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Let Cp.1(R) be the 2(1 + 1) x 2(I + 1) matrix symplectic Lie algebra over a commutative ring R with

2 invertible. Then tl(fl) (R) ={ mol _’%) | 7, is an | + 1 upper triangular matrix, 75 = 71, over

R} is the solvable subalgebra of Cj.1(R). In this paper, we give an explicit description of the auto-
morphism group of t(R).

1+1
1. Introduction

Classical Lie algebras occupy an important place in matrix algebras. Let R be a commutative
ring R with the identity 1 and R* the group of invertible elements in R. Let M, (R) be the
R-algebra of n by n matrices over R that has a structure of a Lie algebra over R with bracket
operation [x, y] = xy — yx for any x, y € M, (R). The symplectic Lie algebra

Cin® = {x1x( 5 0)+ (5, 0)X =0 X Mua®)] 1)

is one of classical Lie algebras, where T denotes the matrix transpose. It is easy to show that
the following subalgebra of Cj.;(R) such that

tl(fl) (R) = { <n(;1 _7%2{> | m; is an [ + 1 upper triangular matrix, ﬁg = ﬁz} (1.2)

is solvable.
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Let e be the identity matrix in M, (R) and let ei(}q) denotes the matrix in M, (R) all of
whose entries are 0, except the (i, j)th entry which is 1. Let

Ak =e, —e™ i=1,...,1-k+1, k=0,1,...,1,

iivk T Cleisk+l J+i+1”

_ (1) : _ _
Yifi+k_ei,l+i+k+1+ei+k,l+i+1’ 1—1,...,l—k+1, k—l,...,l, (1.3)

(n) ;
Yii = el.,lﬂ.ﬂ, 1= 1,...,l+1,

where n =2(I +1),1 > 1. For discussion latter, we rewrite tz(+c1) (R) as

© I I-k+1 [ 1-k+1
tl+1 (R) = Z Z Rai,i+k + Z Z RYi,i+k' (1-4)
k=0 i=1 k=0 i=1

Automorphisms of associative algebras have been explored in many articles [1-8].
Encouraged by Dokovi¢ [9] and Cao’s [10] papers which described the automorphism groups
of Lie algebra consisting of all upper triangular n x n matrices of trace 0 over a connected
commutative ring and a commutative ring with n invertible, respectively, in this paper we

use similar techniques to those in [11] to prove that any automorphism ¢ of tl(fl) (R) can be
uniquely expressed as ¢ = OAp, where 0 and \p are inner and diagonal automorphisms,
respectively, for I > 1 and R is a commutative ring with 2 invertible. We also give an explicit

description of the remaining case I = 0.

(©)
1+1

morphisms, 6 and Ap, respectively, of tl(fl) (R) such that ¢ = OAp.

Theorem 1.1. For any automorphism ¢ of t, - (R) (I > 1) there are unique inner and diagonal auto-

Theorem 1.2. Let D and D be the inner and diagonal automorphism groups, respectively. Then

Aut(tl(fl) (R)) =90 x D, where Aut(tl(fl) (R)) denotes the automorphism group of tl(fl) (R).

2. Preliminaries

Let

Ppo={aiukli=1,...,1-k+1,k=0,1,...,1},
(2.1)
Wi = {(yiik | i=1,...,1-k+1,k=0,1,...,1}.

Then the set P, U W, is a basis of tl(fl) (R).

Lemma 2.1. Let H, be the set generated by the set {ajj, i1, Yir101 | 1 < j <1+1,1 < <1}, where

n=2(1+1). Then H, = ) (R).
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©

Proof. We only need to show that t, ]

When k = 2, we have

(R) € H,. It is obvious that a;;,x € H,, when k =0, 1.

(1) (1)

B2 T Cliie3 leisl

(n) (n) n) (m)
- [(ez i1~ Cliisn l+1+1> <ez+1 i2 T CLis3 l+1+2)] (2.2)

= [@iin, Ai,i2] € Hy.

Aiiy2 = €

Assume that a;;.x-1 € Hy, then & i1k = [@ivk-1, ivk-1,i+k] € Hy, thatis, P, C H,,. Since yi11,141 €
H,, for any yi_k+1,-k+2 € Wy, when k =1,

_ (n)
Y1 = €010 F €1 o1

— (n) (n) (n)
= [(el 141 e2l+2,21+1> €11 2l+2] (2.3)

= [a1,1+1,)’z+1,l+1] € H,.

Assume that when k = m — 1, Y- j-m+3 € Hy, then when k = m, yi_m+1j-m+2 = [Xl-ms1,l-m+3,
Yiem+2,1-m+3] € Hy, thatis, yii1 € Hy, i =1,...,1. For any Y6 € H, (k > 1), when k = 1,
Yii+1 € Hy. When k > 2, yi ik = [@iivk-1, Yiek—1,i+k] € Hy. Since 2y;; = [ i1, Viiv1] € Hy, and 21is

invertible, we have y;; € H, for 1 <i <I. Thus W,, C H,.. Because P, U W, is a basis of tl(fl) (R),

we obtain t1(+1 (R) C H,. O
Now, denote tl(fl) (R) by n(c) Let n(C) = [n(()c),n(()c)] néc) = [nic) iC) 1, n;.c) = [ngc),
(C)] j=3,...,21+ 1. It is not difficult to know
(C) I-k+1 1+1
Z > Rajug + Z > Ryyi-issi
k=j i=1 k=j i=l+2—[(k+1) /2]
2041 1+1-[k/2]
+ RYioi—k-is3, 1<j <,
k=l+1 =1 (2.4)
2041 1+1-[k/2]
= > D, Rypkis I+1<j<20+1(1>2),
k=j =1
n@ =0, 2+2<;.

It is easy to check that [nf,, (C)] C n( )  form+1<2l+1or [n(c) (C)] Oform+1>
21+ 2. For any ¢ € Aut(n((]c)) we have (p(n1 )) = [tp(n(c)) qf(n(c))] [néc),néc)] = nﬁc) and

q;(n](.c)) = n](.c),j =2,...,21+1. Therefore q;(n(c) \n(c)) = n(C) \n(C),]’ =1,...,21+ 1. Note
©)

21—i—j+3\ 21 —i— ]+4

For any maximal ideal M of R, R = R/M is a field. The natural homomorphism o :

(C) (C)
l+1 (R) l+1

thatif y;; € Wy, theny;; €n

R — R induces a homomorphism g : (R) which is surjective. So every
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automorph1sm ¢ of tl+1 (R) may induce an automorphism ¢ of tl+1 (R). Using this fact and

that n21+1 = Ryn1 (for I > 1), we have that ¢(y11) = c11yn1, where ¢11 € R*. Otherwise, c11
©)

1ol (R), where ¥, is the

should be contained in a maximal ideal M of R, then ¢(y,;) =0 on't

image of y11 in tl o )(R), which is impossible.

Lemma 2.2. Let ¢ be in Aut(n(()c)). If g(aji), ¢(aj 1) and ¢ (yie1,41) are expressed, respectively, as

1+1
tp(zxjj)zz:a aii modn ), ji=1,...,1+1, (2.5)
i=1
l () () ©)
wlajj) = Zai,],-ﬂai,m + 5,11,l+1}”l+1,l+1 modn,”, j=1,...,] (2.6)
i=1
(141 c
¢ (Yiu1e1) = Za, oy ijel + C,(flll)ﬂyzn,zu mod n{”, (2.7)

then the following matrices are invertible.
(i) A= (aﬁ)(l+1)><(l+1)’ where aj; = a(]> j=1...,01+1Li=1,...,1+1;

.. . ~() .
(ii) B = (b]-i)(m) (m), where bj; = al 1+1’] =1,...,Li=1,..., b1 = Chany ] = 1,...,1,

~(1+1) +1)
biai=ad;;, 1= Sland b = ¢ -

Proof. (i) That A is invertible follows from the fact that ¢ induces an automorphism of the
free R-module n(()c) / ngc) of rank I + 1 on the basis {zx] ] + ngc) | j=1,...,1+1}. (ii) Note that
¢ induces an automorphism of the free R-module n1 '/ n2 ) of rank I + 1 on the basis { Qi1+
0y Y+ 0y | j=1,..,1). O

Lemma 2.3. Let ¢ € Aut(n(()c)) (I > 2). Write ¢(ajj), ¢(ajjs1), and ¢(yii1,141) as in (2.5)—(2.7),
respectively. Then the following conclusions hold.

~(m) ~(m) ~(m) ~(m)  _ n =(+1) A(l+1)
(i) For 1 < m,k,h <1 @y, 80, =0 (h#k), @160, =0, 8,8, = 0 (h#k)
~(I41) ~(1+1)

and @, ¢, =0.

i @ _ (@) @ _ ( i) _ @) _ ( ) (i)
(11) For1<k,h<l, (a;:h_ahl+1 h+1)(ﬂ l kl+1,k+1) 0 (h 7 k) and (a ; hl+1 h+1)al+1 I+1 =0

(1<h<l, herel > 1), wherel—ll+1.

(iii) For2 <m <land 1 < i k,h <1, (a(m) - a1+1 i (a(m) h+1 h+1)(a(m) - k+1 k+1) =0
(izh#k#i, here 1 >3)and (ai” - a\%, V(aly —al"), D, =0 (1<igh<]).

Proof. (i) When j#m,m+1, [¢(a;;), ¢(@mm+1)] = 0. So

~(m) ( _(j) )] _ ~(m) )] _
@i (aii - ai+1,i+l> =0, Clet 1941141 = O- (2.8)
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From [¢(mm), ¢ (@mme1)] = ¢(@mme1) and [¢(me1,me1), ¢ (@mme1)] = =@ (Amme1), we have

~(m) ( _(m) (m) ~(m) ~(m) (m)  _ ~(m)
ai,i+1 <a" ~4in 1+1> al i+17 2Cl+1 1+1 al+1 1+1 Cl+1 1+17
(2.9)
~(m) (_(m+1) (m+1) \ _ _~(m) ~(m) (m+1) ~(m)
;i (aii - ai+l,i+1> = "4 2101 = Ol
When j#1+1, [¢(aj;), ¢ (yis1,41)] = 0. So
=(+1) _(j) (7 _ ~(+1) _(j)
i1 (aii - ai+1,i+1> =0, Crai i = 0. (2.10)
From [¢(azs1,161), ¢ (Yi1,041)] = 2¢(Y141,141), we have
L) [ (1#1) (#1) Y _ o a(41) (1) (1) A(141)
a;in <aii - ai+1,i+1> =24;;,1, L %1 = S (2.11)
Let C = (c;;) h 1 _ g0 =1,...,0+1,i=1,...,1,and c;jy = 2a"
€ Cji) 1) o1y WhHeTe Cji = @i = @5 144, ] t=L..Land i = 24 1.4,
j= .,1+1. By Lemma 22, detA € R*, so detC € R*. Investigating al(;’;)ﬂ 1(<mk)+1 det C,

we may ﬁnd that hth column and kth column are linearly dependent (both are the form

0,...,0,a",,-a"),,0,...,0)', j = h,k) by (2.6) and (2.7), 50 &, @, det C = 0. Similarly,

~(m) ~(m) _ A(1+1) 50 S0+ 5041 ~(m)
i1 Gy det € = 0, @) fap ;5 det C = 0 (h#k) and @, 1€y, ),y det € = 0. Then @,

~(m) _ ~(m) ~(m) _n a0+ A(1+1) ~(I+1) A(Hl) _
Ay =0 (h#K), @y )06, =0, 8y ,08, 0 =0 (h#k),and @, ¢ 5 = 0.

n (ii) When(lz) =1, from (ahl;f - a;llﬁl wi) (@ ,(Sk) - al(<1+1 i) det B = 0 (h#k), we have (a(l) _

Ay, h+1)(akk — @1 p01) = 0 (R# k). Similarly, we have (as}? - a;ll+)1 h+1)(a1(l1 '+ a1+1 p) =00 <
h<1). Wheni =1+ 1, we get the results similarly.
(iii) The proving process is similar to (i) and (ii). O

Lemma 2.4. Let ¢ € Aut(néc)). Then

(i) when 1> 1, g(a12) = Ziglz)alz mod n where a( ) e RY; ;

(ii) if g(an) = agz)au modn , where ‘112 € R*, then ¢(aji1) = u+1“l i+1 mod n( )

~(i)  A(+1) *
and(P(Yl“ l+1) Cl+1 l+1Yl+1 1+1 mod n2 ’ where a 1z+1’cl+1 I+1 € R

Proof. (i) Noting that a; ;,1, }fl+1 l+1 € ngc) \n ) and Y12 € nZI © \n2l .1, wehave g(ar2) € ngc) \néc)

and ¢(y12) = E&D)flz mod n21 " (C) \ négl, where ESZ) € R*. Using (2.7), from [¢(a11),
¢(112)] = ¢(y12), we have Egz)(a11 +a§12) = E&z), that s, aﬁ) + aélz) = 1. Write ¢ (a11) and ¢(y11)
as ¢(an1) = l*% a(l)ali mod nlc) and ¢(yn1) = cj;ym € ngm, where ¢}, € R*. From 2¢(y11) =
[ (1), (P(Yn)] = 2a111)ci‘1y11, we have a(l) = 1. Then a( )= 0. By Lemma 2.3 we have a( )

al(i)l 1 =0,1= .,1 (here I > 2) and aﬁ)l w1 = 0.So a(1> 0,i= ., 1+1, thatis, ¢g(a1) =

aﬁ) mod nlc) Then w(ar) = [@(an), g(an)] = aiz)alz mod n and aglz) € R*. By Lemma 2.3,

(i) holds.
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(ii) Write ¢s(a;j+1) and ¢s(y141,41) as (2.6) and (2.7), respectively From q,r(a13) [ (ar2),

¢ (ax)], we have g(aiz) = ﬁilz) ﬁ%)ulg, mod néc). Since a3 € néc) \n , p(ag3) € n2 o \n3C> So

ﬁglz) a%) € R*, that is, ﬁ%) € R*. In general, form =2,...,1, we have

(a1 me1) = Hal i+101,m+1 mod nm+1 € nm \ nm+1, m=1,...,1,
i=1
(2.12)

~(i) ~(I+1 (C) ©)
g (rim) = [glam), ¢ (yum)] H 111+1 €y, 1+1Y1 i modn, ;) € l+1 \nl+2’

here 3% ., é™Y should be in R*,i=1,...,1. By Lemma 2.3 we have that a(]) = 0(i#j),

’ i,i+17 l+1 I+1 i,i+1
ol =0,j=1,...,1,and Al(l;ll), i=1,...,1. Hence ¢(a;+1) and ¢ (y141,41) have the required
forms, respect1vely O

3. The Standard Automorphisms of t(c) (R)

Now let us introduce two types of Lie automorphisms of tl(fl (R).

(i) Inner Automorphisms

Letr = I,+aa;j(i#j)orr = I +ayij. It is easy to check that ryr~! € nO The map 0: tl(+1)(R) —

(C)(R) such that x — rxr!, x € n0 , defines an automorphism of n ), which is called an
inner automorphism (note that r is a symplectic matrix defined by < 2 ) fia >). We denote 0,
by 9aa,-,-, 6%,, respectively. In these cases, we have 9;},” = 9—“%' Qa}l] Q‘_“Yff’ respectively,
and that Oaa, (aii) = i — aaij, Oaa;;(aj;) = ajj + adij, Oan,; (akk) = Ak (k#z, 7)r Oaa; (A1) =
i ks (k #]/l -1),0 aa;j (d”+1) = Qi T adg g, eazx,] (ai1i) = @i 1,i — Aki-1,j, ay,, (@ii) = aii — 2(1)’11,
Oy, (Aiis1) = @ijis1 — 2ay;; and Oug,,, (Yii1) = Yiie1 + 2ayi;. All inner automorphisms of tl+1 (R)

generate a subgroup of Aut(n0 ), which is denoted by 0.

(ii) Diagonal Automorphisms

Letd; € R*,i =0,1,...,1+1,d = diag(ds,...,di+1) and D = diag(d, d-'dy). The map Ap:
l(fl) (R) — (C) 1(R) such that x — DxD™!, x € n(c) defines an automorphism of t(C) (R), which
is called a dmgonal automorphism. It is clear that ApAg = App. So the set of d1agona1 automor-

phisms of tl o )(R) is a subgroup of Aut(n ), which is denoted by @.

4, Lemmas for Main Results

(C)

Lemma 4.1. Let ¢ € Aut(n . The following two statements are equivalent

~(f)

_ (©)
(i) g(ajj1) = ]]+1DC]]+1 mod n2 ) and ¢(Y41,041) = Cz+1 1+1Yl+1 1+1 mod n, ", where i

€ER,j=1,...,1
(ii) g(ajj) = ajj mod ngc), j=1,...,1+1

~(1+1)
Cle1i41
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Proof. (i)=(ii). Write ¢(;;) as in (2.5). By the process of proving Lemma 2.3, we have ﬁilz)
(“ﬁ) _“22)) = allz)/ az(lz)+1(“(1+1 az(zlz)ﬂ) = Nz(lz)-i-l’ l(i-;ll)-i—z(al(:;ll)+l 1(1;11)+2 = ﬁﬁﬁlz,i =1...,1-1
and ), (el aly).) = a0, & ), = €, Then we obtain that al) —aff = 1,
ag”) ‘11(:11)+1 -1, al(zllrl al(f;lllz =1,i=1,...,1-1and az(i+111+1 = 1. By Lemma 2.3, we have

x.) =1(1<j <l+1)anda(]) =0 (i#]).
(ii)=(i). Write ¢s(a; j+1) and ¢ (y141,141), respectively, as in (2.6) and (2.7). Then

C .
g(ajja) = [p(ajj), ¢ (ajja)] = ]]+1"‘JDJ'+1 mod né !, j=1...1 1)
2 (Y1) = [p(@ran), ¢ (Yunien)] = 2605 i mod ny”,

thatis, ¢ (y+1,041) = cl +1 | +1n+1 1+1 mod n2 o . By the method of modularizing a maximal ideal of

R to a residue field, we know that a§] ,)+1r Cl(i+111)+1 ER,j=1,...,L O

Lemma 4.2. Let ¢ be in Aut(n )) If g(ajj) = aj; mod n( ) , then

c

¢(ar) = a1 + ailz)(xu mod né ),
) = qii — g™y (. dn© N 1> 12
g(ajj) =ajj—al, ajrj+a  ajmodny”, j=2,...,1(122), (4.2)

0] (I+1) ©)
@ (@X1,141) = Qo1 — By QL1 + € g1 Vel Mod ny

Proof. We express ¢(a;;) as

1
. . c .
¢(ajj) =ajj + Zaf}illaiﬂ-ﬂ + Cl(i)1,1+1Y1+11+1 mod né ), j=1,...,1+1 (4.3)
i=1

From [¢(a;;), ¢(axk)] = 0 (j # k) we have

g(an1) = arg + aly a, mod n”,

N LD ) ©
p(aj;) =ajj+ Ay @+ A e modn,”’, j=2,...,1(1>2), (4.4)
(+1) (1+1) ©
¢ (@r1101) = Qe ier + ) AL + € g Vi mod ny

()
7,j+1

G+1) _

where a aji

+a’ =0 j=1,...,1. Lemma 4.2 is proved. O
Lemma 4.3. Let ¢ be in Aut(néc)). If every ¢ (a;;) is expressed as the form in Lemma 4.2, one may

find an inner automorphism

1
=116 .
]]:i[ a])+1a11+1 2 Cl+1 l+1Yl+1 1+1 (4 5)
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such that

Oy (aj;) = ajj modn ), j=1,...,1+1. (4.6)

(I+1) L.
Proof. Note that 6, 1600 s 1( 1410+1) = Q1lel — G 1 VL Then, by Lemma 4.2, it is not

difficult to prove Lemma 4.3. O

Lemma 4.4. Let ¢ be in Aut(néc)). If g(ajj) = ajj mod nlic), j=1,...,1+1 1<k <Il+1), then

g (@) = ajj+a)) o mod n) , j=1,...,minfk,I-k+1}(k<LI>1),
_ (J k) (6))
(P(a]]) = a5 = ] k]a] kjt a;]+ka]]+k mod nk+1’

j=k+1,...,1-k+1 (kg

1+1

— |, 1>

2 ]Il—2>l
(] k)

o ()
g(aj) =aj- @i 4 i Qjkj + Ciopkjs3jal-k-j+3 Mod “k+1'

k +1<k<[l+1 121),

() (@)
g (aj;) = aj; + Cini-k-jsaYi2i-k-j+3 mod 1y,

or (12 <nis),

j=l-k+2,...,1-

j=l-k+2,...,1-

(6)) ©)
g (aj;) = ajj + Cj,le—k—j+3Yfr21‘k—f+3 mod mny 3, (4.7)
l l
= — =_ >
i 2+1 <k 2+1,l_4, herepeven>,
_ (j-k) )] (©)
¢Uw)—“ﬁ-jk;%*1+%ykjﬁwm%ﬁwnwd“my
]:—+2 [ ] (k——+1l>4 herepeven)

N @Ik~ ©
g(aj;) = ajj +Cy ,+37Y21 k-j+3,j mod 1y,

k
+2,...,k<l+2§k+ E],123>,
_ ai=o (2l-k-j+3 )
([)‘(tx]]) =ajj — ; k]a] kj+Cop k- ;+3]Y21 k=j+3,j mod nk+1’

§]+z} l+1<k<p,[k]>1l>2>

Proof. We express ¢s(ajj),j=1,...,1+1,as

j=1-

j:max{k+1,l—

I-k+1 . I+1
©)

() 6
w(ajj) = aj; + Z a; i Kijek T Z sz koisaiY2l-k-i+3i mod my 3. (4.8)
i1 i=142-[(k+1) /2]
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When k =1 that is the case in Lemma 4.2. The conclusion follows from repeating the process
of proving Lemma 4.4. O

Lemma 4.5. Let ¢ be in Aut(néc)). If every g (aj;) be expressed as the form in Lemma 4.4, one may
find an inner automorphism

I-k+1 I-[k/2]+1

9 - ElI 9“](',}/')+kafrf+k ]'=[]:<[+2 6(1'*'6]'1)71C;{gl,k,j+3yj,21—k7j+3’ (49)

where

1,i=7j,

6ij = 0, i#] h=1+1-(k-1)/2(k an odd). (4.10)

Then
Oy (aj;) = ajj mod nl(fr)l, i=1,...,1+1. (4.11)
Proof. Apply 6 to ¢s(a;;) and use Lemma 4.4 to obtain Lemma 4.5. O

Lemma4.6. Let g be in Aut(n{”). Ifg(aj;) = ajj mod n(”, j=1,..., 141, 1+1 <k < 2l+1(1 2 1),
then

2

- () ©  ._ k
¢(aj;) =ajj+ Cintk-jualizik-jpamod my s, j=T1,...,1- [— +1,

(21-k-j+3)

© k 412
¢(aj;) =ajj+ Coli—js3,; Y2I-k-j+3,j modn,;, j=1- [E +2,...,21-k+2, (4.12)

g(a;) =ajmodn), j=21-k+3,..,1+1.

Proof. We express q;(ajj), j=1,...,1+1,as

I-[k/2]+1
j C
glay) =@+ >, i iatiarkiss mod ). (4.13)
i=1

The process of proving Lemma 4.6 is similar to Lemma 4.2. O

Lemma 4.7. Let ¢ be in Aut(néc)). If every ¢ (aj;) is expressed as the form in Lemma 4.6, one may
find an inner automorphism

I-[k/2]+1
o g 9(1+6jh)71C;'{;l—kfj+3yfr21*k’f+3’ (4.14)
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whereh=1+1-(k-1)/2 (k an odd). Then

c
Oy (aj;) = ajj mod nl(<+)1' (4.15)

When k =21+ 1, O (ajj) =ajj, j=1,...,1+1.

Proof. It is similar to proving Lemma 4.5. O

Lemma4.8. Whenl > 1, let ¢ be in Aut(néc) If(p(a]]) =ajj,j=1,...,1+1, there exists a diagonal
automorphism Ap such that Apg(ajji1) = ajjq, i = L and Ap qr(ym 1+1) = Yi+1,1+1-

~(1+1)

~(j) _
a/;, a1 mod ny” and ¢(yuam) = G

€ R, j=1,..,1. We express (If(a]',]url) and ¢ (y41,41),

Proof. By Lemma 4.1 we know that ¢(a;jji1) =

~(j)  A(+1)

Y1141 Mod n where ;i1 Clin

respectively, as

I I-k+1 )
(P(a] ]+1) ]]+1a1]+1 + Z Z al 1+kal i+k
k=2 i=1
) 1+1 )
cJ iy
+ Z Z Colk—i+3,i21-k=it3,i
k=2i=1+2—[(k+1)/2]

2141 1+1-[k/2] Q)
+ Z Z Ei,]Zl—k—i+3Yi121_k_i+3’ 1 S] < l/ (416)
k=l+1 i=1

I 1-k+1
51
(F(Yl*l 1+1) Cl+1 l+1Yl+1 w1t Z Z iivk itk

k=2 i=1
! 1+1 ) 2041 1+1-[k/2] L
+Z Z Col k- 1+31Y21 k-i+3,i T Z Z 121 k i3 Yi2lk-is3-
k=2i=1+2-[(k+1) /2] k=l+1 =1
Then
o(ajn) = [p(aj), [pajn) p(aj1,:)]]
il ~(j) (4.17)
=A% = C g, ] = 1,...,L
In addition,
0) =)
@(@ijo1) = (@), | (@] aaijoa = Bjain ) @ (@) (4.18)
4.18

0 ~(j) -
]]+1lX]]+1 +C]]+1Y77+1’ 1= 1,...,L
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~(7) . _
Thusc]]+1 =0,j=1,...,1.S0
w(ajjn) = ]]+1a]]+1, i=1,...,1L (4.19)
Furthermore,

2(}’(Yl+1,l+1) = [(If(al+1,l+1)/(P'(Yl+1,l+1)]

i (4.20)
Yi+1,41 + a az I+1t+ C Yl I+1-
Z+1 l+1 i, l+1 i l+1

(l+1

—0and ¢V =

11 =0,i=1,---,1-1, thatis,

From [gs(ai), ¢ (yie101)] = 0(i#1 ~ 1), we have a

(P(Yl+1 l+1) Cl+1 1+1Yl+1 I+1- (4.21)

Letd = diag(ds, ..., di.1) and do = ¢j13), 2 wheredy =1, d; = [T,a 1), j=2,...,1+1.

Applying Ap to ¢s(aj 1), j =1,...,1, and ¢(y111,41), we get the result. O
5. Proofs of Main Results

Proof of Theorem 1.1. By Lemmas 4.3,4.5, 4.7, and 4.8 we have ApOy(aj;) = ajj, j=1,...,1+1,
ApOy(ajj) = ajjr1, j=1,...,1,and ApOg(y141,141) = Y1+1,141- Since the set {yii1,141, a1i1,141, @jj,

ajj+1 | j=1,...,1} generates tl(fl) (R), we know that ApO¢ is the identity automorphism of
l(fl) (R). Hence ¢¢ = 0'Ap-1. The uniqueness of the decomposition follows from Theorem 1.2.

O

Proof of Theorem 1.2. By the first part of Theorem 1.1 we have Aut(tl(fl) (R)) = 09. For any x €
(©)

1+1 (R) and a;; € n; ’ we have

ApBaay Ap (%) = D(I, + aa;j) D™ xD (I, + aa;;) ' D!
= (I, + ap (a;) ) x (L, + atp (a;j)) ™" (5.1)

= Qa/\D(“ij)(x)'
©)

S0 ApOaa; = Oaip(a;)Ap- For yi; € n;", we have ApOy,, = 6cip(y;)Ap- Therefore, O < I99D.
Obviously 2N®D = 1. Then, 99 =9I x D. O

6. Discussion for [ =0

In this case, tgc)(R) is generated by a1 and y;:. For any automorphism ¢ of tiC) (R), write
¢(a11) and ¢ (y11), respectively, as ¢(a11) = anan + ciiynn and ¢(y11) = ¢y, where ¢ €
R*. From 2¢(y11) = [¢(a11),¢(y11)], we have a;; = 1. Then 6,1,y ¢(a11) = a1 and
92-1c11yn(lf(}’11) = cy11. Also Tlc92-1cuyn<l’(“11) = ay; and 71c92-1cuy114f()’11) =y11-So ¢ = 9—2-1c11yn
Tlcq.
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