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The purpose of the present paper is to study a certain subclass of harmonic univalent functions
associated with Dziok-Srivastava operator. We obtain coefficient conditions, distortion bounds,
and extreme points for the above class of harmonic univalent functions belonging to this class
and discuss a class preserving integral operator. We also show that class studied in this paper is
closed under convolution and convex combination. The results obtained for the class reduced to
the corresponding results for several known classes in the literature are briefly indicated.

1. Introduction

A continuous complex-valued function f = u+iv defined in a simply connected domain D, is
said to be harmonic in D if both # and v are harmonic in D. In any simply connected domain
D we can write f = h+g, where h and g are analytic in D. A necessary and sufficient condition
for f to be locally univalent and sense preserving in D is that |i'(z)| > |g'(z)|, z € D. See
Clunie and Sheil-Small [1].

Denote by Sy the class of functions f = h + g that are harmonic univalent and sense
preserving in the unit disk U = {z:|z| < 1} for which f(0) = f-(0)-1 =0. Thenfor f = h+g €
Su, we may express the analytic function h and g as

h(z)=z+ Zakzk, g(z) = Zbkzk, |b1] < 1. (1.1)
k=2 k=1

Note that Sy, is reduced to S the class of normalized analytic univalent functions if
the coanalytic part of f = h + g is identically zero.
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For more basic results on harmonic univalent functions, one may refer to the following
introductory text book by Duren [2] (see also [3-5]).

Fora; € C, (j = 1,2,3,...,q9) and ; € C-{0,-1,-2,-3,...}, (j = 1,2,3,...,s), the
generalized hypergeometric functions are defined by

&, (a1)y(az)y - (“q)kzk
FS 7 AN / 7 AN S; = 7
ool st P52) = 255 Gy (R 12

(g<s+1; gs€ Ng=1{0,1,2,...}),

where (a), is the Pochhammer symbol defined by

() (1.3)

F@tk) _ ya+1) (@rk-1), ifk=1,23..,
(@) =
1, if k=0.

Corresponding to the function
h(txlltle sty aq; ﬂl/ﬂ2/ b /ﬂs; Z) = zqu (lxlltle cecy aq; ﬂl/ﬂZ/ et /ps; Z). (14)

The Dziok-Srivastava operator [6, 7] Hy (a1, az, ..., aq; P1, P2, ..., Bs) is defined for f €
S by qus(le,txZ, e ,aq;ﬂl,ﬂz, e ,ﬁs)f(z) = h(al,az,. . .,aq;ﬂl,ﬁz, .. .,ﬂs; Z) * f(Z)

© (1) (@2)g - (@ k
. (1)1 (2) 1 ( q)kq ar z 3 (1.5)
k=2 (ﬁl)k—l (ﬂ2)k—1 e (ﬂS)k_1 (k=1)!
where * stands for convolution of two power series.
To make the notation simple, we write
Hq,s [al]f(Z) = Hq,s (all Az, ..., [Xq; ﬂl/ ﬁZ/ R /,BS)f(Z)' (16)

Special cases of the Dziok-Srivastava operator includes the Hohlov operator [8], the
Carlson-Shaffer operator L(a,c) [9], the Ruscheweyh derivative operator D" [10], and the
Srivastava-Owa fractional derivative operators ([11-13]).

We define the Dziok-Srivastava operator of the harmonic functions f = h + g given by
(1.1) as

Hysla1]f(z) = Hys[aa]h(z) + Hys[a1]g(2). (1.7)

Recently, Porwal [14, Chapter 5] defined the subclass Mgy (f) C S consisting of
harmonic univalent functions f(z) satisfying the following condition:

- paf W (2) —28'(2) 4
Mu(p) = {fESH-Re< P > <ﬂ}, (1 <p< 3>, zel. (1.8)
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He proved that if f = h + g is given by (1.1) and if

(k-p) 4
S 1)|a|+2(ﬂ 1)|bk|51, (1<p<3). (19)

For g = 0 the class of My () is reduced to the class M () studied by Uralegaddi et al.
[15].

Generalizing the class My (), we let My (a1, p) denote the family of functions f = h+g
of form (1.1) which satisfy the condition

Re{ S (Hy [ ]h(2)) ~ (@13 () } » (1.10)

Hys[a1]h(z) + Hys[a1]g(z)

where (1 <f <4/3) and I'(a1, k) = [(a1)1 (a2) 1 (@g) iy / (P11 (Bo)iy - (B)ya-
Further, let M (ay, B) be the subclass of My (a1, ) consisting of functions of the form

f@) =2+ Sz~ 3 el 2. (w.11)
k=2

k=1

In this paper, we give a sufficient condition for f = h + g, given by (1.1) to be in
My (aq, B), and it is shown that this condition is also necessary for functions in MH(al, p).
We then obtain distortion theorem, extreme points, convolution conditions, and convex
combinations and discuss a class preserving integral operator for functions in M (ay, B).

2. Main Results

First, we give a sufficient coefficient bound for the class Mg (a1, B).

Theorem 2.1. If f = h+ g € Sy is given by (1.1) and if

(k-B) 1"(t’fl,k) (k+B) T(ay, k)
ST G X G

be] < 1, (2.1)

then f € Mp(a1, p).

Proof. Let

Z(k ﬂ)T(m,k)l o+ Z(k+ﬂ)r(“lrk)

oD K- oD & 1)'|bk|§1. (2.2)



4 International Journal of Mathematics and Mathematical Sciences

It suffices to show that

<z(Hq,s[oc1]h(z))’-z(Hq,s[a1 (z))> (Hyslorlh(z) + Hys[og(2)) -

<1,

(2(Hy Lo ]h@)) - =(Hyulwnlg@) )/ (Hylealh() + Hyoalg @) - (26~ 1)

z e U.
(2.3)

We have

(2(Hyelalna) —Z(Hqs[m]g(Z))> (Hyslaalh(z) + Ay lmlg() -

< z(Hys[m 1h(2))' - z(Hys[m g(z))> < Hys[a1]h(z) + Hys[ai] g(z)) (2p-1)
< S (k= Defarl|=*" + 552, (k + DAz @4)
T2(B-1) - X7, (k- 2B+ 1) Alarl|z[" - S, (k + 26 - 1) Albi] |z

< ik - DAla| + 32, (k + 1) A|by|
T 2(p-1) - X (k- 2B + 1) Alar| - T2, (k +26 = 1) Albi|”

where « denotes (I'(ay, k)/(k —1)!).
The last expression is bounded above by 1, if

Cla k), L(a1, k) Cla k),
Z(k D eyl Z(k D2yl < 28-1) - Z(k 26+1) gyl

Taw k) (2.5)
o1,
_ Z(k 2-1) k-1 |bk|,
which is equivalent to
(k=P) T (a1, I (k+P) (a1, k)
Z(p D k-1 Z(p 1) -1k < (26)
But (2.6) is true by hypothesis.
Hence
(Z(Hq,s[al]h(z)) Z(Hqs[al]g(z)) > < qs[“l]h(z) + Hqs[“l]g(z)>
<1,
(Z(Hq,s [“1]h(z))l - Z(Hq,s [‘Xﬂg(z))l) /<Hq,s[“1]h(z) + Hgys [“1]g(z)> - (Zﬁ - 1)
zel,
(2.7)

and the theorem is proved.
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In the following theorem, it is proved that the condition (2.1) is also necessary for
functions f = h + g € My(ay, p) that are given by (1.11). O

Theorem 2.2. A function f(z) = z + 3, |ax|zk — 32, |bx|Z* is in My (ay, B), if and only if

e I'(a1, k - I'(a1, k
3 (k= D) g+ 35k + ) 2 bl < (1) 29

k=2 k=1

Proof. Since My (a1, B) C My (a1, 8), we only need to prove the “only if” part of the theorem.
For this we show that f ¢ My (as, p) if the condition (2.8) does not hold.

Note that a necessary and sufficient condition for f = h + g given by (1.9) is in
Mp(a, p) if

fe { z(Hys[an]h(2)) - z(Hys[an]g(2))’ } <p (2.9)

Hys[en]h(2) + Hys[]g(2)

is equivalent to

Re{ (b~ 1)z~ 57 (k- ) (Tla, K)/ (k- DDlaxlz* ~ 52, (k + ) (Car, k) / (k - 1)!>|bk|z"}
2+ ST, K)/ (k= 1)) aclz - S (T, K)/ k= 1Y) b=

> 0.
(2.10)

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the
values of z on the positive real axis where 0 < z = r < 1, we must have

(B-1) - 332, (k = p)(T(ar, k) / (k= D))]axr*" = 332, (k + B) (T(a, k) / (k = 1)!)|be|r* 0
1+ 32, (T(ar, k) / (k= D)]ag|rkt = 32, (T(ar, k) / (k = 1)) [bg|rkT T
(2.11)

If the condition (2.8) does not hold then the numerator of (2.11) is negative for » and
sufficiently close to 1. Thus there exists a zg = rp in (0,1) for which the quotient in (2.11)
is negative. This contradicts the required condition for f € My (a;, ) and so the proof is
complete.

Next, we determine the extreme points of the closed convex hulls of MH(al,ﬁ),
denoted by clco My (a1, p). O

Theorem 2.3. f € clco My (ay, ), if and only if

[ee]

f(2) = D (xchi(2) + yigr(2)), (2.12)

k=1
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where
hi(z) = z,
(A1) (k-1 & k-
he(z) =z + (k=) T(a, k) k=(2,3...), (2.13)
(1) (k-1 =

8k(z) = k=(1,23,..), D(xk+y)=1,
k=1

" (k+ p) T(ar k) -

Xk >0, and yi > 0. In particular the extreme points ofﬁH (a1, p) are {hi} and {gi}.

Proof. For functions f of the form (2.12), we have

F@ =S (il + yege(2))
k_

(2.14)
B o i p-1) (k-1)!
T &k p) T, ) T & ke p) T, b)Y
Then
Z(k B)T(ay, k) [ (B-1) (k—l)' Z(kﬂﬁ) T(ar, k) ((B-1) (k-1)!
“1) (k=DI\ (k- p) T(ar k)" 1) (k—1)!'\ (k+p) [(ar, k)7
e - (2.15)
=1-x<1,

andso f € clco My (a1, B).

Conversely, suppose that f € ClCOMH(Dll,ﬂ). Set x, = (k=pB)/(P - 1))((k -
DY/ (a1, k)larl, (k = 2,3,4,...) and yx = ((k + p)/(f - 1))((k — D)!/T(a1,k))Ibil, (k =
1,2,3,...).

Then note that by Theorem2.2,0 < xx <1, (k =2,3,4,...)and 0 < yx <1, (k =
1,2,3,...). We define x1 = 1 - X2, xx — 2,124 Yk, and by Theorem 2.2, x; > 0.

Consequently, we obtain f(z) = 3,2, (xchi(z) + yigk(z)) as required. O

Theorem 2.4. If f € My (a1, ), then

1 (=) ) )

F@] <A+ lbir+ o <(2 e ﬁ>|b|> , l=r<l,
(2.16)

|f<z>|z<1—|b1|>r—r(a11,2)<(ﬂ‘l> GADM |>r2, d=r<t

2-p) @-p
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Proof. We only prove the right hand inequality. The proof for left hand inequality is similar
and will be omitted. Let f € Mg (a1, B). Taking the absolute value of f, we have

|f2)] < A+ [oal)r + > (Jal + be)r*
k=2

< (L +bihr+ S (agl + b

k=2

-1 1 °°<(2—ﬂ)F(a1,2) +<2‘ﬂ)““1'2)|bk|)r2
2-p)I(a1,2) 5 B-1) (B-1)

pB-1) 1 & (k—ﬁ)r(“lfk)|a|+(k+ﬂ)1"(a1,k)|b| 2
C-pT@,2E\ (p-1) k=D (p-1) k-1 "

(p-1) 1 (p+1) 2
<A+ br+ e <1 - G- |b1|>r

= (1 +]b)r + |a|

<A+ b+

] (-1 _+1, 2
_(1+|b1|)7"+1_,(a1,2)<(2_'6) (2—ﬂ)|bl|> .
(2.17)

For our next theorem, we need to define the convolution of two harmonic functions.
For harmonic functions of the form

f(2) = z+ Ylalz" = Y be|z5,
k=2 k=1

(2.18)
F(z) = z+ > |AklzF = D |BxZ".
k=2 k=1
We define the convolution of two harmonic functions f and F as
(f *F)(2) = f(2) *F(2) = z+ > |arAxlz" - Z|kak|z’<. (2.19)
k=2 k=1
Using this definition, we show that the class MH(aq, p) is closed under convolution. O
Theorem 2.5. For 1 <y < <4/3,let f € MH(al,y) and F € MH(le,ﬂ). Then
f*FeMp(a,y) C Mpy(ay, ). (2.20)

Proof. Let f(z) = z + 350, |aklzF - 32, |bk|Ek be in MH(al,y), and F(z) = z + 372, | Ak|zF -
3% |Bk|z* be in My (ay, B).
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Then the convolution f * F is given by (2.19). We wish to show that the coefficients of
f * F satisfy the required condition given in Theorem 2.2. For F(z) € My (ay, ) we note that

|Ak| <1 and |Bk| < 1. Now, for the convolution function f * F, we obtain

< (k—a) T(as, (k +a) I'(ay, k)
k; (@ th) (kal 1),| arAx| + Z T) (ka11)||kak|
< (k—a) F(le,k) < (k+a) T(ag, k)
Sk: (a—1) (k- 1)' kz:(a 1) (k- 1)'|b Kl

<1, <since fe MH((xl,y)>.

Therefore f * F € MH(al,y) - MH(al,ﬁ).
Theorem 2.6. The class MH(al, P) is closed under convex combination.

Proof. Fori=1,2,3,..., let fi(z) € MH(al,ﬂ), where f;(z) is given by
fiz) =z+ X la |2 = > |bi |Z*.
k=2 k=1

Then by Theorem 2.2,

(k-p) r(lxlrk) (k+B) T(ay, k)
S -1 G oy e <1

For 3%, t; = 1,0 < t; < 1, the convex combination of f; may be written as

itifi(z) =z+ i (iti|aki|>zk - <Zt |b, |>
i-1 k=2 \i-1

k=1

Then by (2.23),
(k=P) T(a, k) (& & (k+ ) T(ar, k)
Z “1) (k- D! <i_zlti|ak,-|> + kg — k-1t <Zt |bx, |>
: g;tl.(

(k=P T,k (K B) May K
25 1) &k-n!'° Z 1) k- 1)!'b’<f'>

This is the condition required by Theorem 2.2 and so 3°; t, fi(z) € My (a1, B).

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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3. A Family of Class Preserving Integral Operator

Let f(z) = h(z) + g(z) be defined by (1.1); then F(z) defined by the relation

F(z) =<

tcfl h(
0

) te-lg(t)dt, (c>-1). (3.1)
0

Theorem 3.1. Let f(z) = h(z) + g(z) € Sy be given by (1.11) and f € ﬁH(al,ﬁ), then F(z) is
defined by (3.1) also belong to My (a1, B).

Proof. Let f(z) = z+ 32, |ax|zk - X2, [bx|Z" be in My (a1, ), then by Theorem 2.2, we have

$E-DT@h (k) T b

21y G- 2Ty G- s (3.2)

By definition of F(z), we have

0

F(z)=z+

S c+1)
kZ Lk (3.3)

k=2

Now we have

Z (k= P) (a1, k) ( (c+1) Iakl> Z (k+B) T(a, k) < (c+1) |ka>

-1) (k=D!'\(c+k) -1) (k=1)!' \(c+k)
TSN N
<1
Thus F(z) € Mg (ay, ). O
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