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The log-likelihood of a nonhomogeneous Branching Diffusion Process under several conditions
assuring existence and uniqueness of the diffusion part and nonexplosion of the branching process.
Expressions for different Fisher information measures are provided. Using the semimartingale
structure of the process and its local characteristics, a Girsanov-type result is applied. Finally,
an Ornstein-Uhlenbeck process with finite reproduction mean is studied. Simulation results are
discussed showing consistency and asymptotic normality.

1. Introduction

Some spatial-temporal models are often used to describe the behavior of particles, which are
moving randomly in a domain and reproducing after a random time.

We consider a Branching Diffusion Process (BDP), consisting in particles performing
independent diffusion movements and having a random numbers of children at random
times.

In [1], for example, a simple model of cells with binary splitting after an exponentially
distributed random lifetime is considered, where cells move according independent
Brownian motions.

More recently, [2] studied a model in order to describe pollution spread through
dissemination of particles in the atmosphere. Additionally, the authors take into account the
occurrence of particles’ mass variations due to random divisions during their lifetimes. For
applications in genetic populations see [3]. Also, in [4], the recurrence of a BDP on manifolds
is studied.
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In [5], a particle system is considered in a more general context, where interaction
among individuals is allowed. There, a link between the associated martingale problem and
the infinitesimal generator is established. For a noninteracting BDP, the uniqueness of the
martingale problem is found in [6] together with the analysis of the limit behavior of the
process.

On the other hand, the statistical approach of this kind of models remains less
explored. In [1], under continuous observations upon a fixed time T , it obtained the
maximum likelihood estimators for the variance and the rate of death of a Brownian motion
with a deterministic binary reproduction law. In [7], using a least square approach the
parameters of the BDP are also estimated.

In [8, 9], a birth and death processes in a flow particle system are considered. There, the
absolute continuity of the probability law for the corresponding canonical process is obtained.
We follow a similar approach, but allowing the possibility to have more than one particle at
birth times, as our case, in which introduces additional complexity due to the exponential
growth of the model.

There are many inference results for branching processes as well as for the diffusion
process separately; we essentially consider both aspects together via a measure-valued
process describing the particle configuration at any time. The functions describing the model
(i.e., drift, death rate, and reproduction law) depend on a common unknown parameter.

As in the model mentioned above, technical difficulties arise in writing the
corresponding likelihood function. We use a Girsanov theorem for semimartingales, as given,
for example, in [10], allowing the passage from a BDP reference measure to another one
depending on the true value of the parameter. The semi-martingale structure of the process
and its corresponding local characteristics under the change of measure are obtained using
Îto’s formula.

The covariance matrix of the diffusion part is assumed to be known in order to avoid
singularity with respect to the reference measure; otherwise the quadratic variation can be
used as a nonparametric estimator of the former.

Expressions for the observed and expected Fisher information measures are provided.
In a companion paper, see [11], the asymptotic behavior of these measures is studied,
and consequently, the consistency and asymptotic normality of the maximum likelihood
estimators.

The organization of the paper is as follows.
In Section 2, we establish the model and the main notations. Also, we give certain

sufficient conditions in order to have the existence of diffusion model and the nonexplosion
on finite time of the branching part. These conditions are standards in both types of models.
In Section 3, we obtain the semi-martingale structure of the model from Îto’s formula and
we calculate the local characteristics of the BDP. In Section 4, we find the likelihood function
of the model using a Girsanov-type theorem for semi-martingales. Finally, in Section 5 we
present an example, the Branching Ornstein-Uhlenbeck process, where explicit estimators
can be obtained.

2. Model and Main Notations

We establish the main features of our model.
Starting from a fixed initial configuration, particles move independently in R

d

according to diffusion processes with the same drift and variance. Each particle dies after
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certain random time, depending on its trajectory. At the time of its death, it gives birth to
an also random number of particles which continue to move from the ancestor position and
reproduce in the same way.

Let U be the set of all particles that can appear in the system; we represent U by
⋃∞

n=1 N
n.
With every particle u ∈ Uwe associate a random vector (su, τu,Nu, (Xu

t )t∈R+
)where su

and τu are its birth and the death times, respectively, taking values on [0,∞],Xu
t is its position

at time t, andNu represents the number of offsprings.
At the initial time t = 0, we have a configuration given by a finite number of particles

denoted by u1, u2, . . . , uN ∈ U at respective deterministic positions x1, x2, . . . , xN . According
to notations we establish

su1 = su2 = · · · = suN = 0, Xu1
0 = x1, Xu2

0 = x2, . . . , XuN

0 = xN. (2.1)

We define recursively the random variables su, τu, and Xu
t in the following way.

Suppose a particle v dies, giving birth to a particle u among its descendants; we set
su = τv. At time su, the particle u moves according to a diffusion process with drift b(·) and
infinitesimal variance σ(·) then

Xu
t = Xu

su +
∫ t

0
1[su,∞)(s)b(Xu

s )ds +
∫ t

0
1[su,∞)(s)σ(Xu

s ) · dWu
s for t ≥ 0, (2.2)

where Wu = (Wu
t )t∈R+

is a standard Brownian motion in R
d.

The death rate λ(·) function, for a particle located at x at time t, satisfies

Pr
[
τu ≥ t + Δt | τu ≥ t ≥ su; Xu

t = x
]
= λ(x)Δt + o(Δt). (2.3)

Finally, the probability law representing the reproduction law of a particle located at point x,
and denoted by (pk(x))k∈N

, x ∈ R
d verifies

Pr[Nu = k | Xu
τu = x] = pk(x). (2.4)

Processes (Wu)u∈U and (Nv)v∈U are independent.
We describe the process of living particles by themeasure-valued processM = (Mt)t≥0,

where

Mt =
∑

u∈U
1[su,τu)(t)δXu

t
. (2.5)

Here δx denotes the Dirac measure on (Rd,B(Rd)), where B(Rd) is the Borelian σ-algebra in
R

d.
Notice that for A ∈ B(Rd), Mt(A) represents the number of living particles in the

region A at time t.
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The process M is a Markov process called Branching Diffusion Process. For existence
and properties see, for example, [5]. This process takes values in

E =

{
n∑

i=1

δxi : n = 0, 1, 2, . . . ; xi ∈ R
d

}

(2.6)

a closed subspace of MF(Rd), the space of finite Borel positive measures on R
d.

Denote by Cb(Rd) the set of bounded and continuous functions on R
d. For every f ∈

Cb(Rd), we define the norm ‖f‖ = sup{|f(x)| : x ∈ R
d}.

For every ξ ∈ MF(Rd) and f : R
d → R, measurable we set

ξ
(
f
)
=
∫

Rd

fdξ. (2.7)

We will note for 〈X,Y〉 and [X,Y ] the covariance process and the quadratic covariance
process. Also Xp is the projection of X in the sense described in [10].

We introduce the following spaces:

V: class of right continuous-adapted processes with left limits and with finite
variations on finite intervals starting at the origin at time 0;

V+: class of processes in V with nondecreasing trajectories;

A: class of processes in V with EVar(A)∞ ≤ ∞, where Var(A) is the variation
process associated to A;

A+: class of processes in V with EA∞ ≤ ∞;

M(P): class of uniformly integrable martingales.

Also Vloc, V+
loc, A+

loc, Aloc, and M(P)loc are the corresponding local classes.
We take (Mt)t∈R+ as the canonical process in the stochastic basis (Ω,F,F, Pm), where

m is a given initial configuration, following its usual construction.
By assuming that the functions driving the model depend on an unknown parameter

θ, a statistical model associate to the process is considered.
More specifically let Θ ⊂ R

m be an open and convex set representing the parametric
space and assume that b, λ, and p depend on a parameter θ ∈ Θ, then we have

b : Θ × R
d −→ R

d b(θ;x) = bθ(x) =
(
bθi (x)

)

i=1,...,d
,

σ : R
d −→ R

d ⊗ R
d σ(x) =

(
σij(x)

)
i,j=1,...,d,

λ : Θ × R
d −→ R

∗
+ λ(θ;x) = λθ(x),

p : Θ × N × R
d −→ [0, 1] p(θ; k, x) = pk(θ;x) = pθk(x).

(2.8)

Here R
d ⊗R

d is the space of d×d real-valued matrices. When no confusion is possible we will
note by | · | a norm in the space R

d ⊗ R
d as well as the Euclidean norm in R

d. These functions
define, for a given initial configuration m and any parameter θ, a probability Pθ

m in the same
way Pm is constructed.
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Suppose now these functions satisfy the following properties for every θ ∈ Θ.

(A1) Lipshitz Local Condition. For all n ≥ 1, there exists a constant Cθ
n > 0 such that

∣
∣
∣bθ(x) − bθ

(
y
)∣∣
∣ +

∣
∣σ(x) − σ

(
y
)∣
∣ ≤ Cθ

n

∣
∣x − y

∣
∣ ∀|x| ≤ n,

∣
∣y

∣
∣ ≤ n. (2.9)

(A2) Linear Growth Condition. There exists a constantK > 0 nondepending on θ such that

∣
∣
∣bθ(x)

∣
∣
∣ + |σ(x)| ≤ K(1 + |x|) ∀x ∈ R

d. (2.10)

(A3) σ(x) is an invertible matrix for all x ∈ R
d, hence

a(x) = σ(x)tσ(x) (2.11)

is symmetric and positive definite.

(A4) For all x ∈ R
d we have

∞∑

k=0

pθk(x) = 1. (2.12)

(A5) Let

mθ(x) =
∞∑

k=0

kpθk(x),

κθ(x) =
∞∑

k=0

(k − 1)2pθk(x)

(2.13)

then λθ,mθ, and κθ belong to Cb(Rd) with

λθ(x) ≤
∥
∥
∥λθ

∥
∥
∥,

∣
∣
∣mθ(x)

∣
∣
∣ ≤

∥
∥
∥mθ

∥
∥
∥,

∣
∣
∣κθ(x)

∣
∣
∣ ≤

∥
∥
∥κθ

∥
∥
∥ ∀x ∈ R

d. (2.14)

(A6) There exist constants λθo > 0 and mθ
o > 1 such that

λθ(x) ≥ λθo, mθ(x) ≥ mθ
o > 1 ∀x ∈ R

d. (2.15)

Remark 2.1. (A1) and (A2) are standard conditions in order for the existence and uniqueness
of the stochastic differential equations describing particle diffusions.

Remark 2.2. The infinitesimal covariance does not depend on θ. In general, we cannot have
absolute continuity if σ depends on the parameter θ. This seems to be a constrain of the
likelihood approach but in some cases it is possible to estimate σ using empirical quadratic
covariations for example.
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Remark 2.3. The second part of (A6) is a uniform supercritical condition necessary to avoid
the almost sure extinction of the branching process.

Let’s now define

γθ = inf
x∈Rd

λθ(x)
(
mθ(x) − 1

)
, γθ = sup

x∈Rd

λθ(x)
(
mθ(x) − 1

)
. (2.16)

From (A5) and (A6) we have

γθ ≤
∥
∥
∥λθ

∥
∥
∥
(∥
∥
∥mθ

∥
∥
∥ − 1

)
,

γθ ≥ λθo

(
mθ

o − 1
) (2.17)

then

0 < γθ ≤ λθ(x)
(
mθ(x) − 1

)
≤ γθ < ∞ ∀x ∈ R

d. (2.18)

The expression λθ(x)(mθ(x) − 1) is the generalized Malthus parameter, see, for example,
[12, 13].

We assume that the whole process is observed on an interval [0, T]; that is, at every
time we observe the entire configuration of particles.

We need to deal with the jumps of the process; to this end we define

ΔMt = Mt −Mt−, (2.19)

where Mt− is the left limit of process (Mt)t≥0 at time t.
Let’s denote by 0 < T1 < T2 < · · · < Tn < · · · the times at which the jumps of the process

take place, then, if at time Tn a particle dies at position Xn and has Kn offsprings we have

ΔMTn = KnδXn − δXn . (2.20)

The space of jumps is a closed subset of MF(Rd) defines as

Sd =
{
(k − 1)δx : k ∈ N, x ∈ R

d
}
. (2.21)

Let also μM be the random measure associated with the jumps ofM given by

μM(dt, dx) =
∑

s≤t
1{ΔMs /= 0}δ(s,ΔMs). (2.22)
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Finally, for every optional functionW on R+ × Sd and a random measure ν on B(R+ × Sd)we
define the process W ∗ ν by

(W ∗ ν)t =
∫ t

0

∫

Sd−{0}
W(s, x)ν(ds, dx). (2.23)

3. Martingale Representation of the Process and Local Characteristics

We study now the local characteristics of the process M through the real process M(f) =
(Mt(f))t≥0.

The following result gives its semi-martingale structure, a useful decomposition of the
process in a bounded variation process, a continuous martingale, and a purely discontinuous
martingale.

Theorem 3.1. For every function f : R
d → R in C2(Rd), the processM(f) is decomposed as

Mt

(
f
)
= M0

(
f
)
+
∫ t

0
Ms

(
Aθf

)
ds + Rft + idf ∗ μM

t, (3.1)

where

Rft =
∑

u∈U

∫ t

0
1[su,τu)(s)

(tDf · σ)(Xu
s ) · dWθ,u

s (3.2)

is a square integrable martingale with zero mean under (Ω,F,F, Pθ
m) and

Aθf(x) =
1
2

d∑

i,j=1

aij(x)Di,jf(x) +
d∑

i=1

bθi (x)Dif(x) (3.3)

is the infinitesimal generator of the common diffusion law followed by the particles and idf : (t, (k −
1)δx) �→ (k − 1)f(x) is optional on R+ × Sd.

HereDi andDi,j represent the first derivative with respect to xi and the mixed second derivative
with respect to xi and xj , respectively, whereas D = t(D1, D2, . . . , Dd).

Proof. We apply Îto’s formula to process (2.2) for f ∈ C2(Rd). Then we replace t by τu ∧ t and
we get

f
(
Xu

τu∧t
) − f(Xu

su) =
∫ t

0
1[su,τu)(s)Aθf(Xu

s )ds +
∫ t

0
1[su,τu)(s)

{tDf · σ}(Xu
s ) · dWu

s . (3.4)
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Adding (3.4) for every u ∈ U, the right hand side is

∫ t

0

{
∑

u∈U
1[su,τu)(s)Aθf(Xu

s )

}

ds +
∑

u∈U

∫ t

0
1[su,τu)(s)

{tDf · σ}(Xu
s ) · dWu

s

=
∫ t

0
Ms

(
Af

)
ds + Rft.

(3.5)

On the other hand, the left hand side can be written as

∑

u∈U:su≤t

{
f
(
Xu

τu∧t
) − f(Xu

su)
}
=

∑

u∈U:su≤t<τu
f
(
Xu

t

)
+

∑

u∈U:τu≤t
f(Xu

τu) −
∑

u∈U:su≤t
f(Xu

su)

= Mft −Mf0 −
∑

0<s≤t
ΔMfs

= Mft −Mf0 − idf ∗ μM
t.

(3.6)

By definition idf ∗ (μM − νθ) is a local martingale, where νθ is the compensator of the
process M then by adding and subtracting idf ∗ νθ we have the following.

Corollary 3.2. For every f ∈ C2(Rd) the process

Mt

(
f
) −M0

(
f
) −

∫ t

0
Ms

(
A∗,θf

)
ds (3.7)

is, under (Ω,F,F, Pθ
m), a square integrable local martingale with zero mean and quadratic

characteristic:

∫ t

0
Ms

(
tDf · a ·Df + λθκθf2

)
ds. (3.8)

Here,

A∗,θf = Aθf + λθ
(
mθ − 1

)
f. (3.9)

Now, we calculate the local characteristics of the process (2.5). We use the following
result which is essentially a particular case of [10, Theorem II.2.42] (see also [14]).
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Proposition 3.3. LetX be a real-adapted process, h a truncating function,A ∈ V continuous,C ∈ V+

continuous, and ν a random measure in R+ ×R
d such that ν(dt, dy) = Kt(dy)dt. Let B = A + h ∗ ν.

Then X is a semimartingale with local characteristics (B,C, ν) with respect to a truncating function
h if and only if for every F ∈ C2(R) the process

F(Xt) − F(X0) −
∫ t

0
F ′(Xs−)dAs − 1

2

∫ t

0
F ′′(Xs−)dCs −

{
F
(
Xs− + y

) − F(Xs−)
} ∗ νt (3.10)

is a local martingale.

Proof. It is enough to see that B ∈ V is a continuous process and

∫ t

0
F(Xs−)d(h ∗ ν)s =

∫ t

0
F(Xs−)

{∫

R

h
(
y
)
Ks

(
dy

)
}

ds

=
∫

(0,t]×R

F(Xs−)h
(
y
)
ν
(
ds, dy

)
=
{
F(Xs−)h

(
y
)} ∗ νt.

(3.11)

Also,

(
y2 ∧ 1

)
∗ νt =

∫ t

0

{∫

R

(
y2 ∧ 1

)
Ks

(
dy

)
}

ds =
∫ t

0
Hsds, (3.12)

whereH is a nonnegative process then (y2 ∧ 1) ∗ ν ∈ V+. Moreover, it is continuous therefore
predictable and it belongs toA+

loc ⊂ Aloc.

We have the following result.

Theorem 3.4. For any θ ∈ Θ andm ∈ Ed there exist a probability Pθ
m on as stochastic basis (Ω,F,F)

such that (Ω,H,H, Pθ,m). We have M0 = m a.s. and (Bf,Cf, νf ) which are the local characteristics
ofM(f) with respect to h for any f ∈ C2

b
(Rd). The restriction Pθ,m to F is the only probability in the

filtered space (Ω,F,F)with these local characteristics. Here (Bf,Cf, νf) are given, for any truncating
function h by

Bft =
∫ t

0
Ms−

(
Aθf

)
(·)ds + h ∗ νft ,

Cft =
∫ t

0
Ms−,t

(
Df(·)a(·)Df(·))ds

(3.13)

and νf on R+ × R
d as

νf
(
dt, dy

)
= Mt−

(

λ(·)
∞∑

k=0

pθk(·)δ(k−1)f(·)
(
dy

)
)

dt (3.14)
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or equivalently, for every optional function w on R+ × R
d:

w ∗ νft =
∫ t

0
Ms−

(

λ(·)
∞∑

k=0

pk(·)w
(
s, (k − 1)f(·))

)

ds. (3.15)

Proof. From [5, Theorem 3.1], or [6, Chapter 5], we have the existence of a probabilitymeasure
in (Ω,F,F)making (2.5) a BDP with infinitesimal generator Gθ = Aθ + Bθ where

AθF
(
μ
(
f
))

= F ′(μ
(
f
))
μ
(
Aθf

)
+
1
2
F ′′(μ

(
f
))
μ
(tDfaDf

)
,

BθF
(
μ
(
f
))

= μ

(

λθ(·)
∞∑

k=0

pθk(·)
[
F
(
μ
(
f
)
+ (k − 1)δ.

(
f
)) − F

(
μ
(
f
))]

)

.

(3.16)

Moreover, for every non negative function F ∈ C2
b(R) and f ∈ C2

b(R
d)we have that

F
(
Mt

(
f
)) − F

(
m
(
f
)) −

∫ t

0
GθF

(
Ms−f

)
ds (3.17)

is a local martingale with respect to (Ω,F,F, Pθ
m).

We can write (3.17) as

F
(
Mt

(
f
)) − F

(
M0

(
f
)) −

∫ t

0
F ′(Ms−

(
f
))
Ms−

(
Aθf

)
ds − 1

2

∫ t

0
F ′′(Ms−)Ms−

(tDf · a ·Df
)
ds

−
∫ t

0
Ms−

(

λθ
∞∑

k=0

pθk
[
Ff(Ms− + (k − 1)δ.) − Ff(Ms−)

]
)

ds

= F
(
Mtf

) − F
(
M0f

) −
∫ t

0
F ′(Ms−f

)
d

{∫ s

0
Mr−

(
Aθf

)
dr

}

− 1
2

∫ t

0
F ′′(Ms−f

)
d

{∫s

0
Mr−

(tDf · a ·Df
)
dr

}

− {
F
(
Ms−f + y

) − F
(
Ms−f

)} ∗ νf(ds, dy)t.
(3.18)

From the last expression we apply the precedent proposition and identify the local
characteristics as those in expressions (3.13) and (3.15).

4. Absolutely Continuous Measure Changes, Likelihood Function,
and Fisher Information Measures

In this section, we calculate the likelihood function of the process Mt based on a Girsanov
theorem for semi-martingales.
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As reference measure we take the one determined by

b0(x) = 0,

λ0(x) = 1,

p0k(x) =
1

2k+1
,

(4.1)

that is, particles moving according to independent Brownian motions without drifts. In
the sequel, as we start from a fix deterministic configuration M0 = m, we will drop the
dependence on m, then we denote by P0 and Pθ the respective probabilities generated by the
reference measure and the functions given in (2.8) according to Theorem 3.4. We will denote
by E0 and Eθ the expectations under P0 and Pθ, respectively.

It is well known that the semi-martingale structure persists after an absolutely
continuous change of the probability measure. In order to see how the local characteristics
change with it we construct a probability measure Qθ, absolutely continuous with respect to
P0, with the same local characteristics than Pθ, therefore Qθ and Pθ are a.s. equal.

Let (B0, C0, ν0) be the local characteristics of the process under P0 given by

B0ft =
∫ t

0
Ms−

(
A0f

)
ds +

(
hf ∗ ν0

)
t
,

C0ft =
∫ t

0
Ms−

(tDfaDf
)
ds,

(W ∗ ν0)t =
∫ t

0
Ms−

(

λ0(·)
∞∑

k=0

p0k(·)W(s, (k − 1)δ.)

)

ds,

(4.2)

where

A0f(x) =
1
2

d∑

i,j=1

Dijf(x)aij(x). (4.3)

Equations (3.13) and (3.15) can be, respectively, rewritten as

Bft =
∫ t

0
Ms−

(
Aθf

)
ds + hf ∗ ν t,

Cft = C0,

W ∗ νt =
∫ t

0
Ms−

(

λθ
∞∑

k=0

pθkW(s, (k − 1)δ.)

)

ds,

(4.4)

where

Aθf = A0f + tDf · b. (4.5)

Here δ. refers to the function x → δx.
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Next, we define the function y : Sd → R+ as

y((k − 1)δx) =
λ(x)pθk(x)

λ0(x)p0k(x)
(4.6)

whenever λ0(x)p0
k
(x)/= 0 and zero are otherwise.

Also we define the following processes on (Ω,F,F):

Yt =
∑

u∈U

∫ t

0
1[su,τu)

(
tb · a−1

)
(Xu

s ) · dXu
s +

(
y − 1

) ∗
(
μM − ν0

)

t
, (4.7)

Zt = exp
(

Yt − 1
2
〈Yc〉t

)∏

0<s≤t
(1 + ΔYs)e−ΔYs . (4.8)

Note that Y is well defined on the basis (Ω,F,F, P0). Indeed,

{∣
∣y − 1

∣
∣ ∗ ν0

}
t =

∫ t

0
Ms−

(

λ0
∞∑

k=0

p0
∣
∣
∣
∣
∣

λθpθk
λ0p0k

− 1

∣
∣
∣
∣
∣

)

ds

≤
∫ t

0
Ms−

(

λ0
∞∑

k=0

(
λθpθ

k

λ0
+ p0k

))

ds

=
∫ t

0
Ms−

(
λ0 + λθ

)
ds ≤

∥
∥
∥λ0 + λθ

∥
∥
∥

∫ t

0
Ms(1)ds

(4.9)

then |y − 1| ∗ ν0 ∈ A+
loc(P0) and it is predictable.

Moreover,

E0
({∣

∣y − 1
∣
∣ ∗ ν0

}
t

) ≤
∥
∥
∥λ0 + λ

∥
∥
∥E

(∫ t

0
Ms(1)ds

)

< ∞. (4.10)

Then (y − 1) ∗ (μM − ν0) is a purely discontinuous local martingale on (Ω,F,F, P0).
The first term in Y is a local continuous martingale so the process Y is a local

martingale. Their jumps have the form

ΔYt = 1[ΔMt /= 0]
(
y(ΔMt) − 1

)
(4.11)

then

1 + ΔYt =

{
1 if ΔMt = 0,
y(ΔMt) if ΔMt /= 0.

(4.12)

Hence, Z, the Doleans-Dole exponential local martingale of Y , is a local martingale on
the same basis. Also Z ≥ 0 P0-a.s. and E0Z0 = 1.
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Let (Rn)n∈N
be now a sequence of local stopping times for Z; we note by P0,Rn the

restriction of P0 to the σ-algebra FRn and we define on it the probability measureQn as dQn =
ZRndP0,Rn , where ZRn is the process Z stopped at time Tn.

We have the following result.

Proposition 4.1. The local characteristics of Qn are given by (3.13) and (3.15).

Proof. Let’s note by (Bn, Cn, νn) the local characteristics ofM under the measure Qn.
First, note that ifW in R+ × Sd is an optional process then

W ∗ (yν0
)
t(ω)t =

(
Wy ∗ ν0

)
t(ω)t =

∫ t

0
Ms−

(

λ0
∞∑

k=0

p0kW(s, (k − 1)δ.)
λθpθ

k

λ0p0k

)

ds

=
∫ t

0
Ms−

(

λθ
∞∑

k=0

pθkW(s, (k − 1)δ.)

)

ds = W ∗ νt,
(4.13)

hence dν = ydν0 and in a similar way we have dνRn = ydνRn

0 .
On the other hand,

Zt = exp
(

Yt− − 1
2
〈Yc〉t

)(
∏

0<s<t
(1 + ΔYs)e−ΔYs

)

(1 + ΔYt) (4.14)

then Z = Z−(1 + ΔY ) and

1[ΔMRn
t /= 0]Z

Rn

t = 1[ΔMRn
t /= 0]Z

Rn

t− y
(
ΔMRn

t

)
. (4.15)

Thus, we have that for every P ⊗ S-measurable function U : Ω × R+ × S → R
d
+,

∑

t

1[ΔMt /= 0]ZtU(t,ΔMt) =
∑

t

1[ΔMt /= 0]y(ΔMt)Zt−U(t,ΔMt) (4.16)

or equivalently

ZU ∗ μX
∞ = yZ−U ∗ μX

∞. (4.17)

Hence,

E
(
ZU ∗ μX

∞
)
= E

(
yZ−U ∗ μX

∞
)
. (4.18)

According to [10, Theorem III.3.17], yZ− is a version of the conditional expectation MP
μM(Z |

P ⊗ S) and consequently yν0 is a version of the compensator of μX on the basis (Ω,F,F, Qθ).
Then we have νn = ν.

Next, we defineN = Rf +hf ∗ (μM − ν0) andN(n) = (N − [N,Y ]p)Rn , whereNRn is the
process stopped at time Rn.
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We can see that N(n) ∈ Mloc(Qn). Indeed, NRn ∈ Mloc(P0) and its jumps

ΔNRn = 1[ΔMf /= 0]hf

(
ΔMf

) ≤ ‖h‖ (4.19)

are bounded; hence combining Theorem III.3.11, Lemma III.3.14 in [10]we have that

N(n) =
(
N − [N,Y ]p

)Rn ∈ Mloc(Qn). (4.20)

Moreover,

[N,Y ] =
〈
Rf, Yc〉 +

∑

0<s≤t
ΔNsΔYs =

〈
Rf, Yc〉 + hf

(
y − 1

) ∗ μM
(4.21)

and then

N − [N,Y ]p = Rf + hf ∗
(
μM − ν0

)
− 〈

Rf, Yc〉 − hf ∗ ν + hf ∗ ν0

= Rf − 〈
Rf, Yc〉 + hf ∗

(
μM − ν

)
.

(4.22)

We can write

N(n) =
(
Rf − 〈

Rf, Yc〉)Rn + hf ∗
(
μM − ν

)Rn ∈ Mloc(Qn). (4.23)

As

hf ∗
(
μM − ν

)Rn

= hf ∗
(
μMRn − νRn

)
∈ Mloc(Qn) (4.24)

we have

(
Rf − 〈

Rf, Yc〉)Rn ∈ Mloc(Qn). (4.25)

From (3.1),

MRn

t f = MRn

0 f +

(∫ t

0
Ms

(
A0f

)
ds + Rf

)Rn

+ id ∗ μMRn

t f

= MRnf0 +

(∫ t

0
Ms

(
A0f

)
ds +

〈
Rf, Yc〉

)Rn

+
(
Rf − 〈

Rf, Yc〉)Rn + id ∗ μMRn

t f

(4.26)
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with

〈
Rf, Yc〉 =

〈
∑

u∈U

∫ t

0
1[su,τu)(s)

{tDf · σ}(Xu
s ) · dWu

s ,
∑

u∈U

∫ t

0
1[su,∞)(s) t

(
σ−1 · bθ

)
(Xu

s ) · dWu
s

〉

=
∫ t

0
Ms

(
tDf · bθ

)
ds.

(4.27)

We identify Bn and Cn as (3.13) using Proposition 3.3.

From the previous proposition we get the following.

Theorem 4.2. Under conditions (A1)–(A6) in the space (Ω,F,F) we have for any θ ∈ Θ that Pθ

loc�
P0 with density Z given by (4.8).

The log-likelihood is given by

lt(θ) =
∑

u∈U:su≤t

∫ τu∧t

su

{(
tbθ · a−1

)
(Xu

s ) · dXu
s −

(
1
2

tbθ · a−1 · bθ + λθ
)

(Xu
s )ds

}

+
mt∑

n=1

lnλθ(Xn) +
mt∑

n=1

ln pθNn
(Xn),

(4.28)

wheremt is the number of jumps before time t, and (Nn − 1)δXn is the jump corresponding to time Tn.

Here Pθ

loc� P0 means that Pθ is locally absolutely continuous with respect to P0.

Proof. From Theorem 3.4 we have the existence of the probability measure Pθ with local
characteristics given by (3.13) and (3.15); by Proposition 4.1 Pθ and Qn are equal on the σ-
algebra FTn , therefore PTn � (P0)Tn with density ZTn . By local uniqueness the result can be
extended to the σ-algebra F.

From (4.8) we can write

ln(Zt) = Yt − 1
2
〈Yc〉t +

∑

0<s≤t
ln(1 + ΔYs) −

∑

0<s≤t
ΔYs

= Yc
t +

(
y − 1

) ∗
(
μM − ν0

)

t
− 1
2
〈Yc〉t +

∑

0<s≤t
ln(1 + ΔYs) −

(
y − 1

) ∗ μM
t

= Yc
t − (

y ∗ ν0
)
t + (1 ∗ ν0)t −

1
2
〈Yc〉t +

∑

0<s≤t
1[ΔMs /= 0]y(ΔMs)

(4.29)
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but

(
y ∗ ν0

)
t =

(
1 ∗ yν0

)
t = 1 ∗ νt =

∫ t

0
Ms−

(

λθ
∞∑

k=0

pθk

)

ds =
∑

u∈U

∫ t

0
1[su,τu)(s)λθ(Xu

s )ds,

〈Yc〉t =
∑

u∈U

∫ t

0
1[su,τu)(s)

(
tb

θ · t
(
σ−1

))
(Xu

s )
(
σ−1 · bθ

)
(Xu

s ) · d〈Wu〉s

=
∑

u∈U

∫ t

0
1[su,τu)(s)

(
tb

θ · a−1 · bθ
)
(Xu

s )ds.

(4.30)

Then

ln(Zt) =
∑

u∈U:su≤t

∫ τu∧t

su

{(
tb

θ · a−1
)
(Xu

s ) · dXu
s −

(
1
2

tbθ · a−1 · bθ + λθ
)

(Xu
s )ds

}

+
mt∑

n=1

{
lnλθ(Xn) + ln pθNn

(Xn)
}
−

mt∑

n=1

lnλ0p0Nn
(Xn) + (1 ∗ ν0 )t.

(4.31)

Neglecting terms nondepending on θ we get (4.28).

Next, we give expressions for the Fisher information and related measures. For details
in the proofs and their asymptotic analysis we refer to [11].

We denote by (l̇t(θ))t≥0 the score process, where the dot means the gradient with
respect to the parameter θ. It is well known that (l̇t(θ))t≥0 is a zero mean martingale under
Pθ. Its quadratic variation Jt(θ) = [l̇(θ)]t is the observed incremental information and
the associate variance process It(θ) = 〈l̇(θ)〉t is the expected incremental information. We
denote by jt(θ) = −l̈t(θ) the Fisher observed information. Finally, the expected information
is it(θ) = Eθ(l̇t(θ) tl̇t(θ)), see, for example, [15]. Among these four quantities we have the
following relation:

it(θ) = Eθ(Jt(θ)) = Eθ(It(θ)) = Eθ

(
jt(θ)

)
. (4.32)

We have the following result.

Proposition 4.3. If in addition to (A1)–(A6), we assume the following conditions:

(B1) The function x �→ σ−1(x) is bounded, that is, |σ−1(x)| ≤ ‖σ−1‖ < ∞ for every x ∈ R
d.

(B2) There exist constants B1, B2, B3, Λ1, Λ2, P1, and P2, such that for every θ ∈ Θ, all x ∈ R
d,

all k ∈ N, and all i, j, l = 1, . . . , m, the following inequalities are satisfied:

∣
∣
∣Dib

θ(x)
∣
∣
∣ ≤ B1,

∣
∣
∣Dijb

θ(x)
∣
∣
∣ ≤ B2,

∣
∣
∣Dijlb

θ(x)
∣
∣
∣ ≤ B3,

∣
∣
∣Diλ

θ(x)
∣
∣
∣ ≤ Λ1,

∣
∣
∣Dijλ

θ(x)
∣
∣
∣ ≤ Λ2,

∣
∣
∣Di ln pθk(x)

∣
∣
∣ ≤ P1,

∣
∣
∣Dij ln pθk(x)

∣
∣
∣ ≤ P2,

(4.33)
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then J(θ), I(θ), and i(θ) are given by,

Jt(θ)ij =
∫ t

0
Ms

(
tDib

θa−1Djb
θ
)
ds +

{
Di

(
lnλθ + ln pθk

)
·Dj

(
lnλθ + ln pθk

)}
∗ μM

t ,

It(θ)ij =
∫ t

0
Ms

(
ξθij

)
ds,

it(θ)ij =
M0(1)∑

n=0

∫ t

0
E
θ
xn

[

ξθij(Ys) exp
{∫s

0
λθ

(
mθ − 1

)
(Yr)dr

}]

ds,

(4.34)

where

ξθij =
tDib

θa−1Djb
θ + λθ ·Di lnλθ ·Dj lnλθ + λθ ·

∞∑

k=0

Di ln pθk ·Dj ln pθk · pθk. (4.35)

5. A Branching Ornstein-Uhlenbeck Process

We consider a BDP where particles move according to an Ornstein-Uhlenbeck process on R,
then

Xt = ϕ

∫ t

0
Xsds +Wt. (5.1)

The death rate λ ∈ (0,∞) does not depend on the position; hence every particle has an
exponential distributed lifetime independently of the trajectory.

Its reproduction law π = (πk)k∈N satisfies

π1 = 0,

∞∑

k=0

kπk < ∞,
(5.2)

where πk refers to the probability that a particle has k offsprings. Then the parameter is θ =
(ϕ, λ, π) ∈ Θ where Θ ⊂ R × (0,∞) × [0, 1]N.

So we write

bθ(x) = ϕx,

σθ(x) = 1,

λθ(x) = λ,

pθ(x) = π.

(5.3)
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From (4.28) we get

lt(θ) =
∑

u∈U:su≤t

∫ τu∧t

su

{

ϕXu
s dX

u
s − 1

2
(
ϕXu

s

)2
ds − λds

}

+mt lnλ +
mt∑

n=1

lnπNn

= ϕ
∑

u∈U:su≤t

∫ τu∧t

su
Xu

s dX
u
s − ϕ2

2

∑

u∈U:su≤t

∫ τu∧t

su
(Xu

s )
2ds

− λ
∑

u∈U:su≤t
(τu ∧ t − su) +mt lnλ +

mt∑

n=1

lnπNn.

(5.4)

Noting that

∑

u∈U:su≤t
(τu ∧ t − su) = K0T1 +K1(T2 − T1) + · · · +Kmt−1(Tmt − Tmt−1) +Kmt(t − Tmt), (5.5)

where Kn is the number of particles alive on the interval [Tn, Tn+1) then

Kn =

{
N0 if n = 0,
N0 + (N1 − 1) + · · · + (Nn − 1) if n > 0,

(5.6)

where N0 is the number of ancestors and

St = K0T1 +K1(T2 − T1) + · · · +Kmt−1(Tmt − Tmt−1) +Kmt(t − Tmt). (5.7)

We finally have

lt(θ) =
ϕ

2

(
∑

u∈U:su≤t

{(
Xu

τu∧t
)2 − (Xu

su)
2
}
− St

)

− ϕ2

2

∑

u∈U:su≤t

∫ τu∧t

su
(Xu

s )
2ds

− λSt +mt lnλ +
mt∑

n=1

lnπNn.

(5.8)

From (5.8)we obtain the maximum likelihood estimators:

ϕ̂t =

∑
u∈U:su≤t

{(
Xu

τu∧t
)2 − (

Xu
su
)2
}
− St

2
∑

u∈U:su≤t
∫τu∧t
su (Xu

s )
2ds

,

λ̂t =
mt

St
,

π̂n,t =
rnt
mt

.

(5.9)

Here rnt is the number of splitting on (0, t) resulting in n offsprings.
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Table 1: Parameter estimates of an Ornstein-Uhlenbeck process with two or three splitting. Five trajectories
are simulated with parameters φ = 0.1, λ = 0.05 and π2 = π3 = 1/2.

ϕ̂ λ̂ π̂2 π̂3

0.10003 0.05139 0.499 0.501
0.10002 0.05152 0.525 0.475
0.10002 0.04974 0.524 0.476
0.10033 0.05028 0.498 0.502
0.10005 0.04852 0.524 0.476

Moreover, we have the following results:

λ̂t
a.s.−−−→ λ,

π̂nt
a.s.−→ πn ∀n,

√
mt

(
λ

λ̂t
− 1

)
L−→ N(0, 1),

√
mt

π̂nt − πn
√
πn(1 − πn)

L−→ N(0, 1), ∀n

(5.10)

suggesting consistency and asymptotic normality of the estimators in a more general context.
We perform a simulation analysis for the model above in the following way.
Equation (5.1) is discretized as

Xt+h = Xt + ϕ

∫ t+h

t

Xsds + (Wt+h −Wt). (5.11)

For small h we take:

Xt+h ≈ Xt + ϕhXt + ξh, (5.12)

where ξh ∼ N(0, h). As initial parameters we take

ϕ = 0.1,

λ = 0.05,

π2 = π3 =
1
2
.

(5.13)

Numerical results from simulated trajectories are shown in Table 1. The particle system
is observed until the time of the 1000th reproduction.
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