2m∑

l=0

(
2m
l

)
G2m−l

Gn+l+1

n + l + 1
. (2.19)
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