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We relate a deterministic Kalman filter on semi-infinite interval to linear-quadratic tracking control
model with unfixed initial condition.

1. Introduction

In [1], Sontag considered the deterministic analogue of Kalman filtering problem on finite
interval. The deterministic model allows a natural extension to semi-infinite interval. It is of a
special interest because for the standard linear-quadratic stochastic control problem extension
to semi-infinite interval leads to complications with the standard quadratic objective function
(see, e.g., [2]). According to [1], the model which we are going to consider has the following
form:

J(x, u, x0) =
∫+∞

0

[
uTRu +

(
Cx − y)TQ(

Cx − y)] dt, (1.1)

ẋ = Ax + Bu, (1.2)

x(0) = x0. (1.3)

Here we assume that the pair (x, u) ∈ a(x0) + Z, where Z is a vector subspace of the Hilbert
space Ln2[0,+∞) × Lm2 [0,+∞) (with Ln2[0,+∞) a Hilbert space of Rn-value square integrable
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functions) is defined as follows:

Z =
{
(x, u) ∈ Ln2[0,+∞) × Lm2 [0,+∞) : x is absolutely continuous,

ẋ ∈ Ln
2[0,+∞), ẋ = Ax + Bu, x(0) = 0

}
.

(1.4)

HereA is an n by nmatrix; B is an n bymmatrix;R = RT is an n by n and positive definite;Q =
QT is an r by r and positive definite; C is an r by nmatrix; y ∈ Lr2[0,+∞). Notice that in (1.1)–
(1.3) x0 is not fixed and we minimize over all triple (x, u, x0) ∈ Ln2[0,+∞) × Lm2 [0,+∞) × Rn

satisfying our assumption.
Notice also that we interpret (1.1)–(1.3) as an estimation problem of the form

ẋ = Ax + Bu,

y = Cx + v,
(1.5)

where we try to estimate x with the help of observation y by minimizing perturbations u,
v and choosing an appropriate initial condition x0.

2. Solution of the Deterministic Problem

Consider the algebraic Riccati equation

KA +ATK +KLK − CTQC = 0, (2.1)

where L = BR−1BT . Assuming that the pair (A,B) is stabilizable and the pair (C,A) is detec-
table, there exists a negative definite symmetric solution Kst to (2.1) such that the matrix
A+LKst is stable (see, e.g., Theorem 12.3 in [3]). According to [4], we have described a com-
plete solution of the linear-quadratic control problem on a semi-infinite interval with the
linear term in the objective function. The major motivation for this extension comes from [5]
wherewe consider applications of primal-dual interior-point algorithms to the computational
analysis of multicriteria linear-quadratic control problems in mini-max form. To compute a
primal-dual direction it is required to solve linear-quadratic control problems with the same
quadratic and different linear parts on each iteration. Using the results in [5], we can describe
the optimal solution to (1.1)–(1.3) with fixed x0 as follows.

There exists a unique solution ρ0 ∈ Ln2[0,∞) satisfying the differential equation

ρ̇ = −(A + LKst)Tρ − CTQy. (2.2)

Moreover, ρ0 can be explicitly described as follows:

ρ0(t) =
∫+∞

0
exp

[
(A + LKst)Tτ

]
CTQy(t + τ) dτ. (2.3)
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The optimal solution (x, u) to (1.1)–(1.3) has the form

ẋ = (A + LKst)x + Lρ0, x(0) = x0, (2.4)

u = R−1BT
(
Kstx + ρ0

)
. (2.5)

For details see [5].
Notice that ρ0 does not depend on x0. To solve the original problem (1.1)–(1.3)we need

to express the minimal value of the functional (1.1) in term of x0.

Theorem 2.1. Let (x, u) be an optimal solution of (1.1)–(1.3) with fixed x0 given by (2.2)–(2.5).
Then

J(x, u, x0) = & − xT0Kstx0 − 2ρ0(0)Tx0 +
∫+∞

0

[
yTQy − ρT0Lρ0

]
dt. (2.6)

Remark 2.2. Notice that J(x, u, x0) is a strictly convex function of x0 and hence minimum of J
as a function of x0 is attained at

x
opt
0 = −K−1

st ρ0(0). (2.7)

Hence (2.2)–(2.5) gives a complete solution of the original problem (1.1)–(1.3).

Proof. Let (y,w) ∈ a(x0) + Z be feasible solution to (1.1)–(1.3), where x0 is fixed. Consider

Δ
(
y,w

)
=
[
w − R−1BT

(
Ksty + ρ0

)]T · R ·
[
w − R−1BT

(
Ksty + ρ0

)]
, (2.8)

where we suppressed an explicit dependence on time. Notice that by (2.5)

Δ(x, u) ≡ 0,

Δ
(
y,w

) ≡ 0,
(2.9)

for any feasible solution (y,w) implies that (y,w) = (x, u). Furthermore, let Δ(y,w) = Δ1 +
Δ2 + Δ3, where

Δ1 = wTRw,

Δ2 = −2(Ksty + ρ0
)T
Bw,

Δ3 =
(
Ksty + ρ0

)T
L
(
Ksty + ρ0

)
.

(2.10)



4 International Journal of Mathematics and Mathematical Sciences

Now Bw = ẏ −Ay, and consequently

Δ2 = −2(yTKst + ρT0
)(
ẏ −Ay) = yT

(
KstA +ATKst

)
y − 2yTKstẏ − 2ρT0 ẏ + 2ρTAy,

Δ3 = yTKstLKsty + ρT0Lρ0 + 2ρT0LKsty.

(2.11)

Consequently,

Δ
(
y,w

)
= wTRw + ρT0Lρ0 + y

T
(
KstLKst +KstA +ATKst

)
y − d

dt

(
yTKsty

)
− 2

d

dt

(
ρT0y

)

+ 2 ˙ρT0y + 2ρT0LKsty + 2ρT0Ay.

(2.12)

Using (2.1) and (2.2), we obtain

Δ
(
y,w

)
= wTRw + ρT0Lρ0 + y

TCTQCy − 2
d

dt

(
ρT0y

)
− d

dt

(
yTKsty

)
− 2

(
CTQy

)T
y

= wTRw + ρT0Lρ0 − 2
d

dt

(
ρT0y

)
− d

dt

(
yTKsty

)
+
(
y − Cy)TQ(

y − Cy) − yTQy.
(2.13)

Hence, taking into account that ρ0(t) → 0, y(t) → 0, t → +∞ (see, for details [5]), we
obtain

∫+∞

0
Δ
(
y,w

)
dt =

∫+∞

0

[
wTRw +

(
y − Cy)TQ(

y − Cy)]dt

+
∫+∞

0

[
ρT0Lρ0 − yTQy

]
dt + 2ρ0(0)Tx0 + x0Kstx0

= J
(
y,w, x0

)
+ 2ρ0(0)Tx0 + x0Kstx0 + c,

(2.14)

where c =
∫+∞
0 [ρT0Lρ0 − yTQy]dt.

Notice, that Δ(y,w) ≥ 0 and Δ(x, u) ≡ 0. This shows that, indeed, (x, u) is an optimal
solution to (1.1)–(1.3) (with fixed x0) and proves (2.6).

Remark 2.3. By (2.14) and Δ(x, u) ≡ 0, we have J(y,w, x0) ≥ J(x, u, x0) and the equality
occurs if and only if (y,w) ≡ (x, u) (see also (2.9)). Hence (x, u) is a unique solution to the
problem (1.1)–(1.3). Similary reasoning works in discrete time case.
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3. Steady-State Deterministic Kalman Filtering

In light of (2.7), it is natural to consider the process

z(t) = −K−1
st ρ0(t), t ∈ [0,+∞) (3.1)

as a natural estimate for the optimal solution to problem (1.1)–(1.3). Let us find the differen-
tial equation for z.

Proposition 3.1. One has

ż = Az +K−1
st C

TQ
(
y − Cz). (3.2)

Remark 3.2. Notice that K−1
st is a solution to the algebraic equation

L − PCTQCP +AP + PAT = 0. (3.3)

In other words, the differential equation (3.2) is a precise deterministic analogue for the
stochastic differential equation describing the optimal (steady-state) estimation in Kalman
filtering problem. See, for example, [2].

Proof. Using (2.2) and (3.1), we obtain

ż = K−1
st (A + LKst)Tρ0 +K−1

st C
TQy

= −
(
K−1
st A

T + L
)
(Kstz) +K−1

st C
TQy.

(3.4)

Since Kst is a solution to (2.1), we have

−K−1
st A

TKst − LKst = A −K−1
st C

TQC. (3.5)

Hence,

ż = Az −K−1
st C

TQCz +K−1
st C

TQy. (3.6)

Hence, we obtain (3.2).

Remark 3.3. Notice that due to (3.1) Δ(z, 0) ≡ 0 and consequently (z, 0) would be an optimal
solution to (1.1)–(1.3) if it were feasible for this problem.



6 International Journal of Mathematics and Mathematical Sciences

4. The Solution of the Discrete Deterministic Problem

It is natural to consider the discrete version for the problem (1.1)–(1.3). In this case, the pro-
blem can be reformulated as follows:

J(x, u, x0) =
1
2

∞∑
k=1

[
uTkRuk +

(
Cxk − yk

)T
Q
(
Cxk − yk

)] −→ min, (4.1)

xk+1 = Axk + Buk, (4.2)

x0 = xo. (4.3)

Here we let x denote a sequence {xk} ⊂ R
n for k = 0, . . . ,∞. We say that x ∈ ln2 (N)

if
∑∞

i=1 ‖xi‖2 < ∞, where ‖ · ‖ is a norm induced by an inner product 〈, 〉 in R
n. Let (x, u) ∈

ln2 (N) × lm2 (N).
Like in the continuous case, we assume that the pair (x, u) ∈ a(x0) + Z, where Z is a

vector subspace of the Hilbert space ln2 (N) × lm2 (N).
Observe now the inner product inH has the following form:

〈(
x, y

)
, (u, v)

〉
H =

∞∑
k=0

{〈xk, uk〉 + 〈
yk, vk

〉}
. (4.4)

The vector subspace Z now takes the following form:

Z = {(x, u) ∈ H : xk+1 = Axk + Buk, k = 0, 1, . . . , x0 = 0}. (4.5)

Here A is an n by n matrix. B is an n by m matrix. R = RT is an n by n and positive definite.
Q = QT is an r by r and positive definite. C is an r by nmatrix and y ∈ lr2(N).

As in the continuous case, we interpret (4.1)–(4.3) as an estimation problem of the
form

xk+1 = Axk + Buk,

yk = Cxk + vk,
(4.6)

where we try to estimate x with the help of observation y by minimizing perturbations u,
v and choosing an appropriate initial condition x0.

According to [4], a general cost function for a discrete linear-quadratic control problem
with linear term on the cost function has the following form:

J(x, u, x0) =
∞∑
k=1

1
2

[
xTkQxk + u

T
kRuk

]
+ xTkψk + u

T
kφk −→ min, (4.7)
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where ψ ∈ ln2 (N) and φ ∈ lm2 (N). The solution to the particular class of problems can be com-
pletely described by solving several system of recurrence relations and the following discrete
algebraic Riccati equation (DARE):

K = ATKA −
(
ATKB

)(
R + BTKB

)−1(
ATKB

)T
+Q. (4.8)

We assume that this equation has a positive definite stabilizing solution Kst. For sufficient
conditions, see [6].

In our situation, we have

J(x, u, x0) =
1
2

∞∑
k=1

[
uTkRuk +

(
Cxk − yk

)T
Q
(
Cxk − yk

)] −→ min . (4.9)

It is easy to see that ψk = −CTQyk and φk = 0, k = 0, 1, . . .. By [4], there is a unique solution
ρ = {ρk} ∈ ln2 (N) of the following recurrence relations

ρk =
[
AT −

(
ATKstB

)(
R + BTKstB

)−1
BT

]
ρk+1 + CTQyk. (4.10)

For details on an explicit solution of the above recurrence relation, see [4]. For simplicity, we
let

R =
(
R + BTKstB

)
, (4.11)

and we also let

L = BR
−1
BT . (4.12)

So our recurrence relation for ρ now takes the form

ρk =
[
AT −ATKstL

]
ρk+1 + CTQyk (4.13)

with the corresponding DARE

K = ATKA − (
ATKB

)
R

−1(
ATKB

)T + CTQC,

K = ATKA −ATKLKA + CTQC.
(4.14)

The optimal solution to (4.1)–(4.3) has the following form:

xk+1 =
(
AT −ATKstL

)T
xk + Lρk+1, (4.15)

uk = −R−1
BTKstAxk + R

−1
BTρk+1. (4.16)
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For details, see [4]. To solve the original problem (4.1)–(4.3) we need to express the minimal
value of the functional (4.1) in terms of x0.

Theorem 4.1. Let (x, u) be an optimal solution of (4.1)–(4.3) with fixed x0 given by (4.15)-(4.16).
Then

J(x, u, x0) =
1
2
xT0Kstx0 − ρT0x0 +

1
2

∞∑
k=0

[
2yTkQyk − ρTk+1Lρk+1

]
. (4.17)

Proof. For simplicity of notation, we use K for Kst. Let

Δ
(
yk,wk

)
=
[
wk + R

−1
BT

(
KAyk − ρk+1

)]T · R ·
[
wk + R

−1
BT

(
KAyk − ρk+1

)]

= Δ1 + Δ2 + Δ3,

(4.18)

where

Δ1 = wT
kRwk,

Δ2 = 2
(
KAyk − ρk+1

)T
Bwk

= 2
(
KAyk − ρk+1

)T(
yk+1 −Ayk

)

= 2yTkA
TKyk+1 − 2yTkA

TKAyk − 2ρTk+1yk+1 + 2ρTk+1Ayk,

Δ3 =
(
KAyk − ρk+1

)T
L
(
KAyk − ρk+1

)

= yTkA
TKLKAyk + ρ

T
k+1Lρk+1 − 2yTkA

TKLρk+1.

(4.19)

We assume that (y,w) ∈ a(x0) + Z. Since ATKA − ATKLKA = K − CTQC and [AT −
ATKL]ρk+1 = ρk − CTQyk, we have

Δ
(
yk,wk

)
= wT

kRwk − 2yTk
[
ATKA −ATKLKA

]
yk − yTkATKLKAyk

− 2ρTk+1yk+1 + 2ρTk+1Ayk + ρ
T
k+1Lρk+1 − 2yTkA

TKLρk+1 + 2yTkA
TKyk+1

= wT
kRwk − 2yTk

[
K − CTQC

]
yk − yTkATKLKAyk − 2ρTk+1yk+1

+ 2yTkA
Tρk+1 + ρ

T
k+1Lρk+1 − 2yTkA

TKLρk+1 + 2yTkA
TKyk+1

= wT
kRwk − 2yTk

[
K − CTQC

]
yk − yTkATKLKAyk − 2ρTk+1yk+1

+ 2yTk
[
AT −ATKL

]
ρk+1 + ρ

T
k+1Lρk+1 + 2yTkA

TKyk+1
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= wT
kRwk − 2yTk

[
K − CTQC

]
yk − yTkATKLKAyk − 2ρTk+1yk+1

+ 2yT
k

[
ρk − CTQyk

]
+ ρTk+1Lρk+1 + 2yTkA

TKyk+1

= wT
kRwk − 2yTk

[
K − CTQC

]
yk − yTkATKLKAyk − 2ρTk+1yk+1

+ 2yTk ρk − 2yTkC
TQyk + ρ

T
k+1Lρk+1 + 2yTkA

TKyk+1.

(4.20)

By recalling now the definition of R, we have

wT
kRwk = wT

k

(
R + BTKB

)
wk

= wT
kRwk +wT

kB
TKBwk

= wT
kRwk +

(
yk+1 −Ayk

)T
K
(
yk+1 −Ayk

)

= wT
kRwk + yTk+1Kyk+1 + y

T
kA

TKAyk − 2yTkA
TKyk+1.

(4.21)

Therefore,

Δ
(
yk,wk

)
= wT

kRwk − yTkKyk − yTkCTQCyk − 2ρTk+1yk+1 + 2yTk ρk

− 2yTkC
TQyk + ρ

T
k+1Lρk+1 + y

T
k+1Kyk+1.

(4.22)

We then rearrange the terms and complete the square to obtain a useful expression for Δ:

Δ
(
yk,wk

)
= wT

kRwk − yTkKyk + yTk+1Kyk+1 − 2ρTk+1yk+1 + 2ρTkyk

+ ρTk+1Lρk+1 + y
T
kC

TQCyk − 2yTkC
TQyk

= wT
kRwk − yTkKyk + yTk+1Kyk+1 − 2ρTk+1yk+1 + 2ρTkyk

+ ρTk+1Lρk+1 +
(
Cyk − yk

)T
Q
(
Cyk − yk

) − 2yTkQyk.

(4.23)

Notice, since we fixed x0, we let y0 = x0 and take summation of both sides:

∞∑
k=0

Δ
(
yk,wk

)
= − xT0Kx0 + 2ρT0x0 +

∞∑
k=0

[
wT
kRwk +

(
Cyk − yk

)T
Q
(
Cyk − yk

)]

+
∞∑
k=0

[
ρTk+1Lρk+1 − 2yTkQyk

]
.

(4.24)
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By the definition of Δ(yk,wk), Δ(xk, uk) = 0. Therefore,

0 = −xT0Kx0 + 2ρT0x0 + 2J(x, u, x0) +
∞∑
k=0

[
ρTk+1Lρk+1 − 2yTkQyk

]
. (4.25)

As a result,

J(x, u, x0) =
1
2
xT0Kx0 − ρT0x0 +

1
2

∞∑
k=0

[
2yTkQyk − ρTk+1Lρk+1

]
. (4.26)

Then the proof is completed.

As in continuous case, for the discrete case, J(x, u, x0) is a strictly convex function of
x0 and hence minimum of J as a function of x0 is attained at

x
opt
0 = K−1

st ρ0, (4.27)

where ρ is the unique l2 solution to (4.13).
Since we have (4.27), it is natural to consider the process

zk = K−1
st ρk, (4.28)

as an estimate for the optimal solution to problem (4.1)−(4.3). Let us find the recurrence rela-
tion for zk.

Proposition 4.2. Assuming that the closed loop matrix A-LKA is invertible, one has

zk+1 = Azk −K−1
st

[
AT −ATKstL

]−1(
yk − Czk

)
. (4.29)

Proof. We can rewrite (4.13) in the form

Kstzk =
[
AT −ATKstL

]
Kstzk+1 + CTQyk. (4.30)

Using the algebraic Riccati equation

Kst = ATKstA −ATKstLKstA + CTQC, (4.31)

we can rewrite (4.30) in the form

CTQCzk +
(
ATKst −ATKstLKst

)
Azk =

(
AT −ATKstL

)
Kstzk+1 + CTQyk, (4.32)
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which is equivalent to

(
AT −ATKstL

)
Kstzk+1 =

(
AT −ATKstL

)
KstAzk − CTQ

(
yk − Czk

)
. (4.33)

The result follows.

Remark 4.3. Notice that (4.29) is the analogue of the “limiting” discrete Kalman filter [6, Page
384, (17.6.1)].

5. Concluding Remarks

In this paper, we relate a deterministic Kalman filter on semi-infinite interval to linear-quad-
ratic tracking control model with unfixed initial condition. Solutions of the deterministic pro-
blems both continuous and discrete cases are described. This extends the result of Sontag to
semi-infinite interval.
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