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By investigation of perturbation solution for nonlinear reaction-diffusion system, we derive related
differential model for perturbations that involves weak nonlinearities up to third order. For a
first time, this model is shown to result in derivation of the system for amplitude distribution
by means of nonlinear integration on orthogonal basis in spatial region. The obtained time-
dependent system (TDS) contains all possible functional relations between the modes of wave
train under consideration along with delayed relations, and after numerical simulation it provides
some conclusions concerning the natural frequency of the investigated self-organization process
in active medium. The related matrix and modulo operations which substantiate the derivation of
the TDS are also considered.

1. Introduction

Though the linearized analysis of differential systems is used widely for exploration of
stability problems and has been developed for a long time [1–6], additional investigations of
nonlinearities occurring in corresponding analytical models provide an opportunity to obtain
important information that is impossible to find restricting with the use of linearizations only.
So, in the present work, in difference from [6], we also take into consideration nonlinear terms
of the second order (and even higher ones) and show that such exploration allows us to
consider the amplitude distribution of the modes constituting the wave train and, moreover,
to obtain some estimations for temporal changes of such distribution.

As a result of numerous experimental and theoretical investigations, it was shown that
self-organization patterns described by reaction-diffusion systems of differential equations
[3, 7, 8] (or proper propagating-recovery model [8–10]) are just long-living stationary
structures with continuous radiation that can be represented through the wave trains
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propagating in active media (e.g., spiral waves [8, 9, 11–13]). Such periodic wave train can
have any period (or frequency) within a certain range, and to each period corresponds a
particular wavelength (or phase velocity) [8–10]. So, representation of the wave train through
normalmodes [1] is suitable both from experimental and theoretical viewpoints (yet allowing
us an opportunity to link approaches of linear analysis with considerations of different
levels of nonlinearities), and we also use expansion through the orthogonal basis in spatial
range along with unique spatiotemporal functional dependence at derivation of propagation
solution with supposition of weak nonlinearity.

For a first time, we develop the approach of nonlinearities integration taking into
consideration all possible cases of mode coincidence that provides us with complete set
of functional relations between the modes of wave train and, moreover, reveals delayed
dependencies on related modes with lower order. As a result, we obtain exact expressions
of time-dependent system (TDS) describing amplitude distributions over investigated
frequency region (this region can also be represented by means of related wavelength range).

The importance of Goldstone mode is also shown at description of amplitudes
pertaining to every separate mode. The numerical implementations show the validity of
derived mathematical models and allow us to deduce some conclusions concerning temporal
evolution of the autowave process and its natural frequency. The obtained results proved to
be useful for development of the control methods with respect to investigated self-organizing
structures.

2. Derivation of Time-Dependent System for Square Nonlinearities

Let us consider the nonlinear system of reaction-diffusion equations of FitzHugh-Nagumo
(FHN) type that can be written as follows [3, 7, 8, 10, 11]:

∂u

∂t
= u − u3

3
− v +D1Δu,

∂v

∂t
= ε
(
u − γv + β

)
+D2Δv,

(2.1)

where u and v are kinetic variables characterizing the dynamical system (usually propagation
and recovery ones), D1,2-diffusion coefficients for related variables, Δ-Laplacian, ε is a small
positive parameter that defines relation of temporal scales for kinetic variables, β and γ
determine excitability of the medium. Introduce the perturbations x1, x2 from stationary
state of (2.1), namely,

u = u0 + x1, v = v0 + x2. (2.2)

Considering (2.1) and (2.2), we have the exact model consisting of nonlinear equations for
perturbations (here the stationary state (u0, v0) is determined analogously [1, 6, 14])

∂x1

∂t
= −x1

3

3
− u0x1

2 +
(
1 − u0

2
)
x1 − x2 +D1Δx1,

∂x2

∂t
= ε
(
x1 − γx2

)
+D2Δx2.

(2.3)
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Let us suppose that x1,2 are small enough and apply the normal modes representation
as follows:

(
x1

x2

)
=

M∑

m=0

C
(m)
1,2 e

ωmt coskmr, (2.4)

where eigen wavenumber km = πm/l, 0 ≤ r ≤ l. This decomposition is similar to Fourier
series expansion, but on one variable km, while ωm = f(km) determines a dispersion curve
and instability dependence, in general essentially nonlinear.

At linearized analysis of (2.1) (see [1, 6, 14]), it is impossible to express C
(m)
1,2 from

related equations since it disappears at dispersion curve determination. Here, we show that
nonlinear consideration allows us to overcome this shortage. From (2.3)-(2.4), we obtain the
following equation describing the amplitude distribution:

M∑

m=0

C̃
(m)
1 fm coskmr + u0(σM)2 +

1
3
(σM)3 = 0, (2.5)

where

σM =
M∑

m=0

C̃
(m)
1 coskmr, (2.6)

coefficients which provide the temporal dependence are written as

C̃
(m)
1 = C

(m)
1 eωmt. (2.7)

Here ωm = ωm + iω̃m, while ωm and ω̃m describe damping (i.e., stability properties)
and oscillation processes, respectively. In (2.5), the dependence fm on spatiotemporal
parameters provides complete information about linear operators involved by system (2.1),
it is expressed as follows:

fm = μm +ωm +
ε

ωm + γε +D2km
2
, (2.8)

where μm = D1km
2 − 1 + u0

2. In turn, (σM)2 and (σM)3 express nonlinearities on C
(m)
1

and provide all functional relations that arise at cross-modal interactions, such nonlinear
interactions are studied in many applications [3, 4, 15]. It is worth noting that (2.5) itself
is not sufficient for determination of C(m)

1 , m = 0, 1, 2, . . . ,M, as well as for dispersion curves
derivation, but we show below that by using some integral transformswe can obtain a system
with complete solvability. Such system will be also numerically proved in Section 4.

Equation (2.5) also does not provide enough flexibility concerning the order of
nonlinearities and does not allow us to use the “weak” level of nonlinearity that is important
for retaining the constant (i.e., time-independent) level of amplitudes [5, 7] and is in good
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coincidence with our supposition concerning small perturbations. So, we introduce the more
general form of (2.5) as follows:

M∑

m=0

Ãmfm coskmr + ε2u0(ςM)2 +
ε3
3
(ςM)3 = 0, (2.9)

where

ςM =
M∑

m=0

Ãm coskmr, (2.10)

Ãm = Ame
ωmt, (2.11)

and Am is also a constant amplitude which pertains to the mth mode but it is suitable to
different levels of nonlinearities. Evidently, in (2.5) we have that at ε2 = ε3 = 1, Am ≡ C

(m)
1 ,

while at ε2 = ε3 = 0, the completely linear case on levels of deviation from stationary
state takes place. This case was considered in [6, 14] and, in spite of its linearization on
perturbation levels, it yet allows us the nonlinear dependence of ωm on km reflecting related
frequency and dispersion curves. In this work, we suppose that εi can be in general arbitrary
but small for weak nonlinearities that is used in some examples at numerical simulations.

In this paper, we confirm that admission of weak nonlinearities is significant since it
allows us to apply variety of developed linear analytical methods (which were also proved
experimentally for centuries) to investigation of nonlinear phenomena and derivation of new
functional relations. Really, linear analysis methods can be considered as background for
investigation of nonlinear phenomena, including application of matrix theory, integration
and differentiation methods, and also spectral approaches (e.g., Fourier integral and series
expansion). In particular, estimation of power spectrum is used widely in related modeling
[16], for example, for analysis of spiral waves [7, 13] thereby reflecting some important
features of investigated processes which are essential for resonant control [13, 17–19]. So,
we also use expansion on orthogonal basis for description of functional spatiotemporal
dependencies characterizing the propagating kinetic variable.

Fourier integral transform is also widely used for reduction of complexity of partial
differential equations [5, 7], but it is suitable mostly for a single pulse propagation (e.g.,
soliton-like solution) often followed by extrapolation of solution in spatial region [5].
But self-organization processes described by a system of reaction-diffusion equations are
characterized by continuous periodic radiation represented by related wave trains, so
expansion in a series is more useful than representation by integral transform. Another reason
in favor of series representation is that we consider the process in restricted spatial region, in
such a case that the eigenvalue spectrum is of discrete structure as it was shown in [1].

Similarly to methods couched in monograph [1], we use integration over all range of
r ∈ [0, l] for derivation of TDS from (2.9). In this work, we consider quadratic nonlinearities
involved by (ςM)2 followed by some generalizations to cubic nonlinearities through related
matrix operations. The derivation of TDS is based on successive multiplication of (2.9) by
cosknr, where n = 0, 1, 2, . . . ,M, followed by integration over the above-mentioned range.
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At such operations, we use the filtering properties which result from orthogonality of
spatial functions (see the appendix for details) and obtain from expression (2.9) the following
equations for Ãn determination:

Ãnfn + ε2u0

(
D(n/2) + B

(n)
− + B

(n)
+

)
= 0, (2.12)

where D(n/2) determines the delayed functional dependence for an even component and can
be written as follows:

D(n/2) =
η(n)
2

(
Ãn/2

)2
, (2.13)

where the digital function η(n) is determined in accordance with (A.5). The sums B(n)
− and

B
(n)
+ consist of terms which remain as nonzero ones after integration due to fulfillment of

conditions |ki − kj | = kn and ki + kj = kn, respectively, those are determined by means of the
expressions:

B
(n)
− =

M−n∑

i=0

ÃiÃn+i,

B
(n)
+ =

s∑

i=0

ÃiÃn−i,

(2.14)

where index boundary is determined accordingly (A.6).
Evidently, both B

(n)
− and B

(n)
+ represent just the terms describing the mode interactions;

the sum B
(n)
− is constructed by constant range of indices n, and in B

(n)
+ the range of indices is

n − 2i and decreases by two samples for every subsequent pair of terms.
Equation (2.12) form the system at n = 1, 2, . . . ,M, while for n = 0 the following

equation is valid, it is derived analogously above ones:

Ã0f0 +
ε2u0

2

(
Ã2

0 + B
(0)
−
)2

= 0. (2.15)

Derivation of TDS (2.12)–(2.15) allows us an opportunity to consider (M + 1) independent
equations instead of one nonlinear equation (2.9) and thereby increases its solvability for
determination of (M + 1) complex variables An. The representation of related functional
dependencies in (2.12)–(2.15) can be clarified through matrix consideration along with
analysis of corresponding modulo operations, we implement this in the subsequent section.
This investigation is also useful for derivation of systems involving nonlinearities of higher
order, while (2.12)–(2.15) express nonlinearities of the second order.
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3. Matrix Representations and Modulo Operations Involved by
Nonlinear Integration Procedure

Regarding representation of quadratic nonlinearities described by (2.9), the following matrix
is useful: ΛM = (ÃiÃj), where i, j = 1, 2, . . . ,M. Here, we do not include the spatial
dependence explicitly, but it can be easily represented with related indices accordingly (2.10),
and one can conclude that then diagonal elements of ΛM form the dependence D(n/2) in
(2.12), while relevant pairs of mixed multiplications constitute B

(n)
− and B

(n)
+ . Evidently, ΛM

can be obtained by direct multiplication of the following matrices:

ΛM = QM ⊗QM
T, (3.1)

where QM consists of equal elements in its columns, that is,

QM =

⎛

⎜⎜⎜
⎝

Ã1 Ã2 · · · ÃM

Ã1 Ã2 · · · ÃM

· · · · · · · · · · · ·
Ã1 Ã2 · · · ÃM

⎞

⎟⎟⎟
⎠

. (3.2)

As it follows from the structure ofΛM, elements with equal difference of indices forming B
(n)
−

constitute a pair of lateral diagonals in ΛM, and by neglecting symmetric repetitions, one can
conclude that the triangle matrix representing equal index differences can be obtained from
(3.1) as follows:

Ql(r) =

⎛

⎜⎜⎜⎜⎜
⎝

Ã1ÃM Ã1ÃM−1 · · · Ã1Ã3 Ã1Ã2

0 Ã2ÃM · · · Ã2Ã4 Ã2Ã3

· · · · · · · · · · · · · · ·
0 0 · · · ÃM−2ÃM ÃM−2ÃM−1
0 0 · · · 0 ÃM−1ÃM

⎞

⎟⎟⎟⎟⎟
⎠

(−)−→

⎛

⎜⎜⎜⎜⎜
⎝

(M − 1) (M − 2) · · · (2) (1)
0 (M − 2) · · · (2) (1)
· · · · · · · · · · · · · · ·
0 0 · · · (2) (1)
0 0 · · · 0 (1)

⎞

⎟⎟⎟⎟⎟
⎠

,

(3.3)

where the matrix Ql(r) is constructed so that every last column is just the upper first lateral

diagonal in ΛM (i.e., in reverse order). In turn, the sign of transformation
(−)−−→ represents

the transition to index difference within a pair of elements in Ql(r). On the other hand, the
matrix of index difference can be obtained using direct record of left and right indices in ΛM
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(Qleft and Qright, taking into account only terms upper the diagonal of ΛM) for every pair of
products as follows:

Qleft =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1 1
0 2 · · · 2 2
· · · · · · · · · · · · · · ·
0 0 · · · M − 2 M − 2
0 0 · · · 0 M − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.4)

Qright =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 3 · · · M − 1 M
0 3 · · · M − 1 M
· · · · · · · · · · · · · · ·
0 0 · · · M − 1 M
0 0 · · · 0 M

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.5)

and thusQ− = Qright−Qleft provides index difference for every product in its lateral diagonals.
In turn, consideration of Q+ = Qright + Qleft (for exploration of elements with equal sum of
indices) makes sense only if (Q+)i,j ≤ M, that is, for every “cross” diagonal in the upper
half (i.e., subtriangle) of Q+. As a result of consideration with respect to (3.3)–(3.5), one can
conclude that with increase of n in (2.12) by one sample, the quantity of elements (products)
in B

(n)
− decreases by one, while that in B

(n)
+ increases by one only if n increases by two samples

(it can be shown by counting the number of terms in “cross” diagonals in the upper half of
Q+, with those diagonals involving equal sums of indices).

On the other hand, for investigation of mixed products properties (especially for

higher-order nonlinearities) the following scheme is useful. We consider the string {Ãm}
M

m=1

and take multiplication of every Ãi by Ãj at i < j (it is said to be string by string scheme
(SBS)), then all resulting terms can be obtained by consideration of corresponding rows in
(3.4) and (3.5), with each pair of those containing equal number of nonzero terms.

For investigation of cubic nonlinearities, we cannot restrict our analysis to one-step
matrix multiplication as for quadratic case since the more complicated tensor structure
is formed; it can be represented through M square matrices which result from direct
multiplication of ΛM ⊗ sh(s)(QM), where sh(s)(·) means the s-step cyclic shift of matrix
(regarding columns in our consideration); that is, if for QM the number of a column is
1 ≤ k ≤ M, then for sh(s)(QM) it is k(s) = k ⊕ s, where the shift index s = 1, 2, . . . ,M, and
the modulo operation is defined similarly to [20] as follows:

k ⊕ s =

{
k + s −M, if k + s > M,

k + s, if k + s ≤ M.
(3.6)

Evidently, if k + s /=M, then k ⊕ s = k + s(Mod M), while at k + s = M such operation does
not coincide with the conventional one.



8 International Journal of Mathematics and Mathematical Sciences

Thus, the columns of sh(s)(QM) can be obtained by the adding operation of indices
accordingly (3.6), and therefore we have the following expressions:

sh(1)
(
Qind

M

)
=

⎛

⎜
⎜
⎝

(2) (3) · · · (M − 1) (M) (1)
(2) (3) · · · (M − 1) (M) (1)
· · · · · · · · · · · · · · · · · ·
(2) (3) · · · (M − 1) (M) (1)

⎞

⎟
⎟
⎠,

sh(2)
(
Qind

M

)
=

⎛

⎜
⎜
⎝

(3) (4) · · · (M) (1) (2)
(3) (4) · · · (M) (1) (2)
· · · · · · · · · · · · · · · · · ·
(3) (4) · · · (M) (1) (2)

⎞

⎟
⎟
⎠,

(3.7)

and so on, in (3.7) we show only indices of Ãi, similarly to (3.3), and hence we imply the
spatiotemporal dependence (2.10)-(2.11) in the represented record. Evidently, sh(M)(QM) =
QM. It is worth noting that a single line of cubic elements Ã3

i forms by QM ⊗ ΛM in its main
diagonal, while mixed products including square terms such as ÃiÃ

2
j also form due to this

operation, namely,M(M−1) terms after excluding cubic ones. The rest (M−1)multiplications
result in 2M(M − 1)mixed square terms, those constitute two lateral diagonals and the main
one as it can be shown with (3.1) and (3.7); therefore, we obtain 3M(M − 1) such terms
altogether.

Alternatively, the process of matrix product derivation for cubic nonlinearities can
be represented through M successive one-step direct multiplications of ΛM by the square
matrix consisting of similar elements, that is, Ãs, where s = 1, 2, . . . ,M. As a result, we
have one cubic term and 3(M − 1) mixed square terms at every multiplication, namely,
(M − 1) diagonal terms and 2(M − 1) in related row and column forming two crossing
lines, threefold recurrence also takes place in this scheme for the previously considered
mixed square terms. At such consideration, the resulting the previous matrix preserves its
symmetry that allows us to make additional conclusions which are necessary for derivation
of correct expressions describing nonlinear integration analogously (2.12) derivation. It
should be noted that new mixed terms such as ÃiÃjÃk, where i /= j /= k appear between
the main diagonal and the row which involve square terms, and the common quantity of
new mixed terms obtained at every multiplication decreases in accordance with the series
(1/2)(M−1)(M−2), (1/2)(M−2)(M−3), . . . , 1. It can be shown using analytical approaches
similarly to (3.3)–(3.5) and (3.7). As for terms involving square and cubic powers, their
common quantity formed after M multiplication can be represented through the following
matrix that contains original terms only (i.e., without recurrence); it is obtained similarly to
the previously mentioned SBS scheme and is of the following form:

Q(2−3)com =

⎛

⎜⎜⎜⎜
⎝

(
13
) (

1, 22
) (

1, 32
) · · · (1,M2)

(
2, 12
) (

23
) (

2, 32
) · · · (2,M2)

· · · · · · · · · · · · · · ·(
M, 12

) (
M, 22

) (
M, 32

) · · · (M3)

⎞

⎟⎟⎟⎟
⎠

, (3.8)

where (13) corresponds to (Ã1 cosk1r)
3
, (1, 22) − Ã1 cosk1r (Ã2 cosk2r)

2
, and so on.
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4. Generalization to Nonlinearities of the Third Order
along with Numerical Simulation

Comparison of (3.8) with results of above considerations provides us with opportunity to

derive the correct form of (
∑M

m=1 Ãm coskmr)
3
for subsequent nonlinear integration, and thus

we obtain from (2.9) the following expression considering cubic nonlinearities (along with
those of lower order too) for amplitude distribution (analogously TDS (2.12)):

Ãnfn + ε2u0

(
2Ã0Ãn + B

(n)
)

+ ε3

⎧
⎪⎪⎨

⎪⎪⎩

1
4

[
Ã3

n +
η1(n)
3

(
Ãn/3

)3]
+
1
2

⎡

⎢
⎢
⎣Ãn

M∑

i=1
i /=n

Ã2
i +

1
2

M∑

i=1
i /= lk

Ã2
i Ãlk

+
M∑

i=1,j=2
i<j<lp

ÃiÃjÃlp

⎤

⎥
⎥
⎦

+Ã0

(
Ã0Ãn + B

(n)
)
⎫
⎪⎬

⎪⎭
= 0,

(4.1)

where lk, lp determine index relations between equation number n and current index values
i, j for every successive sum; the total quantity of the sums for each term in (4.1) that contains
lk, lp equals the upper value of k and P, respectively, and lk, lp are determined in accordance
with the following expressions:

lk =

{
n − 2i, if k = 1,
2i ± n, if k = 2,

lp =

⎧
⎪⎪⎨

⎪⎪⎩

n ± (i + j
)
, if p = 1,

n ± (i − j
)
, if p = 2,

(
i + j
) − n, if p = 3.

(4.2)

In turn, the step function η1(n) is expressed as follows (similarly to the above-defined
function η(n)):

η1(n) =

{
1, if n = 3m,

0, otherwise,
(4.3)

where n,m = 1, 2, . . . ,M, and terms describing square nonlinearities are determined
analogously above the considered ones

B
(n)

= D(n/2) +
M−n∑

i=1

ÃiÃn+i +
s∑

i=1

ÃiÃn−i. (4.4)
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It is worth noting that in (4.1) the Goldstone mode Ã0 makes additional functional
dependence and provides an opportunity to take into account the form of square
nonlinearities in the third-order one that is expressed in the last term of (4.1). Thus, this mode
takes particular influence on the process that is in good coincidence with results obtained in
[21], where it was shown that the Goldstone mode is really of great significance in nonlinear
models of wave propagation.

Evidently, the system of (4.1) provides additional delayed functional dependencies
and cross-modal interactions, as well as it includes estimation of the total energy of the
process. Investigation of the cubic nonlinearity is of great importance for self-organization
phenomena modeling because the presence of cubic nonlinearity (or that of higher order) in
a related differential equation is the necessary condition of a self-organization phenomenon
origin. This fact was proved in [1] by means of comprehensive analysis of related phase
curves and singular points and has many confirmations among mathematical models
describing self-organization phenomena of various physical nature (see e.g., nonlinear
Schrodinger equation, Ginsburg-Landau model, etc. [1–3, 7]).

In the present work, we reveal influence of cubic nonlinearity itself on the investigated
process, for this aim we reduce the general TDS (4.1) to the system where cross-modal
relations and delayed dependencies are neglected and therefore obtain the following reduced
model:

fn +
ε3
4
Ã2

n = 0. (4.5)

Considering (2.8) and (2.11) and dividing (4.5) into real and imagine parts, one can write the
expressions for related trigonometric functions as follows:

cos2ω̃nt = − 4αd

ε3An
2

(
μm +ωm + ε̃nγn

)
,

sin2ω̃nt = −4αdω̃n

ε3An
2 (1 − ε̃n),

(4.6)

where characteristics for nth mode are as follows:

γn = ωn + γε +D2 kn
2,

ε̃n =
ε

ω̃2
n + γn

2
,

(4.7)

and dissipative term displays the temporal dependence and simultaneously reflects changes
with the mode order as αd = e−2ωmt. After some transformations, we obtain from (4.6) the
expression for amplitude estimation of the form

An = 2
√

αd

ε3

4
√(

μn +ωn + ε̃nγn
)2 + ω̃2

n(ε̃n − 1)2. (4.8)
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At numerical simulations, we use the dispersion and dissipation dependencies obtained
before for linearized analysis of (2.1), namely, (see [6])

ω̃n =
1
2

√
4ε − (μn − γε

)2
,

ωm = −μm + γε

2
.

(4.9)

So, based on fundamental results and considerations obtained by leading authors in the field
of spiral wavesmodeling [8, 10, 11], we also suggest for numerical considerations thatD1 = 1,
D2 = 0. The parameters of excitation are chosen to be as γ = 0.5 and β = 0.7, while propagating
kinetic variable at stationary state is determined as u0 = −1.0328 [6, 14] and temporal scale
parameters ε = 0.02, ε3 = 0.01, l = 100.

Results of numerical calculations of dependence (4.8) are shown in Figure 1; they
show that the cubic nonlinearity described previously provides the growth of amplitude;
this growth attains its peak in the region of modes with maximal order which simultaneously
possess temporally oscillating property, as well as lend the system with maximal temporal
stability. This allows us to conclude that the natural frequency of investigated autowave
process is located within the modes of the largest wavenumber where frequency (and phase
velocity) is minimal at high stability (both convective and temporal [6]) that confirms the
conjecture deduced in [6, 14] from linearized analysis. This is also in good coincidence with
results obtained after numerical simulations of spiral wave evolution [11, 19], where the
natural frequency was shown to be of very small order of magnitude that is characteristic
of biological active media. At the same time, it is worth noting that experimental detection
of such low frequency can cause some problems since such signals are of low propagating
ability.

5. Evaluation of Obtained Results Regarding General
Solvability of the Model

In this section, we also consider the conservative approach that is a paradigm of classic
physics of wave processes based on Maxwell equations [5] and explore the problem of
solvability of the above-obtained TDS. In a case of direct integration of TDS (4.1) or (2.12) on
some large enough temporal period T∗ (similarly to [1]), one should take into consideration
that related temporal functions eωmt are essentially nonorthogonal. In other words, the order
properties which are intrinsic due to orthogonality are lost here, in difference from spatial
functions, due to nonlinearity of dispersion dependence ω(k). For example, for conservative
systems where ωm = 0 and using related operations of multiplication and integration as
above, we obtain for a term of TDS the following expression:

∫T∗/2

−T∗/2
AΣe

iω̃σ tdt =
AΣ

ω̃σ
sin
(
π
ω̃σ

ω̃∗

)
, (5.1)
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Figure 1: The dependencies of the amplitude level Am on the mode order reflecting the influence of cubic
nonlinearity on the self-organization process evolution, (a) corresponds to t = 5, (b) is related to t = 50,
thus the obtained curves represent an asymptotic estimation of amplitude distribution.

where the variable ω̃σ includes all frequencies involved by related eigenvalues of the term,
that is,

ω̃σ = ω̃n1 + ω̃n2 + · · · + ω̃nσ , (5.2)

and similarly AΣ includes amplitude values related to the term as follows:

AΣ = An1An2 · · ·AnΣ . (5.3)

Evidently, operation of exact integration (5.1) leads to transformation of TDS into a system of
transcendental equations which is cumbersome both for analytical and numerical analyses;
the similar result is obtained also for systems with dissipation. So, in this paper we use
some approximation concerning orthogonality in temporal region, namely, we suppose that
there exists such small enough ω̃∗ = 2π/T∗ that for every eigenvalue ω̃n

∼= qnω̃∗ is valid,
where qn is an integer. Such approximation seems to be suitable for conservative systems
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Figure 2: The dependence of the amplitude distribution for conservative system confirms reliable growth
for initial modes.

only, but below we show its applicability also for dissipative ones, but the order of such
quasiorthogonality is quite different in comparison with regular orthogonality of spatial
functions. For conservative systems consideration, the normal mode analysis is reduced to
representation of perturbations as follows: x1

∼= ∑M
m=0 B

(m)eiϕmt, where ϕm = ω̃nt − kr, and
from (4.8) at ωm = 0 we have dependence shown in Figure 2, it confirms that the amplitude
level increases with the mode order, but the accuracy of conservative approach is restricted
with “long-wave” consideration only [5]. On the other hand, obtained dependence complies
with the conjecture concerning natural frequency couched previously.

Taking into account the above quasiorthogonal approximation, we have for dissipative
system that provides more exact consideration than conservative one

∫T∗

0
Ãndt =

An

ωn

[
exp
(
2π

ωn

ω∗

)
− 1
]
∼= −An

ωn
, (5.4)

because exp(2πi(ω̃n)/(ω∗)) ∼= 1 and |ωn| > ω∗, ωn < 0. Therefore, similarly to (5.4), one can
obtain from the TDS (2.12) the following system:

fn
An

ωn
+ ε2u0

[
η(n)
2ωn/2

(
Ãn/2

)2
+

M−n∑

i=0

AiAn+i

ωi +ωn+i
+

s∑

i=0

AiAn−i
ωi +ωn−i

]

= 0. (5.5)

If we take TDS (2.12) at some fixed t0 (e.g., t0 = 0, similarly to determination of coefficients in
[22]), then the obtained equation along with (5.5) forms the systemwith sufficient solvability
for derivation of |An|.

For estimation of obtained results, it is worth noting that in the present work we
considered the behavior of the nonlinear system near its stationary (fixed) point that is similar
to approaches developed in [1, 3]. But, in difference from [1], where the linearized operator
for nonlinear Brusselator was analysed followed by bifurcation and instability analysis
(preferably near the stationary state), the aim of our work is to derive the nonlinear system
(taking into account weak nonlinearities) for estimation of amplitude distribution of thewave
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train. The derived TDS also includes information about instabilities (expressed through ωm),
as well as dispersion dependency (ω̃m), but detailed analysis of those is beyond the frames
of our work (that leads to transcendental equations), while such analysis for linearized case
of reaction-diffusion equations was implemented in our previous papers (see [6, 14]). The
considered FHN system contains the essential information about physical processes in the
active media under investigation and allows the derivation of models of various physical
structures, such as spiral waves and three-dimensional scrolls as it was shown in [7, 8, 11].

As to limitation that arises from exponential representation, it is worth noting that
it cannot really catch all features of physical behavior, but only near the stationary state.
Nevertheless, in accordance with conclusions proved in the monograph [1] (where such
representation is also used), it should be noted that the system with self-organization tends
to stationary state (or nearly that) with elapsing the time, so the method developed allows
essential properties of the system. Moreover, the method developed in this paper includes
features of spatiotemporal nonlinear interactions as one can conclude from (2.9).

In some works, the decomposition in spatial region is also used through the
multiple time series [23]. Then, several authors showed that such approach (exposing also
nonadiabatic phenomena) results in locking effect which arises from the interaction of the
large-scale envelope of the kinetic variable with the small scale underlying the spatial
periodic solution (considered also in [24, 25]). At the same time, the main difference of
our method is that the derived TDS does not include a spatial dependence in an explicit
form due to the nonlinear integration in spatial region which gives the TDS for amplitudes
|An| determination and simultaneously retains the temporal dependence. So, the previously
mentioned locking effect cannot appear in our model since the lack of explicit spatial
dependence and nonlinear interaction between different modes exposes through including
different constant levels of amplitudes (pertained to every separate mode) and related
temporal dependencies. Due to nonlinearities involved, the amplitude distribution describes
the self-organization structure under investigation.

The main aim of the present paper is investigation of self-organization phenomena in
nonlinear systems (namely, the model that can describe spiral waves). In accordance with
the theorem proved in [1], such phenomena can take place only in the systems which are
described by equations with nonlinearity not less than third order, so FHN model fits for
such investigation. Again, the method developed in this paper is designated for the systems
describing spiral waves distribution, so more simple models might fail for modeling such
self-organization phenomena (as a rule, those model a wave front of plane form [25]), and
thus those were not considered, though application of the method developed is also possible
for them.

The system with four spatiotemporal parameters is possible for three-dimensional
consideration. But we considered radial wave propagation only since the spiral wave (far
enough from the center where it is usually measured in biological systems) can be regarded
as usual pacemaker (followed by a target wave) and angular changes can be neglected.
Nevertheless, if we use also angular considerations, the sense of the method does not change.

6. Conclusions

Thus, the TDS obtained after integration of nonlinearities is shown to be sufficient for
derivation of amplitude distribution of investigated wave train and, moreover, provides the
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opportunity to increase the accuracy of dispersion relation. The related matrix and modulo
operations are also considered; those confirm validity of TDS derivation method.

The derived model allows us to find the mode with maximal amplitude that is
important for resonance control of the related self-organization process [13, 17]. Again,
exploration of this mode explains why the natural frequency of investigated synergetic
process is of small level (preferably in biological systems that are modeled with reaction-
diffusion equations [3]) and determines the measured frequency at which the wave train
propagates. So, the derived mathematical models in this paper can be applicable to
exploration of nonlinear processes of different physical nature.

Appendix

Filtering Properties at Nonlinear Integration on Orthogonal Basis

For linear terms, this operation is similar to that used in Fourier series consideration and yet
widely applied in digital signal processing

∫ l

0
cosknr

(
M∑

m=0

Ãmfm coskmr

)

dr =
l

2
Ãnfn, (A.1)

where (A.1) is valid for n = 1, 2, . . . ,M.
For integration of (ςM)2, let us rewrite it with separation of Goldstone terms as follows:

(ςM)2 = Ã2
0 + 2Ã0

M∑

m=1

Ãm coskmr +

(
M∑

m=1

Ãm coskmr

)2

, (A.2)

where, in turn, considering mixed multiplications which describe cross-modal interactions,
one can write

(
M∑

m=1

Ãm coskmr

)2

=
M∑

m=1

(
Ãm coskmr

)2
+ 2

M∑

i,j=1
i /= j

ÃiÃj coskir coskjr, (A.3)

and integration similarly to (A.1) yields the following expressions for nonlinear terms:

∫ l

0
cosknr

(
M∑

m=1

Ãm coskmr

)2

dr = l

⎡

⎢⎢
⎣η(n)

(
Ãn/2

2

)2

+
1
2

⎛

⎜⎜
⎝

M−n∑

i=1
n<M

ÃiÃi+n +
s∑

j=1
n>2

ÃjÃn−j

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦,

(A.4)

where η(n) indicates that the consideration is implemented for the even coefficient

η(n) =

{
1, if n = 2m,

0, otherwise,
(A.5)
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and the bound for the sum with change of contracting range is expressed as follows:

s =
[n
2

]

r
− 1, (A.6)

where [·]r means rounding to +∞, and for the second term of (A.2) the following is valid:

2Ã0

∫ l

0
cosknr

(
M∑

m=1

Ãm coskmr

)

dr = Ã0Ãn, (A.7)

while integration of the first term of (A.2) provides zero. So, (A.4) and (A.7) contain all
nonzero terms which remain after nonlinear second-order considerations with subsequent
integration, those terms appear only if the following is valid concerning (A.3): |i ± j| = n,
on one hand, and m/2 = n, on the other hand. Let us note that (A.4)–(A.7) is valid for
n = 1, 2, . . . ,M, and the related expression for n = 0 is derived analogously. It differs only
with some coefficients.
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