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For Topelitz operators with radial symbols on the disk, there are important results that characterize
boundedness, compactness, and its relation to the Berezin transform. The notion of essentially
radial symbol is a natural extension, in the context of multiply-connected domains, of the notion
of radial symbol on the disk. In this paper we analyze the relationship between the boundary
behavior of the Berezin transform and the compactness of Tφ when φ ∈ L2(Ω) is essentially radial
and Ω is multiply-connected domains.

1. Introduction

Toeplitz operators are object of intense study. Many papers have been dedicated to the study
of these concrete class of operators generating many interesting results. A very important
tool to study the behavior of these operators is the Berezin transform. This tool is particularly
relevant with its connections with quantum mechanics, especially in the case of the Toeplitz
operators on the Segal-Bargmann space. In this case, they arises naturally as anti-Wick
quantization operators, and there is a natural equivalence between Toeplitz operators and
a generalization of pseudodifferential operators, the so-called Weyl’s quantization.

In a fundamental paper, Axler and Zheng proved that, if S ∈ B(L2(D)) can be written
as a finite sum of finite products of Toeplitz operators with L∞-symbols, then S is compact
if and only if S has a Berezin transform which vanishes at the boundary of the disk D. As
they expected, this result has been extended into several directions, and it has been proved
even for operators which are not of the Toeplitz type. Therefore it has been an important open
problem to characterize the class of operators for which the compactness is equivalent to the
vanishing of the Berezin transform. Since there are operators which are not compact but have
a Berezin transform which vanishes at the boundary, it is now clear that the two notions are
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not equivalent. Moreover, it is possible to show that in the context of Toeplitz operators there
are examples of unbounded symbols whose corresponding operators are bounded and even
compact.

Recently, many papers have been written in the case when the operator has an un-
bounded radial symbol ϕ ∈ L2(D). Of course, for a square-integrable symbol, the Toeplitz
operator is densely defined but is not necessarily bounded. However, it is possible (see [1]
of Grudsky and Vasilevski, [2] of Zorboska, and [3] of Korenblum and Zhu) to show that
operators with unbounded radial symbols can have a very rich structure. Moreover, there is
a very neat and elegant way to characterize boundedness and compactness. The reason being
that the operators with radial symbols on the disk are diagonal operators. In this context
the relation between compactness and the Berezin transform has been studied in depth, and
interesting results have been established.

In a previous paper (see [4]), the author showed that it is possible to extend the
notion of radial symbol when Ω is a bounded multiply-connected domain in the complex
plane C, whose boundary ∂Ω consists of finitely many simple closed smooth analytic curves
γj (j = 1, 2, . . . , n) where γj are positively oriented with respect to Ω and γj ∩ γi = ∅ if i /= j.
The key ingredient for this extension is to observe two facts. The first fact is that the structure
of the Bergman kernel suggests that there is in any planar domain an internal region that
we can neglect when we are interested in boundedness and compactness of the Toeplitz
operators with square integrable symbols. The second observation consists in exploiting the
geometry of the domain and conformal equivalence in order to partially recover the notion of
radial symbol. For this class of essentially radial symbols, the compactness and boundedness
have been studied and necessary and sufficient conditions established. In this paper we
carry forward our analysis by investigating the relationship between the compactness and
the vanishing of the Berezin transform. It is important to observe that in the case of the
disk the analysis uses the fact that the Berezin transform can be easily written in a simple
way since we can write explicitly an orthonormal basis, namely the collection of functions
{
√
k + 1zk}∞k=0. In the case of a planar domain, this is not possible because it is very hard to

construct explicitly an orthonormal basis for the Bergman space. However, it is possible to
reach interesting results that fully extend what it is known in the case of the disk.

The paper is organized as follows. In Section 2 we describe the setting where we work,
give the relevant definitions, and state our main result. In Section 3 we prove the main result
and we study several important consequences.

2. Preliminaries

Let Ω be a bounded multiply-connected domain in the complex plane C, whose boundary
∂Ω consists of finitely many simple closed smooth analytic curves γj (j = 1, 2, . . . , n)where γj
are positively oriented with respect to Ω and γj ∩ γi = ∅ if i /= j. We also assume that γ1 is the
boundary of the unbounded component of C\Ω. LetΩ1 be the bounded component of C\γ1,
and Ωj (j = 2, . . . , n) the unbounded component of C \ γj , respectively, so that Ω =

⋂n
j=1 Ωj .

For dν = (1/π)dx dy we consider the usual L2-space L2(Ω) = L2(Ω, dν). The Bergman
space L2

a(Ω, dν), consisting of all holomorphic functions which are L2-integrable, is a closed
subspace of L2(Ω, dν)with the inner product given by

〈
f, g
〉
=
∫

Ω
f(z)g(z)dν(z), (2.1)
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for f, g ∈ L2(Ω, dν). The Bergman projection is the orthogonal projection

P : L2(Ω, dν) −→ L2
a(Ω, dν); (2.2)

it is well-known that for any f ∈ L2(Ω, dν)we have

Pf(w) =
∫

Ω
f(z)KΩ(z,w)dν(z), (2.3)

where KΩ is the Bergman reproducing kernel of Ω. For ϕ ∈ L∞(Ω, dν) the Toeplitz operator
Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is defined by Tϕ = PMϕ whereMϕ is the standard multiplication

operator. A simple calculation shows that

Tϕf(z) =
∫

Ω
ϕ(w)f(w)KΩ(w, z)dν(w). (2.4)

We use the symbol Δ to indicate the punctured disk {z ∈ C | 0 < |z| < 1}. Let Γ be any one of
the domains Ω,Δ, Ωj (j = 2, . . . , n).

We call KΓ(z,w) the reproducing kernel of Γ, and we use the symbol kΓ(z,w) to
indicate the normalized reproducing kernel; that is, kΓ(z, w) = KΓ(z,w)/KΓ(w,w)1/2.

For any A ∈ B(L2
a(Γ, dν)), the space of bounded operators on L2

a(Γ, dν), we define Ã,
the Berezin transform of A, by

Ã(w) =
〈
AkΓ

w, k
Γ
w

〉
=
∫

Γ
AkΓ

w(z)k
Γ
w(z)dν(z), (2.5)

where kΓ
w(·) = KΓ(·, w)KΓ(w,w)−1/2.

If ϕ ∈ L∞(Γ), then we indicate with the symbol ϕ̃ the Berezin transform of the
associated Toeplitz operator Tϕ, and we have

ϕ̃(w) =
∫

Γ
ϕ(z)
∣
∣
∣kΓ

w(z)
∣
∣
∣
2
dν(z). (2.6)

We remind the reader that it is well known that Ã ∈ C∞
b
(Γ) and we have ‖Ã‖∞ ≤ ‖A‖B(L2(Ω)).

It is possible, in the case of bounded symbols, to give a characterization of compactness using
the Berezin transform (see [5, 6]).

We remind the reader that anyΩ bounded multiply-connected domain in the complex
plane C, whose boundary ∂Ω consists of finitely many simple closed smooth analytic curves
γj (j = 1, 2, . . . , n), is conformally equivalent to a canonical bounded multiply-connected
domain whose boundary consists of finitely many circles (see [7]). This means that it is
possible to find a conformally equivalent domain D =

⋂n
i=1 Di where D1 = {z ∈ C : |z| < 1}

andDj = {z ∈ C : |z−aj | > rj} for j = 2, . . . , n. Here aj ∈ D1 and 0 < rj < 1 with |aj−ak| > rj+rk
if j /= k and 1 − |aj | > rj . Before we state the main result of this paper, we need to give a few
definitions.
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Definition 2.1. Let Ω =
⋂n

i=1 Ωi be a canonical bounded multiply-connected domain. One says
that the set of n + 1 functions P = {p0, p1, . . . , pn} is a ∂-partition for Ω if

(1) for every j = 0, 1, . . . , n, pj : Ω → [0, 1] is a Lipschitz, C∞-function;

(2) for every j = 2, . . . , n there exists an open set Wj ⊂ Ω and an εj > 0 such that
Uεj = {ζ ∈ Ω : rj < |ζ − aj | < rj + εj} and the support of pj are contained inWj and

pj(ζ) = 1 ∀ζ ∈ Uεj ; (2.7)

(3) for j = 1 there exists an open set W1 ⊂ Ω and an ε1 > 0 such that Uε1 = {ζ ∈ Ω :
1 − ε1 < |ζ| < 1} and the support of p1 are contained in W1 and

p1(ζ) = 1 ∀ζ ∈ Uε1 ; (2.8)

(4) for every j, k = 1, . . . , n, Wj ∩ Wk = ∅, the set Ω \ (
⋃n

j=1 Wj) is not empty and the
function

p0(ζ) = 1 ∀ζ ∈
⎛

⎝
n⋃

j=1

Wj

⎞

⎠

c

∩Ω,

p0(ζ) = 0 ∀ζ ∈ Uεk , k = 1, . . . , n,

(2.9)

(5) for any ζ ∈ Ω the following equation

n∑

k=0

pk(ζ) = 1 (2.10)

holds.

We also need the following.

Definition 2.2. A function ϕ : Ω =
⋂n

i=1 Ωi → C is said to be essentially radial if there exists
a conformally equivalent canonical bounded domain D =

⋂n
i=1 Di such that, if the map Θ :

Ω → D is the conformal mapping from Ω onto D, then

(1) for every k = 2, . . . , n and for some εk > 0, one has

ϕ ◦Θ−1(z) = ϕ ◦Θ−1(|z − ak|) (2.11)

when z ∈ Uεk = {ζ ∈ Ω : rk < |ζ − ak| < rk + εk},
(2) for k = 1 and for some ε1 > 0, one has

ϕ ◦Θ−1(z) = ϕ ◦Θ−1(|z|) (2.12)

when z ∈ Uε1 = {ζ ∈ Ω : 1 − ε1 < |ζ| < 1}.
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The reader should note that, in the case where it is necessary to stress the use of a
specific conformal equivalence, we will say that the map ϕ is essentially radial via Θ :
⋂n


=1 Ω
 → ⋂n

=1 D
 . Moreover, we stress that in what follows, when we are working with

a general multiply-connected domain and we have a conformal equivalence Θ :
⋂n


=1 Ω
 →
⋂n


=1 D
 , we always assume that the ∂-partition is given on
⋂n


=1 D
 and transferred to
⋂n


=1 Ω


through Θ in the natural way.

Definition 2.3. If ϕ ∈ L2(Ω) is an essentially radial function via Θ :
⋂n

i=1 Ωi → ⋂n
i=1 Di, ϕj =

ϕ · pj for any j = 1, . . . , n where P = {p0, p1, . . . , pn} is a ∂-partition for Ω then one defines the
n sequences

aϕ1 =
{
aϕ1(k)

}
k∈Z+

, aϕ2 =
{
aϕ2(k)

}
k∈Z+

, . . . , aϕn =
{
aϕn(k)

}
k∈Z+

(2.13)

as follows: if j = 2, . . . , n,

aϕj (k) = rj

∫∞

rj

ϕj ◦Θ−1(rjs + aj

)
(k + 1)

r2k+1j

s2k+1
1
s2
ds ∀k ∈ Z+, (2.14)

and if j = 1,

aϕ1(k) =
∫1

0
ϕ1 ◦Θ−1(s)(k + 1)s2k+1ds ∀k ∈ Z+. (2.15)

At this point we can state the main result.

Theorem 2.4. Let ϕ ∈ L2(Ω) be an essentially radial function via Θ :
⋂n


=1 Ω
 → ⋂n

=1 D
 and

ϕj = ϕ · pj for any j = 1, . . . , n where P = {p0, p1, . . . , pn} is a ∂-partition for Ω. If the operator
Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is bounded and if for any j = 1, . . . , n the sequence aϕj = {aϕj (k)}k∈Z+

satisfies the following

sup
k∈Z+

{∣
∣
∣(k + 1)aϕj (k) − kaϕj (k − 1)

∣
∣
∣
}
< ∞, (2.16)

then the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact if and only if

lim
w→ ∂Ω

T̃ϕ(w) = 0. (2.17)

3. Canonical Multiply-Connected Domains and
Essentially Radial Symbols

We concentrate on the relationship between compact Toeplitz operators and the Berezin
transform. As we said in the introduction, Axler and Zheng have proved (see [5]) that if
D is the disk, S =

∑m
i

∏mj

k
Tϕi,k , where ϕi,k ∈ L∞(D), then S is compact if and only if its

Berezin transform vanishes at the boundary of the disk. Their fundamental result has been
extended in several directions, in particular whenΩ is a general smoothly boundedmultiply-
connected planar domain [6]. In this section we try to characterize the compactness in terms
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of the Berezin transform. In the next theorem, under a certain condition, we will show that
the Berezin transform characterization of compactness still holds in this context.

In the case of the disk, it is possible to show that when the operator is radial then its
Berezin transform has a very special form. In fact, if ϕ : D → C is radial, then

T̃ϕ(z) =
(
1 − |z|2

)2∑
(n + 1)

〈
Tϕen, en

〉|z|2n, (3.1)

where, by definition,

en(z) =
√
n + 1zn ∀n ∈ Z+. (3.2)

Therefore to show that the vanishing of the Berezin transform implies compactness is equiv-
alent, given that Tϕ is diagonal and to show that lim|z|→ 1(1 − |z|2)2∑(n + 1)〈Tϕen, en〉|z|2n = 0
implies limn→∞〈Tϕen, en〉 = 0, Korenblum and Zhu realized this fact in their seminal paper
[3], and, along this line, more was discovered by Zorboska (see [2]) and Grudsky and
Vasilevski (see [1]).

In the case of a multiply-connected domain, it is not possible to write things so neatly;
however, we can exploit our estimates near the boundary to use similar arguments. In fact,
for an essentially radial function, the values depend essentially on the distance from the
boundary. Moreover, we can simplify our analysis if we use the fact that every multiply-
connected domain is conformally equivalent to a canonical bounded multiply-connected
domain whose boundary consists of finitely many circles. It is important to stress that in the
case of essentially radial symbol it is possible to exploit what has been done in the case of the
disk, but the operator is not a diagonal operator, and the Berezin transform is not particularly
simple to write in an explicit way.

In what follows the punctured disk Δ = {z ∈ C | 0 < |z| < 1} plays a very important
role; for this reason we need the following.

Theorem 3.1. There exists an isomorphism I : L2(Δ) → L2(Ω1) such that

I
(
L2
a(Δ)
)
= L2

a(Ω1). (3.3)

Moreover, for any p ≥ 2 one has that Lp
a(Δ) = L

p
a(Ω1), and, for any (z,w) ∈ Δ2, the Bergman kernels

KΔ and KΩ1 satisfy the following equation:

KΔ(z,w) = KΩ1(z,w). (3.4)

Proof. Suppose that f ∈ L2
a(Δ); this means that f is holomorphic on Δ, then we can write

down the Laurent expansion of f about 0, and we have

f(z) =
∞∑

n=−∞
anz

n. (3.5)
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This implies that |f(z)|2 =∑∞
n,m=−∞anamz

nzm; therefore we have

∫

Δ

∣
∣f(z)

∣
∣2dν(z) =

∫

Δ

∞∑

n,m=−∞
anamz

nzmdν(z)

=
∫2π

0

∫1

0

∞∑

n,m=−∞
anamr

n+m+1ei(n−m)θdr dθ

=
∞∑

n,m=−∞
anam

∫2π

0
ei(n−m)θdθ

∫1

0
rn+m+1dr

= 2π
∞∑

n=−∞
|an|2
∫1

0
r2n+1dr

= 2π

⎛

⎝
∞∑

n/=−1
|an|2
[
r2n+2

2n + 2

]1

0

+ |a−1|2
∫1

0

1
r
dr

⎞

⎠.

(3.6)

The last equation, together with the fact that f is square-integrable, implies that an = 0 if
n ≤ −1. Then we can conclude that f has an holomorphic extension on Ω1. We define

I : L2(Δ) −→ L2(Ω1) (3.7)

in this way: if g ∈ L2(Δ), then Ig(z) = g(z) if z/= 0 and

Ig(0) =
∫

Δ
g(z)dν(z). (3.8)

Then Ig ∈ L2(Ω1) and ‖Ig‖Ω1 = ‖g‖Δ. If f ∈ L2
a(Δ), we have just shown that If ∈ L2

a(Ω1).
Clearly I is injective and surjective, in fact if G ∈ L2(Ω1), then g = G|Δ is an element of L2(Δ)
and I(g) = G. Then I is an isomorphism of L2(Δ) onto L2(Ω1) and I(L2

a(Δ)) = L2
a(Ω1).

Moreover, observing that p > 2 implies ‖f‖Δ,2 ≤ ‖f‖Δ,p for any f ∈ Lp(Δ), we conclude that
L
p
a(Δ) = L

p
a(Ω1).

Finally, it is easy to verify that for any f, g ∈ L2
a(Δ) we have

〈
f, g
〉
Δ =
〈If,Ig〉Ω1

, (3.9)

and this fact implies, by the definition of the Bergman reproducing kernel, that

KΔ(z,w) = KΩ1(z,w), (3.10)

for any (z,w) ∈ Δ2.

In order to better explain our intuition, we remind the reader that we proved that, if
ϕ ∈ L2(D) is an essentially radial function whereΩ is a bounded multiply-connected domain
and if we define ϕj = ϕ · pj where j = 1, . . . , n where P = {p0, p1, . . . , pn} is a ∂-partition
for Ω, then the fact that the operator Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is bounded (compact)
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is equivalent to fact, that for any j = 1, . . . , n, the operators Tϕj : L
2
a(Ωj , dν) → L2

a(Ωj , dν) are
bounded (compact) (see [4]).

We start our investigation by focusing our attention on the case of bounded symbols.
In fact, we prove the following.

Theorem 3.2. Let ϕ ∈ L∞(D) be an essentially radial function, if one defines ϕj = ϕ · pj where j =
1, . . . , n and P is a ∂-partition for D. Then for the bounded operator Tϕ the following are equivalent:

(1) the operator Tϕ : L2
a(D,dν) → L2

a(D,dν) is compact;

(2) for any j = 1, . . . , n one has

lim
k→∞

aϕj (k) = 0. (3.11)

Proof. Since ϕ ∈ L∞(D), we know that the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is bounded,
and we know that the boundedness (compactness) is equivalent to the fact that for any j =
1, . . . , n the operators Tϕj : L2(Dj, dν) → L2

a(Dj, dν) are bounded (compact). If j = 2, . . . , n,
we observe that if we consider the following sets Δ0,1 = {z ∈ C : 0 < |z − a| < 1} and

Δaj ,rj = {z ∈ C : 0 < |z − aj | < rj} and the maps Δ0,1
α→ Δaj ,rj

β→ Dj where α(z) = aj + rjz

and β(w) = (w − aj)
−1r2j + aj and we use Proposition 1.1 in [8], we can claim that Tϕj =

V −1
β◦αTϕj◦β◦αVβ◦α where Vβ◦α : L2(Δ0,1) → L2(Dj) is an isomorphism of the Hilbert spaces.

Therefore Tϕj is compact if and only if Tϕj◦β◦α is compact. We also notice that the previous
theorem implies that function {

√
k + 1zk} is an orthonormal basis for L2(Δ0,1), and this, in

turn, implies that the compactness of the operator Tϕj◦β◦α is equivalent to the fact that for the
sequence aϕj = {aϕj (k)}k∈N

we have limk→∞aϕj (k) = 0 where, by definition,

aϕj (k) =
∫

Δ0,1

ϕj ◦ β ◦ α(z)(k + 1)zkzkdz ∀m ∈ Z+. (3.12)

To complete the proof we observe that, since ϕj is radial and β ◦ α(r) = r−1rj + aj , then, after
a change of variable, we can rewrite the last integral, and hence the formula

aϕj (k) = rj

∫∞

rj

ϕj

(
rjs + aj

)
(k + 1)

r2k+1j

s2k+1
1
s2
ds ∀m ∈ Z+ (3.13)

must hold for any j = 2, . . . , n. For the case j = 1 the proof is similar.

Now we can prove the following.

Theorem 3.3. Let ϕ ∈ L∞(Ω) be an essentially radial function via Θ :
⋂n


=1 Ω
 → ⋂n

=1 D
 , if one

defines ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition for Ω. Then for the bounded operator Tϕ
the following are equivalent:

(1) the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact;

(2) for any j = 1, . . . , n one has

lim
k→∞

aϕj (k) = 0. (3.14)
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Proof. We know that Ω is a regular domain, and therefore if Θ is a conformal mapping from
Ω onto D then the Bergman kernels of Ω and Θ(Ω) = D are related via KD(Θ(z),Θ(w))
Θ′(z)Θ′(w) = KΩ(z,w) and the operator VΘf = Θ′ · f ◦ Θ is an isometry from L2(D) onto
L2(Ω) (see [8, Proposition 1.1]). In particular we have VΘP

D = PΩVΘ and this implies that
VΘTϕ = Tϕ◦Θ−1VΘ. Therefore the operator Tϕ is bounded if and only if for any j = 1, . . . , n the
operators Tϕj◦Θ−1 : L2

a(Dj, dν) → L2
a(Dj, dν) are bounded (compact). Hence we can conclude

that the operator is bounded (compact) if for any j = 1, . . . , n we have

lim
k→∞

aϕj (k) = 0, (3.15)

where, by definition, if j = 2, . . . , n,

aϕj (k) = rj

∫∞

rj

ϕj ◦Θ−1(rjs + aj

)
(k + 1)

r2k+1j

s2k+1
1
s2
ds ∀k ∈ Z+, (3.16)

and if j = 1,

aϕ1(k) =
∫1

0
ϕ1 ◦Θ−1(s)(k + 1)s2k+1ds ∀k ∈ Z+. (3.17)

Theorem 3.4. Let ϕ ∈ L2(D) be an essentially radial function, if one defines ϕj = ϕ · pj where
j = 1, . . . , n and P is a ∂-partition for Ω and the operator Tϕ : L2

a(D,dν) → L2
a(D,dν) is bounded

(compact) and if for any j = 1, . . . , n the sequences aϕj = {aϕj (k)}k∈N
are such that

sup
k∈N

{∣
∣
∣(k + 1)aϕj (k) − kaϕj (k − 1)

∣
∣
∣
}

(3.18)

is finite, then the operator Tϕ : L2
a(D,dν) → L2

a(D,dν) is compact if and only if

lim
w→ ∂D

T̃ϕ(w) = 0. (3.19)

Proof. We know that the operator under examination is bounded (compact) if and only if for
any j = 1, . . . , n the operators

Tϕj : L
2(Dj, dν

) −→ L2
a

(
Dj, dν

)
(3.20)

are bounded (compact). If j = 2, . . . , n, we observe that if we consider the following sets
Δ0,1 = {z ∈ C : 0 < |z − a| < 1} and Δaj ,rj = {z ∈ C : 0 < |z − aj | < rj} and the following maps

Δ0,1
α−→ Δaj ,rj

β−→ Dj, (3.21)
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where α(z) = aj + rjz and β(w) = (w − aj)
−1r2j + aj and we use Proposition 1.1 in [8], we can

claim that

Tϕj = V −1
β◦αTϕj◦β◦αVβ◦α, (3.22)

where Vβ◦α : L2(Δ0,1) → L2(Dj) is an isomorphism of Hilbert’s spaces. Therefore Tϕj

is compact if and only if Tϕj◦β◦α is compact. Since Tϕj◦β◦α : L2
a(Δ0,1) → L2

a(Δ0,1) and
{
√
k + 1zk}∞k=0 is an orthonormal basis, a simple calculation shows that

aϕj (k) =
〈
Tϕj◦β◦α

√
k + 1zk,

√
k + 1zk

〉
; (3.23)

therefore our assumption on aϕj = {aϕj (k)}k∈N
that

sup
k∈Z+

{∣
∣
∣(k + 1)aϕj (k) − kaϕj (k − 1)

∣
∣
∣
}
< ∞ (3.24)

implies (see [9, Theorem 6]) that the compactness of Tϕj◦β◦α is equivalent to the fact that
the Berezin transform vanishes at the boundary. Since the case j = 1 is immediate, we can
conclude, from what we proved so far, that for any j = 1, 2, . . . , n we have that compactness
is equivalent to the fact that limz→ ∂D
 ϕ̃


D
 (z) = 0. To complete the proof we set, for any
j = 1, . . . , n, Sj = {w ∈ Ω | pj(w) = 1} where {p1, . . . , pn} is in the ∂-partition for Ω. By
definition of ∂-partition, it follows that Sj ∩ Si = ∅ is j /= i, and we can write

ϕ̃(z) =
〈
Tϕk

D
z , k

D
z

〉

=
∫

D

ϕ(w)
∣
∣
∣kD

z (w)
∣
∣
∣
2
dw

=
∫

Sj

ϕ
(w)
∣
∣
∣kD

z (w)
∣
∣
∣
2
dw +

∫

Ω∩Sc
j

ϕ
(w)
∣
∣
∣kD

z (w)
∣
∣
∣
2
dw.

(3.25)

Since for any 
 = 1, . . . , n the quantity
∫

S

ϕ
(w)|kD

z (w)|2dw can be written as

∫

S


⎛

⎜
⎝ϕ
(w)

(
KD


z

)2

∥
∥
∥K

D

z

∥
∥
∥
2

2

⎞

⎟
⎠

∥
∥
∥K

D

z

∥
∥
∥
2

2
∥
∥KD

z

∥
∥2
2

dw +
∫

S


ϕ
(w)

⎛

⎜
⎝
∣
∣
∣kD

z (w)
∣
∣
∣
2 −

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

⎞

⎟
⎠dw, (3.26)

we observe that the function θ
(z,w) = (|kD
z (w)|2 − (KD


z )
2
/‖KD

z ‖22) is bounded on the set S


and vanishes at the boundary.
In fact, to prove this we remind the reader that there exists an isomorphism I :

L2(Δ0,1) → L2(Ω1) such that I(L2
a(Δ0,1)) = L2

a(Ω1) and the Bergman kernels KΔ and KΩ1

satisfy the following equation KΔ(z,w) = KΩ1(z,w). If we define Δa,r = {z ∈ C : 0 <

|z − a| < r} and Oa,r = {z ∈ C : |z − a| > r}, then KOa,r (z,w) = r2/(r2 − (z − a) · (w − a))2
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for all (z,w) ∈ Oa,r × Oa,r . The well-known fact that the reproducing kernel of the unit disk
is given by (1 − zw)−2 implies that KΔ0,1(z,w) = 1/(1 − z · w)2 for all (z,w) ∈ Δ0,1 × Δ0,1

therefore, by conformal mapping, that the reproducing kernel of Δa,r is KΔa,r (z,w) =
r2/(r2 − (z − a) · (w − a))2 for all (z,w) ∈ Δa,r × Δa,r . If we define φ : Δa,r → Oa,r by
φ(z) = (z − a)−1r2 + a and using the fact that KOa,r (φ(z), φ(w))φ′(z)φ′(w) = KΔa,r (z,w), we
obtain thatKOa,r (z,w) = r2/(r2 − (z − a) · (w − a))2 for all (z,w) ∈ Oa,r ×Oa,r . SinceΩ1 = O0,1

and, for j = 2, . . . , n, Oaj ,rj = Ωj , then we prove that KDj (z,w) = r2j /(r
2
j − (z − aj) · (w − aj))

2

if j = 2, . . . , n.
Hence, for the function θ
(z,w), we have

|θ
(ζ, z)| =

∣
∣
∣
∣
∣
∣
∣

⎛

⎝

∑n
m=0K

D
m(ζ, z)

∥
∥KD

z

∥
∥2
2

⎞

⎠

2

−

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

⎛

⎝1 +
n∑

m/= 


KD
m(ζ, z)

KD

z (ζ, z)

⎞

⎠

2

−

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

⎛

⎜
⎝1 +

n∑

m/= 

m>0

r2m/
(
r2m − (z − am) · (ζ − am)

)2

r2
/
(
r2
 − (z − a
) · (ζ − a
)

)2 +
KD

0 (ζ, z)

KD

z (ζ, z)

⎞

⎟
⎠

2

−

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

∣
∣
∣
∣
∣
∣
∣
∣

.

(3.27)

Hence it follows that θ
(z,w) is bounded on the set S
 and goes to zero as it approaches
the boundary. Since ϕ ∈ L2(D) and D has a finite measure, we can conclude that, by the
dominated convergence theorem, we have

lim
z→ ∂D


∫

S


ϕ
(w)

⎛

⎜
⎝
∣
∣
∣kD

z (w)
∣
∣
∣
2 −

(
KD


z

)2

∥
∥KD

z

∥
∥2
2

⎞

⎟
⎠dw = 0. (3.28)

Now we observe that Lemma 2 in [4] implies that

lim
z→ ∂D


∫

D∩S


⎛

⎜
⎝ϕ
(w)

⎛

⎜
⎝

KD

z∥

∥
∥K

D

z

∥
∥
∥
2

⎞

⎟
⎠

2⎞

⎟
⎠

⎛

⎜
⎝

∥
∥
∥K

D

z

∥
∥
∥
2∥

∥KD
z

∥
∥
2

⎞

⎟
⎠

2

dw (3.29)

goes to zero if and only limz→ ∂D
 ϕ̃

D
 (z) = 0, and a simple calculation shows that

∫

Ω∩Sc
j

ϕ
(w)
∣
∣
∣kD

z (w)
∣
∣
∣
2
dw = 0. (3.30)
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Hence, as a consequence, we have shown that, if the conditions in the hypothesis hold, then

lim
z→ ∂D


ϕ̃D(z) = 0, (3.31)

and this completes the proof since ∂D =
⋃n

1 ∂D
 .

Now we can prove the following.

Theorem 3.5. Let ϕ ∈ L2(Ω) be an essentially radial function via Θ :
⋂n


=1 Ω
 → ⋂n

=1 D
 and

ϕj = ϕ · pj for any j = 1, . . . , n where P = {p0, p1, . . . , pn} is a ∂-partition for Ω. If the operator
Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is bounded and if for any j = 1, . . . , n the sequence aϕj = {aϕj (k)}k∈Z+

satisfies the following

sup
k∈Z+

{∣
∣
∣(k + 1)aϕj (k) − kaϕj (k − 1)

∣
∣
∣
}
< ∞, (3.32)

then the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact if and only if

lim
w→ ∂Ω

T̃ϕ(w) = 0. (3.33)

Proof. We know that Ω is a regular domain, and therefore, if Θ is a conformal mapping
from Ω onto D then the Bergman kernels of Ω and Θ(Ω) = D are related via
KD(Θ(z),Θ(w))Θ′(z)Θ′(w) = KΩ(z,w) and the operator VΘf = Θ′ · f ◦ Θ is an isometry
from L2(D) onto L2(Ω) (see [8, Proposition 1.1]). In particular we have VΘP

D = PΩVΘ and
this implies that VΘTϕ = Tϕ◦Θ−1VΘ. Therefore the operator Tϕ is bounded (compact) if and
only if the operator Tϕ◦Θ−1 : L2(D,dν) → L2

a(D,dν) is bounded (compact). In the previous
theorem we proved that the operator in exam is bounded (compact) if and only if for any
j = 1, . . . , n the operators Tϕj◦Θ−1 : L2

a(Dj, dν) → L2
a(Dj, dν) are bounded (compact). Hence,

since the sequences aϕj = {aϕj (m)}
m∈N

satisfy the stated properties, we can conclude that the
operators Tϕj◦Θ−1 : L2

a(Dj, dν) → L2
a(Dj, dν) are compact if and only if for any j = 1, . . . , n we

have

lim
z→ ∂Dj

˜ϕj ◦Θ−1
Dj

(z) = 0. (3.34)

Therefore it follows that

lim
z→ ∂D

ϕ̃ ◦Θ−1
D

(z) = 0, (3.35)

and, since Θ is a conformal mapping, this implies that

lim
z→ ∂Ω

ϕ̃Ω(z) = 0. (3.36)
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Finally, we also observe that as a simple consequence we obtain the following.

Theorem 3.6. Let ϕ ∈ L2(Ω) be an essentially radial function via Θ :
⋂n


=1 Ω
 → ⋂n

=1 D
 and

ϕj = ϕ · pj for any j = 1, . . . , n where P = {p0, p1, . . . , pn} is a ∂-partition for Ω. If the operator
Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is bounded and if for any j = 1, . . . , n the sequence aϕj = {aϕj (k)}k∈Z+

satisfies the following

sup
k∈Z+

{∣
∣
∣k
(
aϕj (k) − aϕj (k − 1)

)∣
∣
∣
}
< ∞, (3.37)

then the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact if and only if

lim
w→ ∂Ω

T̃ϕ(w) = 0. (3.38)

Finally, we observe that it is also to recover as corollary the following.

Corollary 3.7. Let ϕ ∈ L2(Ω) be an essentially radial symbol via the conformal equivalenceΘ : Ω →
D. If one defines ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition for Ω. Let us assume that
γφj = {γφj (m)}

m∈N
is in 
∞(Z+) and that there is a constant C3 such that for j = 2, . . . , n

sup
τ∈[aj+rj ,∞)

∣
∣
∣
∣
∣
ϕj ◦Θ(τ) − τ − aj

τ − rj − aj

∫ τ

aj+rj
ϕj ◦Θ

(
y
)
(

rj
(
y − aj

)2

)

dy

∣
∣
∣
∣
∣
< C3 (3.39)

and for j = 1

sup
τ∈[0,1]

∣
∣
∣
∣
∣
ϕ1 ◦Θ(τ) − 1

1 − τ

∫1

τ

ϕ1 ◦Θ(s)ds

∣
∣
∣
∣
∣
< C3. (3.40)

Then the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact if and only if

lim
w→ ∂Ω

T̃ϕ(w) = 0. (3.41)

The last corollary was also proved, in different way, in [4].
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