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We define GCR-lightlike submanifolds of indefinite cosymplectic manifolds and give an example.
Then, we study mixed geodesic GCR-lightlike submanifolds of indefinite cosymplectic manifolds
and obtain some characterization theorems for a GCR-lightlike submanifold to be a GCR-lightlike
product.

1. Introduction

To fill the gaps in the general theory of submanifolds, Duggal and Bejancu [1] introduced
lightlike (degenerate) geometry of submanifolds. Since the geometry ofCR-submanifolds has
potential for applications in mathematical physics, particularly in general relativity, and the
geometry of lightlike submanifolds has extensive uses in mathematical physics and relativity,
Duggal and Bejancu [1] clubbed these two topics and introduced the theory of CR-lightlike
submanifolds of indefinite Kaehler manifolds and then Duggal and Sahin [2], introduced the
theory of CR-lightlike submanifolds of indefinite Sasakian manifolds, which were further
studied by Kumar et al. [3]. But CR-lightlike submanifolds do not include the complex
and real subcases contrary to the classical theory of CR-submanifolds [4]. Thus, later on,
Duggal and Sahin [5] introduced a new class of submanifolds, generalized-Cauchy-Riemann-
(GCR-) lightlike submanifolds of indefinite Kaehler manifolds and then of indefinite Sasakian
manifolds in [6]. This class of submanifolds acts as an umbrella of invariant, screen real,
contact CR-lightlike subcases and real hypersurfaces. Therefore, the study of GCR-lightlike
submanifolds is the topic of main discussion in the present scenario. In [7], the present
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authors studied totally contact umbilical GCR-lightlike submanifolds of indefinite Sasakian
manifolds.

In present paper, after definingGCR-lightlike submanifolds of indefinite cosymplectic
manifolds, we study mixed geodesic GCR-lightlike submanifolds of indefinite cosymplectic
manifolds. In [8, 9], Kumar et al. obtained some necessary and sufficient conditions for
a GCR-lightlike submanifold of indefinite Kaehler and Sasakian manifolds to be a GCR-
lightlike product, respectively. Thus, in this paper, we obtain some characterization theorems
for a GCR-lightlike submanifold of indefinite cosymplectic manifold to be a GCR-lightlike
product.

2. Lightlike Submanifolds

Let V be a real m-dimensional vector space with a symmetric bilinear mapping g : V × V →
�. The mapping g is called degenerate on V if there exists a vector ξ /= 0 of V such that

g(ξ, v) = 0, ∀v ∈ V, (2.1)

otherwise g is called nondegenerate. It is important to note that a non-degenerate symmetric
bilinear form on V may induce either a non-degenerate or a degenerate symmetric bilinear
form on a subspace of V . Let W be a subspace of V and g | w degenerate; thenW is called a
degenerate (lightlike) subspace of V .

Let (M,g) be a real (m+n)-dimensional semi-Riemannian manifold of constant index
q such that m,n ≥ 1, 1 ≤ q ≤ m + n − 1, and let (M,g) be an m-dimensional submanifold of
M and g the induced metric of g on M. Thus, if g is degenerate on the tangent bundle TM

of M, then M is called a lightlike (degenerate) submanifold of M (for detail see [1]). For a
degenerate metric g on M, TM⊥ is also a degenerate n-dimensional subspace of TxM. Thus,
both TxM and TxM

⊥ are degenerate orthogonal subspaces but no longer complementary. In
this case, there exists a subspace Rad TxM = TxM ∩ TxM

⊥, which is known as radical (null)
subspace. If the mapping Rad TM : x ∈ M → Rad TxM defines a smooth distribution on M

of rank r > 0, then the submanifoldM ofM is called an r-lightlike submanifold and Rad TM
is called the radical distribution onM. Then, there exists a non-degenerate screen distribution
S(TM)which is a complementary vector subbundle to Rad TM in TM. Therefore,

TM = Rad TM ⊥ S(TM), (2.2)

where ⊥ denotes orthogonal direct sum. Let S(TM⊥), called screen transversal vector bundle,
be a non-degenerate complementary vector subbundle to Rad TM in TM⊥. Let tr(TM) and
ltr(TM) be complementary (but not orthogonal) vector bundles to TM in TM|M and to
Rad TM in S(TM⊥)⊥, called transversal vector bundle and lightlike transversal vector bundle
ofM, respectively. Then, we have

tr(TM) = ltr(TM) ⊥ S
(
TM⊥

)
, (2.3)

TM|M = TM ⊕ tr(TM) = (Rad TM ⊕ ltr(TM)) ⊥ S(TM) ⊥ S
(
TM⊥

)
. (2.4)
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Let u be a local coordinate neighborhood of M and consider the local quasiorthonor-
mal fields of frames ofM alongM on u as {ξ1, . . . , ξr ,Wr+1, . . . ,Wn,N1, . . . ,Nr,Xr+1, . . . , Xm},
where {ξ1, . . . , ξr} and {N1, . . . ,Nr} are local lightlike bases of Γ(Rad TM|u) and Γ(ltr(TM)|u)
and {Wr+1, . . . ,Wn} and {Xr+1, . . . , Xm} are local orthonormal bases of Γ(S(TM⊥)|u) and
Γ(S(TM)|u), respectively. For these quasiorthonormal fields of frames, we have the following
theorem.

Theorem 2.1 (see [1]). Let (M,g, S(TM), S(TM⊥)) be an r-lightlike submanifold of a semi-
Riemannian manifold (M,g). Then there, exist a complementary vector bundle ltr(TM) of RadTM
in S(TM⊥)⊥ and a basis of Γ(ltr(TM)|u) consisting of smooth section {Ni} of S(TM⊥)⊥|u, where u
is a coordinate neighborhood of M, such that

g
(
Ni, ξj

)
= δij , g

(
Ni,Nj

)
= 0, for any i, j ∈ {1, 2, . . . , r}, (2.5)

where {ξ1, . . . , ξr} is a lightlike basis of Γ(Rad(TM)).

Let∇ be the Levi-Civita connection onM. Then, according to decomposition (2.4), the
Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X,Y ), ∇XU = −AUX +∇⊥
XU, (2.6)

for any X,Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX} and {h(X,Y ),∇⊥
XU} belong

to Γ(TM) and Γ(tr(TM)), respectively. Here ∇ is a torsion-free linear connection on M, h is
a symmetric bilinear form on Γ(TM) that is called second fundamental form, and AU is a
linear operator onM, known as shape operator.

According to (2.3), considering the projection morphisms L and S of tr(TM) on
ltr(TM) and S(TM⊥), respectively, then (2.6) gives

∇XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∇XU = −AUX +Dl
XU +Ds

XU, (2.7)

where we put hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), Dl
XU = L(∇⊥

XU), Ds
XU =

S(∇⊥
XU).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued, respectively, they are
called the lightlike second fundamental form and the screen second fundamental form on
M. In particular,

∇XN = −ANX +∇l
XN +Ds(X,N), ∇XW = −AWX +∇s

XW +Dl(X,W), (2.8)

where X ∈ Γ(TM), N ∈ Γ(ltr(TM)), and W ∈ Γ(S(TM⊥)). By using (2.3)-(2.4) and (2.7)-
(2.8), we obtain

g(hs(X,Y ),W) + g
(
Y,Dl(X,W)

)
= g(AWX,Y ), (2.9)

g
(
hl(X,Y ), ξ

)
+ g

(
Y, hl(X, ξ)

)
+ g(Y,∇Xξ) = 0, (2.10)

for any ξ ∈ Γ(Rad TM),W ∈ Γ(S(TM⊥)), and N,N ′ ∈ Γ(ltr(TM)).
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Let P be the projection morphism of TM on S(TM). Then, using (2.2), we can induce
some new geometric objects on the screen distribution S(TM) on M as

∇XPY = ∇∗
XPY + h∗(X,Y ), ∇Xξ = −A∗

ξX +∇∗t
Xξ, (2.11)

for any X,Y ∈ Γ(TM) and ξ ∈ Γ(Rad TM), where {∇∗
XPY,A

∗
ξ
X} and {h∗(X,Y ),∇∗t

Xξ}
belong to Γ(S(TM)) and Γ(Rad TM), respectively. ∇∗ and ∇∗t are linear connections on
complementary distributions S(TM) and Rad TM, respectively. Then, using (2.7), (2.8), and
(2.11), we have

g
(
hl(X, PY ), ξ

)
= g

(
A∗

ξX, PY
)
, g(h∗(X, PY ),N) = g(ANX, PY ). (2.12)

Next, an odd-dimensional semi-Riemannian manifold M is said to be an indefinite
almost contact metric manifold if there exist structure tensors (φ, V, η, g), where φ is a (1, 1)
tensor field, V is a vector field called structure vector field, η is a 1-form, and g is the semi-
Riemannian metric on M satisfying (see [10])

g
(
φX, φY

)
= g(X,Y ) − η(X)η(Y ), g(X,V ) = η(X),

φ2X = −X + η(X)V, η ◦ φ = 0, φV = 0, η(V ) = 1,
(2.13)

for any X,Y ∈ Γ(TM).
An indefinite almost contact metric manifold M is called an indefinite cosymplectic

manifold if (see [11])

∇Xφ = 0, (2.14)

∇XV = 0. (2.15)

3. Generalized Cauchy-Riemann Lightlike Submanifolds

Calin [12] proved that if the characteristic vector field V is tangent to (M,g, S(TM)), then
it belongs to S(TM). We assume that the characteristic vector V is tangent to M throughout
this paper. Thus, we define the generalized Cauchy-Riemann lightlike submanifolds of an
indefinite cosymplectic manifold as follows.

Definition 3.1. Let (M,g, S(TM), S(TM⊥)) be a real lightlike submanifold of an indefinite
cosymplectic manifold (M,g) such that the structure vector field V is tangent to M; then
M is called a generalized-Cauchy-Riemann- (GCR-) lightlike submanifold if the following
conditions are satisfied:

(A) there exist two subbundles D1 and D2 of Rad(TM) such that

Rad(TM) = D1 ⊕D2, φ(D1) = D1, φ(D2) ⊂ S(TM), (3.1)
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(B) there exist two subbundles D0 and D of S(TM) such that

S(TM) =
{
φD2 ⊕D

}
⊥ D0 ⊥ V, φ

(
D
)
= L ⊥ S, (3.2)

where D0 is invariant nondegenerate distribution on M, {V } is one-dimensional
distribution spanned by V , and L and S are vector subbundles of ltr(TM) and
S(TM)⊥, respectively.

Therefore, the tangent bundle TM ofM is decomposed as

TM =
{
D ⊕D ⊕ {V }

}
, D = Rad(TM) ⊕D0 ⊕ φ(D2). (3.3)

A contact GCR-lightlike submanifold is said to be proper if D0 /= {0}, D1 /= {0}, D2 /= {0}, and
L/= {0}. Hence, from the definition of GCR-lightlike submanifolds, we have that

(a) condition (A) implies that dim(Rad TM) ≥ 3,

(b) condition (B) implies that dim(D) ≥ 2s ≥ 6 and dim(D2) = dim(S), and thus
dim(M) ≥ 9 and dim(M) ≥ 13.

(c) any proper 9-dimensional contact GCR-lightlike submanifold is 3-lightlike,

(d) (a) and contact distribution (η = 0) imply that index (M) ≥ 4.

The following proposition shows that the class of GCR-lightlike submanifolds is an umbrella
of invariant, contact CR and contact SCR-lightlike submanifolds.

Proposition 3.2. A GCR-lightlike submanifold M of an indefinite cosymplectic manifold M is
contact CR-submanifold (resp., contact SCR-lightlike submanifold) if and only if D1 = {0} (resp.,
D2 = {0}).

Proof. Let M be a contact CR-lightlike submanifold; then φRad TM is a distribution on
M such that Rad TM

⋂
φRad TM = {0}. Therefore, D2 = Rad TM and D1 = {0}. Since

ltr(TM)
⋂
φ(ltr(TM)) = {0}, this implies that φ(ltr(TM)) ⊂ S(TM). Conversely, suppose

that M is a GCR-lightlike submanifold of an indefinite Cosymplectic manifold such that
D1 = {0}. Then, from (3.1), we have D2 = Rad(TM), and therefore Rad TM

⋂
φRad TM =

{0}. Hence, φRad TM is a vector subbundle of S(TM). This implies that M is a contact CR-
lightlike submanifold of an indefinite cosymplectic manifold. Similarly the other assertion
follows.

The following construction helps in understanding the example of GCR-lightlike
submanifold. Let (R2m+1

q , φ0, V, η, g) be with its usual Cosymplectic structure and given by

η = dz, V = ∂z,

g = η ⊗ η −
q/2∑
i=1

(
dxi ⊗ dxi + dyi ⊗ dyi

)
+

m∑
i=q+1

(
dxi ⊗ dxi + dyi ⊗ dyi

)
,

φ0(X1, X2, . . . , Xm−1, Xm, Y1, Y2, . . . , Ym−1, Ym,Z)

= (−X2, X1, . . . ,−Xm,Xm−1,−Y2, Y1, . . . ,−Ym, Ym−1, 0),

(3.4)

where (xi;yi; z) are the Cartesian coordinates.
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Example 3.3. LetM = (R13
4 , g) be a semi-Euclidean space andM a 9-dimensional submanifold

ofM that is given by

x4 = x1 cos θ − y1 sin θ, y4 = x1 sin θ + y1 cos θ,

x2 = y3, x5 =
√
1 +

(
y5

)2
,

(3.5)

where g is of signature (−,−,+,+,+,+,−,−,+,+,+,+,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂z}. Then, the local frame of TM is
given by

ξ1 = ∂x1 + cos θ∂x4 + sin θ∂y4, ξ2 = − sin θ∂x4 + ∂y1 + cos θ∂y4,

ξ3 = ∂x2 + ∂y3,

X1 = ∂x3 − ∂y2, X2 = ∂x6, X3 = ∂y6,

X4 = y5∂x5 + x5∂y5, X5 = ∂x3 + ∂y2, X6 = V = ∂z.

(3.6)

Hence, M is a 3-lightlike as Rad TM = span{ξ1, ξ2, ξ3}. Also, φ0ξ1 = −ξ2 and φ0ξ3 = X1;
these imply that D1 = span{ξ1, ξ2} and D2 = span{ξ3}, respectively. Since φ0X2 = −X3, D0 =
span{X2, X3}. By straightforward calculations, we obtain

S
(
TM⊥

)
= span

{
W = x5∂x5 − y5∂y5

}
, (3.7)

where φ0(W) = X4; this implies that S = S(TM⊥). Moreover, the lightlike transversal bundle
ltr(TM) is spanned by

N1 =
1
2
(−∂x1 + cos θ∂x4 + sin θ∂y4

)
, N2 =

1
2
(− sin θ∂x4 − ∂y1 + cos θ∂y4

)
,

N3 =
1
2
(−∂x2 + ∂y3

)
,

(3.8)

where φ0(N1) = −N2 and φ0(N3) = X5. Hence, L = span{N3}. Therefore, D =
span{φ0(N3), φ0(W)}. Thus, M is a GCR-lightlike submanifold of R13

4 .
Let Q, P1, P2 be the projection morphism on D, φS = M2, φL = M1, respectively;

therefore

X = QX + V + P1X + P2X, (3.9)

for X ∈ Γ(TM). Applying φ to (3.9), we obtain

φX = fX +ωP1X +ωP2X, (3.10)

where fX ∈ Γ(D), ωP1X ∈ Γ(L), and ωP2X ∈ Γ(S), or, we can write (3.10) as

φX = fX +ωX, (3.11)

where fX and ωX are the tangential and transversal components of φX, respectively.
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Similarly,

φU = BU + CU, U ∈ Γ(tr(TM)), (3.12)

where BU and CU are the sections of TM and tr(TM), respectively. Differentiating (3.10)
and using (2.8)–(2.10) and (3.12), we have

Ds(X,ωP2Y ) = −∇s
XωP1Y +ωP1∇XY − hs(X, fY

)
+ Chs(X,Y ),

Dl(X,ωP1Y ) = −∇l
XωP2Y +ωP2∇XY − hl(X, fY

)
+ Chl(X,Y ),

(3.13)

for all X,Y ∈ Γ(TM). By using, cosymplectic property of ∇with (2.7), we have the following
lemmas.

Lemma 3.4. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M; then
one has

(∇Xf
)
Y = AωYX + Bh(X,Y ),

(∇t
Xω

)
Y = Ch(X,Y ) − h

(
X, fY

)
, (3.14)

where X,Y ∈ Γ(TM) and

(∇Xf
)
Y = ∇XfY − f∇XY,

(∇t
Xω

)
Y = ∇t

XωY −ω∇XY. (3.15)

Lemma 3.5. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M; then
one has

(∇XB)U = ACUX − fAUX,
(∇t

XC
)
U = −ωAUX − h(X,BU), (3.16)

where X ∈ Γ(TM) and U ∈ Γ(tr(TM)) and

(∇XB)U = ∇XBU − B∇t
XU,

(∇t
XC

)
U = ∇t

XCU − C∇t
XU. (3.17)

4. Mixed Geodesic GCR-Lightlike Submanifolds

Definition 4.1. A GCR-lightlike submanifold of an indefinite cosymplectic manifold is called
mixed geodesic GCR-lightlike submanifold if its second fundamental form h satisfies
h(X,Y ) = 0, for any X ∈ Γ(D ⊕ V ) and Y ∈ Γ(D).

Definition 4.2. A GCR-lightlike submanifold of an indefinite cosymplectic manifold is called
D geodesicGCR-lightlike submanifold if its second fundamental form h satisfies h(X,Y ) = 0,
for any X,Y ∈ Γ(D).

Theorem 4.3. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M.
Then,M is mixed geodesic if and only ifA∗

ξX andAWX /∈ Γ(M2 ⊥ φD2), for anyX ∈ Γ(D⊕V ),W ∈
Γ(S(TM⊥)) and ξ ∈ Γ(Rad(TM)).



8 International Journal of Mathematics and Mathematical Sciences

Proof. Using, definition of GCR-lightlike submanifolds, M is mixed geodesic if and only if
g(h(X,Y ),W) = g(h(X,Y ), ξ) = 0, for X ∈ Γ(D ⊕ V ), Y ∈ Γ(D),W ∈ Γ(S(TM⊥)), and ξ ∈
Γ(Rad(TM)). Using (2.8) and (2.11), we get

g(h(X,Y ),W) = g
(
∇XY,W

)
= −g

(
Y,∇XW

)
= g(Y,AWX),

g(h(X,Y ), ξ) = g
(
∇XY, ξ

)
= −g(Y,∇Xξ) = g

(
Y,A∗

ξX
)
.

(4.1)

Therefore, from (4.1), the proof is complete.

Theorem 4.4. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M.
Then, M is D geodesic if and only if A∗

ξ
X and AWX /∈ Γ(M2 ⊥ φD2), for any X ∈ Γ(D), ξ ∈

Γ Rad(TM), and W ∈ Γ(S(TM⊥)).

Proof. The proof is similar to the proof of Theorem 4.3.

Lemma 4.5. Let M be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic
manifold M. Then A∗

ξ
X ∈ Γ(φD2), for any X ∈ Γ(D), ξ ∈ Γ(D2).

Proof. For X ∈ Γ(D) and ξ ∈ Γ(D2), using (2.7) we have

h
(
φξ,X

)
= ∇Xφξ − ∇Xφξ = φ∇Xξ + φh(X, ξ) − ∇Xφξ. (4.2)

Since M is mixed geodesic, we obtain φ∇Xξ = ∇Xφξ. Here, using (2.11), we get φ(−A∗
ξX +

∇∗t
Xξ) = ∇∗

Xφξ + h∗(X,φξ), and then, by virtue of (3.11), we obtain −fA∗
ξX −ωA∗

ξX +φ(∇∗t
Xξ) =

∇∗
Xφξ+h

∗(X,φξ). Comparing the transversal components, we getωA∗
ξ
X = 0; this implies that

A∗
ξX ∈ Γ

(
D0 ⊕ {V } ⊥ φ(D2)

)
. (4.3)

If A∗
ξX ∈ D0, then the nondegeneracy of D0 implies that there must exist a Z0 ∈ D0 such that

g(A∗
ξ
X,Z0)/= 0. But using the hypothesis thatM is a mixed geodesic with (2.7) and (2.11), we

get

g
(
A∗

ξX,Z0

)
= −g(∇Xξ, Z0) = g

(
ξ,∇XZ0

)
= g(ξ,∇XZ0 + h(X,Z0)) = 0. (4.4)

Therefore,

A∗
ξX /∈ Γ(D0). (4.5)

Also using (2.13), and (2.15), we get

g
(
A∗

ξX, V
)
= −g(∇Xξ, V ) = g

(
ξ,∇XV

)
= 0. (4.6)



International Journal of Mathematics and Mathematical Sciences 9

Therefore,

A∗
ξX /∈ {V }. (4.7)

Hence, from (4.3), (4.5), and (4.7), the result follows.

Corollary 4.6. Let M be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic
manifold M. Then, g(hl(X,Y ), ξ) = 0, for any X ∈ Γ(D), Y ∈ Γ(M2) and ξ ∈ Γ(D2).

Proof. The result follows from (2.12) and Lemma 4.5.

Theorem 4.7. Let M be a mixed geodesic GCR-lightlike submanifold of an indefinite cosymplectic
manifold M. Then, AUX ∈ Γ(D ⊕ {V }) and ∇t

XU ∈ Γ(L ⊥ S), for any X ∈ Γ(D ⊕ {V }) and
U ∈ Γ(L ⊥ S).

Proof. Since M is mixed geodesic GCR-lightlike submanifold h(X,Y ) = 0 for any X ∈ Γ(D ⊕
{V }), Y ∈ Γ(D), and thus (2.6) implies that

0 = ∇XY − ∇XY. (4.8)

Since D is an anti-invariant distribution there exists a vector field U ∈ Γ(L ⊥ S) such that
φU = Y . Thus, from (2.8), (2.14), (3.11), and (3.12), we get

0 = ∇XφU − ∇XY = φ
(−AUX +∇t

XU
) − ∇XY

= −fAUX −ωAUX + B∇t
XU + C∇t

XU − ∇XY.
(4.9)

Comparing the transversal components, we getωAUX = C∇t
XU. SinceωAUX ∈ Γ(L ⊥ S) and

C∇t
XU ∈ Γ(L ⊥ S)⊥, this implies that ωAUX = 0 and C∇t

XU = 0. Hence, AUX ∈ Γ(D ⊕ {V })
and ∇t

XU ∈ Γ(L ⊥ S).

5. GCR-Lightlike Product

Definition 5.1. GCR-lightlike submanifold M of an indefinite cosymplectic manifold M is
called GCR-lightlike product if both the distributions D ⊕ {V } and D define totally geodesic
foliation in M.

Theorem 5.2. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M.
Then, the distribution D ⊕ {V } define a totally geodesic foliation in M if and only if Bh(X,φY ) = 0,
for any X,Y ∈ D ⊕ {V }.
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Proof. Since D = φ(L ⊥ S), D ⊕ {V } defines a totally geodesic foliation in M if and only if
g(∇XY, φξ) = g(∇XY, φW) = 0, for any X,Y ∈ Γ(D ⊕ {V }), ξ ∈ Γ(D2), and W ∈ Γ(S). Using
(2.7) and (2.14), we have

g
(∇XY, φξ

)
= −g

(
∇XφY, ξ

)
= −g

(
hl(X, fY

)
, ξ
)
, (5.1)

g
(∇XY, φW

)
= −g

(
∇XφY,W

)
= −g(hs(X, fY

)
,W

)
. (5.2)

Hence, from (5.1) and (5.2), the assertion follows.

Theorem 5.3. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M.
Then, the distributionD defines a totally geodesic foliation inM if and only ifANX has no component
in φS ⊥ φD2 andAωYX has no component inD2 ⊥ D0, for any X,Y ∈ Γ(D) andN ∈ Γ(ltr (TM)).

Proof. From the definition of a GCR-lightlike submanifold, we know that D defines a totally
geodesic foliation in M if and only if

g(∇XY,N) = g
(∇XY, φN1

)
= g(∇XY, V ) = g

(∇XY, φZ
)
= 0, (5.3)

for X,Y ∈ Γ(D),N ∈ Γ(ltr(TM)), Z ∈ Γ(D0) and N1 ∈ Γ(L). Using (2.7) and (2.8), we have

g(∇XY,N) = g
(
∇XY,N

)
= −g

(
Y,∇XN

)
= g(Y,ANX). (5.4)

Using (2.7), (2.15), and (2.14), we obtain

g
(∇XY, φN1

)
= −g

(
φ∇XY,N1

)
= −g

(
∇XωY,N1

)
= g(AωYX,N1), (5.5)

g
(∇XY, φZ

)
= −g

(
φ∇XY,Z

)
= −g

(
∇XωY,Z

)
= g(AωYX,Z), (5.6)

g(∇XY, V ) = g
(
∇XY, V

)
= −g

(
Y,∇XV

)
= 0. (5.7)

Thus, from (5.4)–(5.7), the result follows.

Theorem 5.4. Let M be a GCR-lightlike submanifold of an indefinite cosymplectic manifold M. If
(∇Xf)Y = 0, thenM is a GCR lightlike product.

Proof. Let X,Y ∈ Γ(D); therefore fY = 0. Then using (3.15) with the hypothesis, we get
f∇XY = 0. Therefore the distribution D defines a totally geodesic foliation. Next, let X,Y ∈
D⊕{V }; thereforeωY = 0. Then using (3.14), we get Bh(X,Y ) = 0. Therefore,D⊕{V } defines
a totally geodesic foliation in M. Hence, M is a GCR lightlike product.

Definition 5.5. A lightlike submanifold M of a semi-Riemannian manifold is said to be an
irrotational submanifold if ∇Xξ ∈ Γ(TM), for any X ∈ Γ(TM) and ξ ∈ ΓRad(TM). Thus, M
is an irrotational lightlike submanifold if and only if hl(X, ξ) = 0 and hs(X, ξ) = 0.
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Theorem 5.6. Let M be an irrotational GCR-lightlike submanifold of an indefinite cosymplectic
manifold M. Then, M is a GCR lightlike product if the following conditions are satisfied:

(A) ∇XU ∈ Γ(S(TM⊥)), for all X ∈ Γ(TM), and U ∈ Γ(tr(TM)),

(B) A∗
ξY ∈ Γ(φ(S)), for all Y ∈ Γ(D).

Proof. Let (A) hold; then, using (2.8), we getANX = 0, AWX = 0,Dl(X,W) = 0, and∇l
XN = 0

for X ∈ Γ(TM). These equations imply that the distribution D defines a totally geodesic
foliation in M, and, with (2.9), we get g(hs(X,Y ),W) = 0. Hence, the non degeneracy of
S(TM⊥) implies that hs(X,Y ) = 0. Therefore, hs(X,Y ) has no component in S. Finally, from
(2.10) and the hypothesis that M is irrotational, we have g(hl(X,Y ), ξ) = g(Y,A∗

ξ
X), for X ∈

Γ(TM) and Y ∈ Γ(D). Assume that (B) holds; then hl(X,Y ) = 0. Therefore, hl(X,Y ) has no
component in L. Thus, the distribution D ⊕ {V } defines a totally geodesic foliation in M.
Hence, M is a GCR lightlike product.

Definition 5.7 (see [13]). If the second fundamental form h of a submanifold, tangent to
characteristic vector field V , of a Sasakian manifold M is of the form

h(X,Y ) =
{
g(X,Y ) − η(X)η(Y )

}
α + η(X)h(Y, V ) + η(Y )h(X,V ), (5.8)

for any X,Y ∈ Γ(TM), where α is a vector field transversal to M, then M is called a totally
contact umbilical submanifold of a Sasakian manifold.

Theorem 5.8. Let M be a totally contact umbilical GCR-lightlike submanifold of an indefinite
cosymplectic manifold M. Then, M is a GCR-lightlike product if Bh(X,Y ) = 0, for any X,Y ∈
Γ(TM).

Proof. Let X,Y ∈ Γ(D ⊕ {V }); then the hypothesis that Bh(X,Y ) = 0 implies that the
distribution D ⊕ {V } defines a totally geodesic foliation in M.

If we assume thatX,Y ∈ Γ(D), then, using (3.14), we have −f∇XY = AωYX+Bh(X,Y ),
and taking inner product with Z ∈ Γ(D0) and using (2.6) and (2.14), we obtain

−g(f∇XY,Z
)
= g(AωYX + Bh(X,Y ), Z) = g

(
∇XY, φZ

)
= −g(Y,∇XZ

′), (5.9)

where φZ = Z′ ∈ Γ(D0). For any X ∈ Γ(D) from (3.14), we have ωP∇XZ = h(X, fZ) −
Ch(X,Z). Therefore, using the hypothesis with (5.8), we get ωP∇XZ = 0; this implies that
∇XZ ∈ Γ(D), and thus (5.9) becomes g(f∇XY,Z) = 0. Then, the nondegeneracy of the
distribution D0 implies that the distribution D defines a totally geodesic foliation in M.
Hence, the assertion follows.

Theorem 5.9. Let M be a totally geodesic GCR-lightlike submanifold of an indefinite cosymplectic
manifold M. Suppose that there exists a transversal vector bundle of M which is parallel along D

with respect to Levi-Civita connection on M, that is, ∇XU ∈ Γ(tr(TM)), for any U ∈ Γ(tr(TM)),
X ∈ Γ(D). Then, M is a GCR-lightlike product.

Proof. Since M is a totally geodesic GCR-lightlike Bh(X,Y ) = 0, for X,Y ∈ Γ(D ⊕ {V }); this
implies D ⊕ {V } defines a totally geodesic foliation in M.
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Next ∇XU ∈ Γ(tr(TM)) implies AUX = 0, and hence, by Theorem 5.3, the distribution
D defines a totally geodesic foliation in M. Hence, the result follows.
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