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For Topelitz operators with radial symbols on the disk, there are important results that characterize
boundedness, compactness, and its relation to the Berezin transform. The notion of essentially
radial symbol is a natural extension, in the context of multiply-connected domains, of the notion
of radial symbol on the disk. In this paper we analyze the relationship between the boundary
behavior of the Berezin transform and the compactness of Ty when ¢ € L*(Q) is essentially radial
and Q is multiply-connected domains.

1. Introduction

Toeplitz operators are object of intense study. Many papers have been dedicated to the study
of these concrete class of operators generating many interesting results. A very important
tool to study the behavior of these operators is the Berezin transform. This tool is particularly
relevant with its connections with quantum mechanics, especially in the case of the Toeplitz
operators on the Segal-Bargmann space. In this case, they arises naturally as anti-Wick
quantization operators, and there is a natural equivalence between Toeplitz operators and
a generalization of pseudodifferential operators, the so-called Weyl’s quantization.

In a fundamental paper, Axler and Zheng proved that, if S € B(L?*(D)) can be written
as a finite sum of finite products of Toeplitz operators with L*-symbols, then S is compact
if and only if S has a Berezin transform which vanishes at the boundary of the disk D. As
they expected, this result has been extended into several directions, and it has been proved
even for operators which are not of the Toeplitz type. Therefore it has been an important open
problem to characterize the class of operators for which the compactness is equivalent to the
vanishing of the Berezin transform. Since there are operators which are not compact but have
a Berezin transform which vanishes at the boundary; it is now clear that the two notions are
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not equivalent. Moreover, it is possible to show that in the context of Toeplitz operators there
are examples of unbounded symbols whose corresponding operators are bounded and even
compact.

Recently, many papers have been written in the case when the operator has an un-
bounded radial symbol ¢ € L*(D). Of course, for a square-integrable symbol, the Toeplitz
operator is densely defined but is not necessarily bounded. However, it is possible (see [1]
of Grudsky and Vasilevski, [2] of Zorboska, and [3] of Korenblum and Zhu) to show that
operators with unbounded radial symbols can have a very rich structure. Moreover, there is
a very neat and elegant way to characterize boundedness and compactness. The reason being
that the operators with radial symbols on the disk are diagonal operators. In this context
the relation between compactness and the Berezin transform has been studied in depth, and
interesting results have been established.

In a previous paper (see [4]), the author showed that it is possible to extend the
notion of radial symbol when Q is a bounded multiply-connected domain in the complex
plane C, whose boundary 0Q consists of finitely many simple closed smooth analytic curves
Yj (j = 1,2,...,n) where y; are positively oriented with respect to Q and y;jNny; = @ if i#j.
The key ingredient for this extension is to observe two facts. The first fact is that the structure
of the Bergman kernel suggests that there is in any planar domain an internal region that
we can neglect when we are interested in boundedness and compactness of the Toeplitz
operators with square integrable symbols. The second observation consists in exploiting the
geometry of the domain and conformal equivalence in order to partially recover the notion of
radial symbol. For this class of essentially radial symbols, the compactness and boundedness
have been studied and necessary and sufficient conditions established. In this paper we
carry forward our analysis by investigating the relationship between the compactness and
the vanishing of the Berezin transform. It is important to observe that in the case of the
disk the analysis uses the fact that the Berezin transform can be easily written in a simple
way since we can write explicitly an orthonormal basis, namely the collection of functions
{(Vk +1z*};2,. In the case of a planar domain, this is not possible because it is very hard to
construct explicitly an orthonormal basis for the Bergman space. However, it is possible to
reach interesting results that fully extend what it is known in the case of the disk.

The paper is organized as follows. In Section 2 we describe the setting where we work,
give the relevant definitions, and state our main result. In Section 3 we prove the main result
and we study several important consequences.

2. Preliminaries

Let Q be a bounded multiply-connected domain in the complex plane C, whose boundary
0L consists of finitely many simple closed smooth analytic curves y; (j = 1,2,...,n) where y;
are positively oriented with respect to Q and y; Ny; = @ if i # j. We also assume that y; is the
boundary of the unbounded component of C\ Q. Let ; be the bounded component of C\ y1,
and Q; (j =2,...,n) the unbounded component of C \ y;, respectively, so that Q = (), Q;.

For dv = (1/x)dx dy we consider the usual L?-space L?(Q) = L*(Q, dv). The Bergman
space Lﬁ(Q, dv), consisting of all holomorphic functions which are Lz—integrable, is a closed
subspace of L?(Q, dv) with the inner product given by

()= [ F@@EBE), 1)
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for f, g € L>(€2, dv). The Bergman projection is the orthogonal projection
P: L*(Q,dv) — L2(Q,dv); (2.2)

it is well-known that for any f € L?(Q, dv) we have
Pfw) = fEKzw)dv(a) (23)
Q

where K is the Bergman reproducing kernel of Q. For ¢ € L*(Q, dv) the Toeplitz operator
T, : L3(Q,dv) — L2(Q,dv) is defined by T, = PM,, where M, is the standard multiplication
operator. A simple calculation shows that

Ty f(2) = [ plao)f(0)KO 0, Do) (2.4

We use the symbol A to indicate the punctured disk {z € C | 0 < |z| < 1}. Let I be any one of
the domains Q, A, Q; (j =2,...,n).

We call K'(z,w) the reproducing kernel of I, and we use the symbol k' (z,w) to
indicate the normalized reproducing kernel; that is, k™ (z, w) = K (z,w) /K" (w, w)"/2.

For any A € B(L2(T,dv)), the space of bounded operators on L2(T', dv), we define A,
the Berezin transform of A, by

A(w) = <Ak,£,, k5,> - L AKT (2)KL (z)dv(z), (2.5)

where kL (1) = KT (-, w) KT (w, w) /2.
If ¢ € L*(T), then we indicate with the symbol ¢ the Berezin transform of the
associated Toeplitz operator T, and we have

Pw) = L (p(z)|k£,(z) |2dv(z). (2.6)

We remind the reader that it is well known that A € Cz(I) and we have ||A||oo < AllBr2(@))-
It is possible, in the case of bounded symbols, to give a characterization of compactness using
the Berezin transform (see [5, 6]).

We remind the reader that any Q bounded multiply-connected domain in the complex
plane C, whose boundary o€ consists of finitely many simple closed smooth analytic curves
Y (j = 1,2,...,n), is conformally equivalent to a canonical bounded multiply-connected
domain whose boundary consists of finitely many circles (see [7]). This means that it is
possible to find a conformally equivalent domain D = (., D; where D; = {z € C : |z] < 1}
and D; = {z€ C: |z—aj| >rj}forj=2,...,n.Herea; € D1and 0 < r; < 1 with [aj—ax| > rj+r¢
if j#k and 1 - |a;| > r;. Before we state the main result of this paper, we need to give a few
definitions.
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Definition 2.1. Let Q = (L, Q; be a canonical bounded multiply-connected domain. One says
that the set of n + 1 functions *B = {po, p1,...,px} is a O-partition for Q if

(1) forevery j=0,1,...,n,p; : Q — [0,1] is a Lipschitz, C*-function;

(2) for every j = 2,...,n there exists an open set W; C Q and an ¢; > 0 such that
U, = {{€Q:1j<|i-aj| <rj+e;} and the support of p; are contained in W; and

pi(¢) =1 Viel.; (2.7)

(3) for j = 1 there exists an open set Wi C Q and an e¢; > 0 such that U,, = {{ € Q :
1-¢; <[¢| <1} and the support of p; are contained in W; and

pi(¢) =1 Voel,; (2.8)

(4) for every j,k =1,...,n, W N Wy = @, the set Q \ (U}q:1 W;) is not empty and the
function

)=1V W; ,
Po(6) (S <U > N g2 29)

P0(§)=O Vgeuek/ k=1,...,n,

(5) for any ¢ € Q the following equation
n
D) =1 (210)
k=0

holds.
We also need the following.

Definition 2.2. A function ¢ : Q = NL; Q; — C is said to be essentially radial if there exists
a conformally equivalent canonical bounded domain D = (., D; such that, if the map © :
Q — D is the conformal mapping from Q onto D, then

(1) for every k = 2,...,n and for some e, > 0, one has
poO©7(2) =poO (|2~ ax) (2.11)

whenzel,, ={(eQ:re <|—ax| <rr+ex},

(2) for k = 1 and for some €, > 0, one has
po@l(2) =poO7'(|z)) (212)

whenzel,, ={(e€Q:1-¢ <|¢| <1}
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The reader should note that, in the case where it is necessary to stress the use of a
specific conformal equivalence, we will say that the map ¢ is essentially radial via © :
Ng—1 Qe — Np-y De. Moreover, we stress that in what follows, when we are working with
a general multiply-connected domain and we have a conformal equivalence © : ,_; Q; —
M-, D¢, we always assume that the 0-partition is given on (\,_; D¢ and transferred to (,_; Q¢
through © in the natural way.

Definition 2.3. If ¢ € L*(Q) is an essentially radial function via © : N, Qi — NiL; Di, @ =
¢-pjforanyj=1,...,nwhereP = {po,p1,...,pn} is a O-partition for Q then one defines the
n sequences

Ay, = {atpl(k)}kez+'aipz = {alpz(k)}kez+""fa({)n = {aqﬂn (k)}ke% (2.13)

as follows: if j =2,...,n,

o T'-2k+1
ap, (k) =1 f 9j 0O (rjs+aj)(k+ 1)#;(15 Vk € Z,, (2.14)
7

andifj=1,

1
ay, (k) = f 1007 (s)(k +1)s**ds Vk e Z,. (2.15)
0

At this point we can state the main result.

Theorem 2.4. Let ¢ € L*(Q) be an essentially radial function via © : (;_; Q¢ — ;. De and
;= @-pjforanyj =1,...,nwhere B = {po,p1,...,pa} is a O-partition for Q. If the operator
T, : L3(Q,dv) — L3(Q,dv) is bounded and if for any j = 1,...,n the sequence a,, = {a,,(k)}
satisfies the following

keZ,

sup{ |k + 1)a, (k) - kay, (k- D]} < oo, (2.16)

keZ.,
then the operator T, : L3(Q, dv) — L2(Q,dv) is compact if and only if

wan(;QTw (w) =0. (2.17)

3. Canonical Multiply-Connected Domains and
Essentially Radial Symbols

We concentrate on the relationship between compact Toeplitz operators and the Berezin
transform. As we said in the introduction, Axler and Zheng have proved (see [5]) that if
D is the disk, S = Z:"Hkmj Ty, where @;; € L*(D), then S is compact if and only if its
Berezin transform vanishes at the boundary of the disk. Their fundamental result has been
extended in several directions, in particular when Q is a general smoothly bounded multiply-
connected planar domain [6]. In this section we try to characterize the compactness in terms
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of the Berezin transform. In the next theorem, under a certain condition, we will show that
the Berezin transform characterization of compactness still holds in this context.

In the case of the disk, it is possible to show that when the operator is radial then its
Berezin transform has a very special form. In fact, if ¢ : D — C is radial, then

— 2
Ty(2) = (1-121") Y+ 1)(Tpen en)lzl™, (3.1)

where, by definition,
e,(z)=vn+1z" VneZ,. (3.2)

Therefore to show that the vanishing of the Berezin transform implies compactness is equiv-
alent, given that T;, is diagonal and to show that lim;1(1 - 1z (n+1) (Tyen, ez =0
implies lim,, . (Tyen, €,) = 0, Korenblum and Zhu realized this fact in their seminal paper
[3], and, along this line, more was discovered by Zorboska (see [2]) and Grudsky and
Vasilevski (see [1]).

In the case of a multiply-connected domain, it is not possible to write things so neatly;
however, we can exploit our estimates near the boundary to use similar arguments. In fact,
for an essentially radial function, the values depend essentially on the distance from the
boundary. Moreover, we can simplify our analysis if we use the fact that every multiply-
connected domain is conformally equivalent to a canonical bounded multiply-connected
domain whose boundary consists of finitely many circles. It is important to stress that in the
case of essentially radial symbol it is possible to exploit what has been done in the case of the
disk, but the operator is not a diagonal operator, and the Berezin transform is not particularly
simple to write in an explicit way:.

In what follows the punctured disk A = {z € C | 0 < |z| < 1} plays a very important
role; for this reason we need the following.

Theorem 3.1. There exists an isomorphism I : L*(A) — L*(Qq) such that
1(L3(8)) = L3(@). (33)

Moreover, for any p > 2 one has that L5 (A) = L} (Q1), and, for any (z,w) € A?, the Bergman kernels
K2 and K satisfy the following equation:

K2(z,w) = K*(z,w). (3.4)

Proof. Suppose that f € L2(A); this means that f is holomorphic on A, then we can write
down the Laurent expansion of f about 0, and we have

f(z) = i anz". (3.5)
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This implies that |f(z)[* = Yo, an@mz"z"; therefore we have

f | f(z)|2dv(z)=f i AnGmz"Z"dv(z)
A

A n,m=—co

2 A1 [*9) .
’[ Z anﬂrnﬂnﬂel(n—m)edr 4o
0 0 n,m=—o0

) 20T 1
Z anEJ‘ ei(n—m)ede J‘ Tn+m+1d1’ (36)
0

n,m=-—oo 0

0 1
=27 )’ |an|2j r*dr
n=-co 0

© [ e ! L (1
=2 Z |(1n| m + |[1_1| J'O ;dr .
n#-1 0

The last equation, together with the fact that f is square-integrable, implies that a, = 0 if
n < —1. Then we can conclude that f has an holomorphic extension on €. We define

2:L*A) — L*()) (3.7)

in this way: if ¢ € L*(A), then 0¢(z) = g(z) if z#0 and
25(0) = | g(2)dv(a). (38)

Then Og € L*() and ||9g|la, = |Iglla- If f € L2(A), we have just shown that Of € L2(Q).
Clearly 9 is injective and surjective, in fact if G € L?(Q;), then g = G5 is an element of L*(A)
and 9(g) = G. Then 2 is an isomorphism of L?(A) onto L*(Q;) and J(L2(A)) = L2(Q).
Moreover, observing that p > 2 implies || f|la2 < ||fllap for any f € LP(A), we conclude that
L5(A) = Lo().

Finally, it is easy to verify that for any f, g € L2(A) we have

(fr&)a= <Of/93>91/ (3.9)

and this fact implies, by the definition of the Bergman reproducing kernel, that
K*(z,w) = K% (z,w), (3.10)

for any (z,w) € A2 O

In order to better explain our intuition, we remind the reader that we proved that, if
¢ € L*(D) is an essentially radial function where Q is a bounded multiply-connected domain
and if we define ¢; = ¢ - p; where j = 1,...,n where B = {po,p1,...,pn} is a O-partition
for Q, then the fact that the operator T, : L2(Q,dv) — L%(Q,dv) is bounded (compact)
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is equivalent to fact, that for any j = 1,...,n, the operators T, : L3(Q;,dv) — L3(Q;j,dv) are
bounded (compact) (see [4]).

We start our investigation by focusing our attention on the case of bounded symbols.
In fact, we prove the following.

Theorem 3.2. Let ¢ € L*(D) be an essentially radial function, if one defines ¢; = ¢ - p; where j =
1,...,nand B is a 0-partition for D. Then for the bounded operator T, the following are equivalent:
(1) the operator T,, : L(D,dv) — L2(D, dv) is compact;
(2) forany j =1,...,n one has

Jim a,,, (k) = 0. (3.11)

Proof. Since ¢ € L*(D), we know that the operator T, : L2(Q,dv) — L%(Q,dv) is bounded,
and we know that the boundedness (compactness) is equivalent to the fact that for any j =
1,...,n the operators T, : LZ(D]-,dv) — Li(Dj, dv) are bounded (compact). If j = 2,...,n,
we observe that if we consider the following sets Ag; = {z € C : 0 < |z -a| < 1} and
Ay ={z € C:0<|z-aj| <r;} and the maps Ag; 5 Agri 1A D; where a(z) = aj + 1)z
and p(w) = (w - a]-)_lrj2 + a; and we use Proposition 1.1 in [8], we can claim that T, =
Vﬂ_o {IT(pjoﬁo,,Vﬁoa where Vgop @ L*(Ag1) — L*(Dj) is an isomorphism of the Hilbert spaces.
Therefore Ty, is compact if and only if T opn is compact. We also notice that the previous

theorem implies that function {vk + 1z} is an orthonormal basis for L?(Ag;), and this, in
turn, implies that the compactness of the operator Ty, op.4 is equivalent to the fact that for the
sequence a,, = {ay, (k) }kGN we have limg _, i, a¢, (k) = 0 where, by definition,

ay, (k) = . pjopoa(z)(k+1)z"z"dz VYm e zZ,. (3.12)
0,1

To complete the proof we observe that, since ¢; is radial and f o a(r) = r‘lrj + aj, then, after
a change of variable, we can rewrite the last integral, and hence the formula

. p2k+1
ay, (k) = rjj ;i (ris +aj) (k + 1)5’2WS—2015 Vm € Z, (3.13)
i
must hold for any j = 2,...,n. For the case j = 1 the proof is similar. O

Now we can prove the following.

Theorem 3.3. Let ¢ € L*(Q) be an essentially radial function via © : (p_; Q¢ — gy De, if one
defines @; = ¢ - p; where j = 1,...,n and B is a O-partition for Q. Then for the bounded operator T,
the following are equivalent:

(1) the operator T,, : L3(Q, dv) — L2(Q, dv) is compact;
(2) forany j =1,...,n one has

Jim a,, (k) = 0. (3.14)
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Proof. We know that Q is a regular domain, and therefore if © is a conformal mapping from
Q onto D then the Bergman kernels of Q and ©(Q) = D are related via KP(9(z), O(w))
©'(2)® (w) = K%(z,w) and the operator Vof = @ - f 0 © is an isometry from L?(D) onto
L?(Q) (see [8, Proposition 1.1]). In particular we have Vo PP = P“Vg and this implies that
VoT, = Tyoo1 Vo. Therefore the operator T, is bounded if and only if for any j = 1,...,n the
operators T .01 : Lﬁ(Dj,dv) — Lﬁ(Dj,dv) are bounded (compact). Hence we can conclude
that the operator is bounded (compact) if forany j =1,...,n we have

I}Er;oa¢j(k) =0, (3.15)
where, by definition, if j =2,...,n,
- p2k+1 1
ay, (k) =1 f ;o o1 (r]-s + a]-)(k +1) s]2k+1 gds Vk € Z,, (3.16)
7j
andif j =1,
1
ay, (k) = f @1 007 (s)(k +1)s**ds  Vk € Z,. (3.17)
0
O

Theorem 3.4. Let ¢ € L*(D) be an essentially radial function, if one defines ¢; = ¢ - p; where
j =1,...,nand B is a 0-partition for Q and the operator T,, : 12(D,dv) — L2(D,dv) is bounded
(compact) and if for any j = 1,...,n the sequences a,, = {ay, (k)},  are such that

sup{|(k+l)a%.(k) —ka%,(k—l)|} (3.18)

keN
is finite, then the operator T, : L3(D, dv) — L2(D, dv) is compact if and only if
wlgfalDT‘P(w) =0. (3.19)

Proof. We know that the operator under examination is bounded (compact) if and only if for
any j =1,...,n the operators

T,, : L*(D;,dv) — L%(Dj,dv) (3.20)

are bounded (compact). If j = 2,...,n, we observe that if we consider the following sets
App={z€C:0<|z-al<1}and A, = {z€C:0<|z-aj| <r;} and the following maps

Mgy — Ag, 2, D;, (3.21)
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where a(z) = a; + rjz and p(w) = (w - aj)flrj2 + a; and we use Proposition 1.1 in [8], we can
claim that

Ty = ViouTpjopoaVpoar (3.22)

where Vgou : L*(Ag1) — L*(Dj) is an isomorphism of Hilbert’s spaces. Therefore T,
is compact if and only if Ty opeq is compact. Since Tpopon : L3(Ao1) — L2(Agq) and
{Vk + 1z}, is an orthonormal basis, a simple calculation shows that

g, (K) = (TyopoaVk +125, Vi + 1% ); (3.23)

therefore our assumption on a,, = {a,, (k)} KN that

sup{ |(k +1)ay, (k) - kay, (k- D]} < o0 (3.24)

keZ..

implies (see [9, Theorem 6]) that the compactness of Ty op0q is equivalent to the fact that
the Berezin transform vanishes at the boundary. Since the case j = 1 is immediate, we can
conclude, from what we proved so far, that for any j = 1,2,...,n we have that compactness
is equivalent to the fact that lim, _ap,pz “(z) = 0. To complete the proof we set, for any
j=1...,n 38 ={w e Q| pj(w) = 1} where {py,...,ps} is in the d-partition for Q. By
definition of 0-partition, it follows that S; N S; = @ is j #i, and we can write

§(2) = (T2, kD)
= JD p(w)

= L_ pe(w)

k?(w)'zdw

(3.25)

kP (w) |2dw.

kf(w)izdw +f

pe(w)
905;

Since for any ¢ = 1,...,n the quantity IS@ peo(w) |kE(w)|2dw can be written as

KD

i ( f>
2 dw + w kD w 2 — ; dw )
D12 (Pé( ) z( )| D12 ’ (3 6)
” z ||2 ¢ ” z ||2

Do\ 2
f oe() CORY
Se

2
=
2

we observe that the function 6,(z,w) = (|k2(w)[* - (KE")Z/HKEH%) is bounded on the set .S,
and vanishes at the boundary.

In fact, to prove this we remind the reader that there exists an isomorphism I :
L?(Ag1) — L?(Qq) such that I(L2(Ag1)) = L%(Q;) and the Bergman kernels K* and K
satisfy the following equation K*(z,w) = K®(z,w). If we define A,, = {z € C : 0 <
|z—a| <r)and O,, = {z € C: |z - a| > r}, then KO (z,w) = r2/(r* - (z — a) - (w - a))*



International Journal of Mathematics and Mathematical Sciences 11

for all (z,w) € Oyy x O,y. The well-known fact that the reproducing kernel of the unit disk
is given by (1 - zw) 2 implies that K2 (z,w) = 1/(1 -z - w)? for all (z,w) € Apq x Agp
therefore, by conformal mapping, that the reproducing kernel of A,, is K% (z,w) =
r2/(* = (z - a) - (w—-a))* for all (z,w) € A,, x A,,. If we define ¢ : A,, — O,, by
¢(z) = (z — a) "7 + a and using the fact that K9 (¢(z), p(w))P'(z)¢' (w) = K2 (z,w), we
obtain that K9 (z,w) = 12/ (r - (z—a) - (w — a))* for all (z,w) € Oa, x O, Since Q1 = Oy
and, for j =2,...,n, Oy, = Q;j, then we prove that K" (z, w) = r].z/(r]? - (z-aj) (w-a)))’
ifj=2,...,n
Hence, for the function 6,(z, w), we have

n D : KEZ ?
|9€(§,Z)|: <Zm—0Km(€rz)> _< )

IK2|3 IK2]13
De 2 2 De 2
LK) g e ) ()
IKPIZ \  A7e K@ 2) IK21;

2 — \2 2 2
(&) L3 72/ (re = (2= a) - - am)) . KP@2) (k7) |
IKPIEN 7 2/ (- ema0) C-a) KE'GD) ) KPR

(3.27)

Hence it follows that 0¢(z,w) is bounded on the set S, and goes to zero as it approaches
the boundary. Since ¢ € L?>(D) and D has a finite measure, we can conclude that, by the
dominated convergence theorem, we have

D,
kf(w)r - ?II;;IE dw = 0. (3.28)

lim -[5 pe(w)

Z—)BD{

Now we observe that Lemma 2 in [4] implies that

2
D,
lim pe(w) K—Eé |KZD 2 | dw (3.29)
z—0D; ) pns, ||KE€H ”KZ ”2

2

goes to zero if and only lim, _, 5p, "¢ (z) = 0, and a simple calculation shows that

K2(w)| dw =0. (3:30)

fQﬂS? ‘Pé(w)
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Hence, as a consequence, we have shown that, if the conditions in the hypothesis hold, then

. ~D _
Zgrg;)etp (z) =0, (3.31)
and this completes the proof since 0D = | J{ 0D,. O

Now we can prove the following.

Theorem 3.5. Let ¢ € L*(Q) be an essentially radial function via © : (\;_; Q¢ — (-, De and
@i = @-pjforanyj =1,...,n where B = {po,p1,...,pa} is a O-partition for Q. If the operator
Ty : L3(Q,dv) — L3(SQ,dv) is bounded and if for any j = 1,...,n the sequence ay, = {ay, ()}, _,
satisfies the following

iszp{ | (e + D)ay, (k) - kay, (k =1)| } < oo, (3.32)

then the operator T,, : L2(Q, dv) — L%(Q, dv) is compact if and only if
wh_)rrggT(P(w) =0. (3.33)

Proof. We know that Q is a regular domain, and therefore, if © is a conformal mapping
from Q onto D then the Bergman kernels of Q and ©(Q) = D are related via
KP(©(z),0(w))0 ()0 (w) = K*(z,w) and the operator Vof = © - f o © is an isometry
from L?(D) onto L?(Q) (see [8, Proposition 1.1]). In particular we have VoPP = P®Vg and
this implies that VoT,, = Tyce1Vo. Therefore the operator T, is bounded (compact) if and
only if the operator Tyee-1 : L*(D,dv) — L2(D,dv) is bounded (compact). In the previous
theorem we proved that the operator in exam is bounded (compact) if and only if for any
j =1,...,n the operators T, .01 : L3(Dj,dv) — L%(Dj,dv) are bounded (compact). Hence,
since the sequences a,, = {ay,(m)} _ satisfy the stated properties, we can conclude that the
operators T .01 : L%(Dj,dv) — L2(Dj,dv) are compact if and only if forany j = 1,...,n we
have

. —_ D]
zli%})j(‘of 0®1 (2)=0. (3.34)
Therefore it follows that
im ool 3.35
lim po© (2) =0, (335)

and, since © is a conformal mapping, this implies that

. ~Q _
Zlina}z(p (z) =0. (3.36)
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Finally, we also observe that as a simple consequence we obtain the following.

Theorem 3.6. Let ¢ € L*(Q) be an essentially radial function via © : (\;_; Q¢ — (j; De and
@;j = @-pjforany j =1,...,n where P = {po,p1,...,Pa} is a O-partition for Q. If the operator
T, : L3(Q,dv) — L3(Q,dv) is bounded and if for any j = 1,...,n the sequence a,, = {a,, (k) Ve,
satisfies the following

sup{ |k<aq,]. (k) — ay, (k - 1)> |} < ®, (3.37)

keZ,
then the operator T,, : L2(Q, dv) — L%(Q, dv) is compact if and only if
lim Ty () =0. (3.38)

Finally, we observe that it is also to recover as corollary the following.

Corollary 3.7. Let ¢ € L*(Q) be an essentially radial symbol via the conformal equivalence © : Q —
D. If one defines ¢; = ¢ - p; where j = 1,...,n and B is a O-partition for Q. Let us assume that
Yo = {yg;(m) }mGN is in €y (Z,) and that there is a constant Cs such that for j =2,...,n

T -4 T r
Sup (P] o @(T) IS l/)] o @(y) 0 dy < C3 (339)
T€[aj+rj,0) T—Tj—aj aj+r; (y - aj)
and for j =1
1
sup |1 0O(T) - —’[ (1 0 O(s)ds| < Cs. (3.40)
7€[0,1] 1-7 T
Then the operator T,, : L3(Q, dv) — L2(Q, dv) is compact if and only if
wllr%QTw (w) =0. (3.41)

The last corollary was also proved, in different way, in [4].
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