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We give necessary and sufficient conditions under which the norm of basic elementary operators
attains its optimal value in terms of the numerical range.

1. Introduction

Let E be a normed space over K(R or C), SE its unit sphere, and E∗ its dual topological space.
Let D be the normalized duality mapping form E to E∗ given by

D(x) =
{
ϕ ∈ E∗ : ϕ(x) = ‖x‖2,∥∥ϕ∥∥ = ‖x‖

}
, ∀x ∈ E. (1.1)

Let B(E) be the normed space of all bounded linear operators acting on E. For any operator
A ∈ B(E) and x ∈ E,

Wx(A) =
{
ϕ(Ax) : ϕ ∈ D(x)

}
,

W(A) = ∪{Wx(A) : x ∈ SE}
(1.2)

is called the spatial numerical range of A, which may be defined as

W(A) =
{
ϕ(Ax) : x ∈ SE; ϕ ∈ D(x)

}
. (1.3)
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This definition was extended to arbitrary elements of a normed algebra A by Bonsall [1–3]
who defined the numerical range of a ∈ A as

V (a) =W(Aa), (1.4)

where Aa is the left regular representation of A in B(A), that is, Aa = ab for all b ∈ A. V (a)
is known as the algebra numerical range of a ∈ A, and, according to the above definitions,
V (a) is defined by

V (a) =
{
ϕ(ab) : b ∈ SA; ϕ ∈ D(b)

}
. (1.5)

For an operator A ∈ B(E), Bachir and Segres [4] have extended the usual definitions of
numerical range from one operator to two operators in different ways as follows.

The spatial numerical rangeW(A)B of A ∈ B(E) relative to B is

W(A)B =
{
ϕ(Ax) : x ∈ SE; ϕ ∈ D(Bx)

}
. (1.6)

The spatial numerical range G(A)B of A ∈ B(E) relative to B is

G(A)B =
{
ϕ(Ax) : x ∈ E; ‖Bx‖ = 1, ϕ ∈ D(Bx)

}
. (1.7)

The maximal spatial numerical range of A ∈ B(E) relative to B is

M(A)B =
{
ϕ(Ax) : x ∈ SE; ‖Bx‖ = ‖B‖, ϕ ∈ D(Bx)

}
. (1.8)

For A,B ∈ B(E), let SE(B) = {(xn)n : xn ∈ SE, ‖Bxn‖ → ‖B‖}, then the set

M(A)B =
{
limϕn(Axn) : (xn)n ∈ SE(B), ϕn ∈ D(Bxn)

}
(1.9)

is called the generalized maximal numerical range of A relative to B. It is known thatM(A)B
is a nonempty closed subset of K and M(A)B ⊆ M(A)B ⊆ W(A)B. The definition of M(A)B
can be rewritten, with respect to the semi-inner product [·, ·] as

M(A)B = {lim[Axn, Bxn] : (xn)n ∈ SE(B)}, (1.10)

with respect to an inner product (·, ·) as

M(A)B = {lim(Axn, Bxn) : (xn)n ∈ SE(B)}. (1.11)

We shall be concerned to estimate the norm of the elementary operator MA1,B1 + MA2,B2 ,
where A1, A2, B1, B2 are bounded linear operators on a normed space E and MA1,B1 is the
basic elementary operator defined on B(E) by

MA1,B1(X) = A1XB1. (1.12)
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We also give necessary and sufficient conditions on the operators A1, A2, B1, B2 under which
MA1,B1 +MA2,B2 attaints its optimal value ‖A1‖‖B1‖ + ‖A2‖‖B2‖.

2. Equality of Norms

Our next aim is to give necessary and sufficient conditions on the set {A1, A2, B1, B2} of
operators for which the norm ofMA1,B1 +MA2,B2 equals ‖A1‖‖B1‖ + ‖A2‖‖B2‖.

Lemma 2.1. For any of the operators A,B,C ∈ B(E) and all α, β ∈ K, one has

M(αA + βB
)
B = αM(A)B + β‖B‖2;

M(αA + βC
)
B ⊆ αM(A)B + βM(C)B.

(2.1)

Proof. The proof is elementary.

Theorem 2.2. Let A1, A2, B1, B2 be operators in B(E).
If ‖A1‖‖A2‖ ∈ M(A1)A2

∪M(A2)A1
and ‖B1‖‖B2‖ ∈ M(B1)B2

∪M(B2)B1
, then

‖MA1,B1 +MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.2)

Proof. The proof will be done in four steps; we choose one and the others will be proved
similarly. Suppose that ‖A1‖‖A2‖ ∈ M(A1)A2

and ‖B1‖‖B2‖ ∈ M(B1)B2
, then there exist

(xn)n ∈ SE(A2), ϕn ∈ D(A2xn) such that ‖A1‖‖A2‖ = limnϕn(A1xn) and there exist (yn)n ∈
SE(B2), ψn ∈ D(B2yn) such that ‖B1‖‖B2‖ = limnψn(B1yn). Define the operators Xn ∈ B(E) as
follows:

Xn

(
yn
)
=
(
ψn ⊗ xn

)(
yn
)
= ψn

(
yn
)
xn, ∀n. (2.3)

Then ‖Xn‖ ≤ ‖B2‖, for all n ≥ 1, and

∥∥(MA1+B1 +MA2+B2)Xn

(
yn
)∥∥ =

∥∥(A1XnB1 +A2XnB2)yn
∥∥

=
∥∥A1Xn

(
B1yn

)
+A2Xn

(
B2yn

)∥∥

=

∥∥ϕn
∥∥

∥∥ϕn
∥∥
∥∥A1ψn

(
B1yn

)
xn +A2ψn

(
B2yn

)
xn
∥∥

≥ 1∥∥ϕn
∥∥
∥∥ϕn
(
ψn
(
B1yn

)
A1xn + ψn

(
B2yn

)
A2xn

)∥∥

=
1∥∥ϕn
∥∥
∥∥∥ψn
(
B1yn

)
ϕn(A1xn) +

∥∥B2yn
∥∥2‖A2xn‖2

∥∥∥.

(2.4)

‖MA1,B1 +MA2,B2‖ ≥
∥∥(MA1,B1 +MA2,B2)Xn

(
yn
)∥∥

‖Xn‖ , ∀n ≥ 1. (2.5)
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Hence

‖MA1,B1 +MA2,B2‖ ≥

∥∥∥ψn
(
B1yn

)
ϕn(A1xn) +

∥∥B2yn
∥∥2‖A2xn‖2

∥∥∥
‖A2‖‖B2‖ , ∀n ≥ 1. (2.6)

Letting n → ∞,

‖MA1,B1 +MA2,B2‖ ≥ ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.7)

Since

‖MA1,B1 +MA2,B2‖ ≤ ‖A1‖‖B1‖ + ‖A2‖‖B2‖, (2.8)

therefore

‖MA1,B1 +MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.9)

Corollary 2.3. Let E be a normed space and A,B ∈ B(E). Then, the following assertions hold:

(1) if ‖A‖‖B‖ ∈ M(A)B, then ‖A + B‖ = ‖A‖ + ‖B‖;
(2) if ‖A‖ ∈ M(I)A and ‖B‖ ∈ M(I)B, then ‖MA,B + I‖ = 1 + ‖A‖‖B‖.

Remark 2.4. In the previous corollary, if we set B = I, then we obtain an important equation
called the Daugavet equation:

‖A + I‖ = 1 + ‖A‖. (2.10)

It is well known that every compact operator on C[0, 1] [5] or on L1[0, 1] [6] satisfies (2.10).
A Banach space E is said to have the Daugavet property if every rank-one operator on

E satisfies (2.10). So that from our Corollary 2.3 if 1 ∈ M(I)A or 1 ∈ M(A)I for every rank-one
operator A, then E has the Daugavet property.

The reverse implication in the previous theorem is not true, in general, as shown in the
following example which is a modification of that given by the authors Bachir and Segres [4,
Example 3.17].

Example 2.5. Let c0 be the classical space of sequences (xn)n ⊂ C : xn → 0, equipped with
the norm ‖(xn)n‖ = maxn|xn| and let L be an infinite-dimensional Banach space. Taking the
Banach space E = L ⊕ c0 equipped with the norm, for x = (x1 + x2) ∈ E, ‖x‖ = ‖x1 + x2‖ =
max{‖x1‖, ‖Tx1‖+‖x2‖}, where T is any norm-one operator from L to c0 which does not attain
its norm (by Josefson-Nissenzweig’s theorem [7]), we can find a sequence (ϕn)n ⊂ SE∗ such
that ϕn converges weakly to 0. Therefore we get the desired operator T : L → c0 defined by

(Tx)n =
n

n + 1
ϕn(x). (2.11)
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Let A1, A2, B1, B2 be operators defined on E as follows:

A1(x1 + x2) = 0 + Tx1;

A2x = A2(x1 + x2) = x1 + 0;

B1(x1 + x2) = x1 − x2;
B2 = I, ∀x = (x1 + x2) ∈ L × c0,

(2.12)

where I is the identity operator on E. It easy to check that A1, A2, B1 are linear bounded
operators and ‖A1‖ = ‖A2‖ = ‖B1‖ = ‖B2‖ = 1. If we choose X0 = I and x0 = x1 + 0 such that
1 = ‖Tx1‖ ≥ ‖x1‖, then ‖X0‖ = ‖x0‖ = 1 and

‖MA1,B1 +MA2,B2‖ ≥ ‖(MA1,B1 +MA2,B2)X0(x0)‖
= ‖(A1X0B1 +A2X0B2)(x0)‖
= ‖0 + Tx1 + x1 + 0‖
= max{‖x1‖, 2‖Tx1‖}
= 2,

(2.13)

and from

‖MA1,B1 +MA2,B2‖ ≤ ‖A1‖‖A2‖ + ‖B1‖‖B2‖ = 2 (2.14)

we get

‖MA1,B1 +MA2,B2‖ = 2 = ‖A1‖‖A2‖ + ‖B1‖‖B2‖. (2.15)

It is clear from the definitions of M(A1)A2
andW(A1)A2

that

M(A1)A2
⊆W(A1)A2

(2.16)

(for details, see [4]).

The next result shows that the reverse is true under certain conditions, before that we
recall the definition of Birkhoff-James orthogonality in normed spaces.

Definition 2.6. Let E be a normed space and x, y ∈ E. We say that x is orthogonal to y in the
sense of Birkhoff-James ([8, 9]), in short x⊥B−Jy , iff

∀λ ∈ K :
∥∥x + λy

∥∥ ≥ ‖x‖. (2.17)

If F,G are linear subspaces of E, we say that F is orthogonal to G in the sense of ⊥B−J ,
written as F ⊥B−J G iff x⊥B−J y for all x ∈ F and all y ∈ G.
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If T ∈ B(E), we will denote by Ran(T) and T† the range and the dual adjoint,
respectively, of the operator T .

Theorem 2.7. Let A1, A2, B1, B2 be operators in B(E).
If ‖MA1,B1 +MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖,

Ran
(
A†

2

)
⊥B−J Ran

(
A†

1 −
‖A1‖
‖A2‖A

†
2

)
, Ran (B2)⊥B−J Ran

(
B1 − ‖B1‖

‖B2‖B2

)
, (2.18)

then

‖A1‖‖A2‖ ∈ M
(
A†

1

)
A†

2

, ‖B1‖‖B2‖ ∈ M(B1)B2
. (2.19)

Moreover, if

Ran
(
A†

1

)
⊥B−J Ran

(
A†

2 −
‖A2‖
‖A1‖A

†
1

)
, Ran (B1)⊥B−J Ran

(
B2 − ‖B2‖

‖B1‖B1

)
, (2.20)

then

‖A1‖‖A2‖ ∈ M
(
A†

1

)
A†

2

∩M
(
A†

2

)
A†

1

, ‖B1‖‖B2‖ ∈ M(B1)B2
∩M(B2)B1

. (2.21)

Proof. If ‖MA1,B1+MA2,B2‖ = ‖A1‖‖B1‖+‖A2‖‖B2‖, thenwe can find two normalized sequences
(Xn)n ⊆ B(E) and (xn)n ⊆ E such that

lim
n
‖A1XnB1xn +A2XnB2xn‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.22)

We have for all n ≥ 1

‖A1XnB1xn‖ ≤ ‖A1‖‖B1xn‖ ≤ ‖A1‖‖B1‖
‖A2XnB2xn‖ ≤ ‖A2‖‖B2xn‖ ≤ ‖A2‖‖B2‖,

(2.23)

so we can deduce from the above inequalities and (2.10) that limn‖B1xn‖ = ‖B1‖ and
limn‖B2xn‖ = ‖B2‖. From the assumptions Ran(B2)⊥B−J Ran(B1 − (‖B1‖/‖B2‖)B2)we get

Ran
(
B1 − ‖B1‖

‖B2‖B2

)
∩ Ran(B2) = {0}. (2.24)

Set χn = (B1 − (‖B1‖/‖B2‖)B2)xn and yn = B2xn for all n and define the function φn on the
closed subspace F spanned by {xn, yn} for all n as

φn
(
aχn + byn

)
= b
∥∥yn
∥∥2 = b‖B2xn‖, ∀a, b ∈ K. (2.25)
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It is clear that φn is linear for all n and

∣∣φn
(
aχn + byn

)∣∣ = |b|‖B2xn‖2 =
∥∥aχn + byn

∥∥‖B2xn‖
∥∥byn

∥∥
∥∥aχn + byn

∥∥ . (2.26)

From the assumptions Ran(B2)⊥B−J Ran(B1 − (‖B1‖/‖B2‖)B2) it follows that

∣∣φ(aχn + byn
)∣∣ ≤ ‖B2xn‖

∥∥aχn + byn
∥∥, ∀a, b ∈ K, ∀n. (2.27)

This means that φn is continuous for each n on the subspace F with ‖φn‖ = ‖B2xn‖ (by (2.27)
and φn(yn) = ‖yn‖‖B2xn‖). Then by Hahn-Banach theorem there is φ̃n ∈ E∗ with φ̃n|F = φn
and ‖φn‖ = ‖φ̃n‖, for each n. So

φ̃n
(
χn
)
= φ̃n

((
B1 − ‖B1‖

‖B2‖B2

)
xn

)
= 0, (2.28)

hence

lim
n
φ̃n
(
χn
)
= φ̃n

((
B1 − ‖B1‖

‖B2‖B2

)
xn

)
= 0,

φ̃n(B2xn) = ‖B2xn‖2,
∥∥∥φ̃n
∥∥∥ = ‖B2xn‖.

(2.29)

Thus, 0 ∈ M(B1 − (‖B1‖/‖B2‖)B2)B2
and by Lemma 2.1

0 ∈
(
M(B1)B2

− ‖B1‖
‖B2‖‖B2‖2

)
= M(B1)B2

− ‖B1‖‖B2‖. (2.30)

Therefore,

‖B1‖‖B2‖ ∈ M(B1)B2
. (2.31)

From ‖MA1,B1 +MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖ we can find a normalized sequences
(Xn)n ⊆ B(E) such that

lim
n
‖A1XnB1 +A2XnB2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.32)

Since ‖A1XnB1 +A2XnB2‖ = ‖B†
1X

†
nA

†
1 + B

†
2X

†
nA

†
2‖, for each n, then we can find a normalized

φnk ∈ E† such that

lim
k,n

∥∥∥B†
1X

†
nA

†
1φnk + B

†
2X

†
nA

†
2φnk

∥∥∥ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖. (2.33)
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We argue similarly and get

lim
k,n

∥∥∥A†
1φnk

∥∥∥ =
∥∥∥A†

1

∥∥∥, lim
k,n

∥∥∥A†
2φnk

∥∥∥ =
∥∥∥A†

2

∥∥∥. (2.34)

Following the same steps as in the previous case we obtain ‖A1‖‖A2‖ ∈ M(A†
1)A†

2
.

Moreover, if we have Ran(A†
1)⊥B−J Ran(A†

2 − (‖A2‖/‖A1‖)A†
1) and Ran(B1)⊥B−J

Ran(B2 − (‖B2‖/‖B1‖)B1), it suffices to reverse, in the proof of the previous case, the role
of A†

1 into A
†
2 and B1 into B2.

For the completeness of the previous theorem we need to prove the following result
which is very interesting.

We recall that Phelps [10] has proved that, for a Banach space E, ∪{D(x) : x ∈ E} is
dense in E∗; this property is called subreflexivity of the space E. Using this fact, Bonsall and
Duncan [2] has proved that for any operator T ∈ B(E)we haveW(T) =W(T†). The following
result generalizes the Bollobas result in the case M(A)B, where A,B ∈ B(E).

Proposition 2.8. Let E be a Banach space with smooth dual and let A,B ∈ B(E) such that B is a
surjective operator. ThenM(A†)B† ⊆ M(A)B.

Proof. Let a ∈ M(A†)B† , then there are ψn ∈ D(B†ϕn), (ϕn)n ∈ SE∗(B†) such that a =
limnψn(A†ϕn).

By the subreflexivity of E there exist sequences (ϕnk)nk ⊆ E∗ and (xnk) ⊆ E such that
ϕnk ∈ D(xnk) and ‖ϕnk − ‖Bxnk‖ϕn‖ to 0. It follows that the sequence (x̂nk) ⊆ E∗∗ has an
E∗∗-weak convergent subsequence (x̂nm)nm , that is,

x̂nm
(
f
) −→ Ψ

(
f
)
, ∀f ∈ E∗, Ψ ∈ E∗∗. (2.35)

On the one hand, we have

‖Bxnm‖2 =
[
B†(ϕnm − ‖Bxnm‖ϕn

)]
(xnm) + ‖Bxnm‖

(
B†ϕn

)
(xnm). (2.36)

Then

‖Bxnm‖2 ≤
∥∥∥B†(ϕnm − ‖Bxnm‖ϕn

)∥∥∥ + ‖Bxnm‖
∥∥∥B†ϕn

∥∥∥. (2.37)

Thus

‖Bxnm‖
∣∣∣‖Bxnm‖ −

∥∥∥B†ϕn
∥∥∥
∣∣∣ ≤
∥∥∥B†
∥∥∥∥∥ϕnm − ‖Bxnm‖ϕn

∥∥. (2.38)
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On the other hand,

∣∣∣x̂nm
(
B†ϕn

)
−
∥∥∥B†ϕn

∥∥∥
∣∣∣ ≤
∣∣∣∣∣x̂nm

(
B†ϕn

)
− x̂nm

(
B†ϕnm
‖Bxnm‖

)∣∣∣∣∣

+
∣∣∣∣

1
‖Bxnm‖

x̂nm

(
B†ϕnm

)
−
∥∥∥B†ϕn

∥∥∥
∣∣∣∣

=
∣∣∣∣x̂
(
B†ϕn − 1

‖Bxnm‖
B†ϕnm

)∣∣∣∣ +
∣∣∣
∥∥∥Bxnm −

∥∥∥B†
∥∥∥ϕn
∥∥∥
∣∣∣

−→ 0 asm −→ ∞.

(2.39)

So limmx̂nm(B
†ϕn) = ‖B†ϕn‖ and ‖B†ϕn‖Ψn ∈ D(B†ϕn). Then by smoothness of the space E∗

we get ‖B†ϕn‖Ψn = Ψn, for alln. Next,

∣∣∣∣∣x̂nm
(
A†ϕnm

)
− ‖Bxnm‖∥∥B†ϕn

∥∥ψn
(
A†ϕn

)∣∣∣∣∣ ≤
∣∣∣x̂nm

(
A†ϕnm

)
− x̂nm

(
‖Bxnm‖A†ϕn

)∣∣∣

+ ‖Bxnm‖
∣∣∣∣∣x̂nm

(
A†ϕn

)
− 1∥∥B†ϕn

∥∥ψn
(
A†ϕn

)∣∣∣∣∣

=
∣∣∣x̂nm

(
A†ϕnm −A†ϕn

)∣∣∣

+ ‖Bxnm‖
∣∣∣x̂nm

(
A†ϕn

)
− ψn

(
A†ϕn

)∣∣∣

−→ 0 as m −→ ∞.

(2.40)

Then limmx̂nm(A
†ϕnm) = ψn(A

†ϕn) or limmϕnm(Axnm = ψ(A†ϕn) and therefore

lim
n

[
lim
m
ϕnm(Axnm)

]
= lim

n
ψn
(
A†ϕn

)
= a (2.41)

which means that a ∈ M(A)B.

Corollary 2.9. Let E be a Banach space with smooth dual and A1, A2, B1, B2 ∈ B(E).
If ‖MA1,B1 + MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖ and Ran(A†

2)⊥B−J Ran(A†
1 − (‖A1‖/

‖A2‖)A†
2) with A2 being surjective, and Ran(B2)⊥B−J Ran(B1 − (‖B1‖/‖B2‖)B2), then

‖A1‖‖A2‖ ∈ M(A1)A2
, ‖B1‖‖B2‖ ∈ M(B1)B2

. (2.42)

Moreover, if Ran(A†
1)⊥B−J Ran (A†

2 − (‖A2‖/‖A1‖)A†
1), A2 is surjective, and Ran(B1)⊥B−J

Ran(B2 − (‖B2‖/‖B1‖)B1), then

‖A1‖‖A2‖ ∈ M(A1)A2
∩M(A2)A1

, ‖B1‖‖B2‖ ∈ M(B1)B2
∩M(B2)B1

. (2.43)
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Corollary 2.10. Let E be a Banach space with smooth dual and A1, A2, B1, B2 ∈ B(E) such that
A1, A2 are surjective operators. If Ran(A†

i )⊥B−J Ran(A†
j − (‖Aj‖/‖Ai‖)A†

i ) and Ran(Bi)⊥B−J
Ran (Bj − (‖Bj‖/‖Bi‖)Bi), (i, j = 1, 2 such that i /= j) then the following assertions are equivalent:

(1) ‖MA1,B1 +MA2,B2‖ = ‖A1‖‖B1‖ + ‖A2‖‖B2‖;
(2) ‖A1‖‖A2‖ ∈ M(A1)A2

∩M(A2)A1
and ‖B1‖‖B2‖ ∈ M(B1)B2

∩M(B2)B1
.

As a particular case, we obtain the following.

Corollary 2.11. Let E be a Banach space with smooth dual andA,B are surjective operators in B(H).
If

Ran
(
B†
)
⊥B−J Ran

(
A† − ‖A‖

‖B‖B
†
)
, Ran(A)⊥B−J Ran

(
B − ‖B‖

‖A‖A
)
, (2.44)

then the following assertions are equivalent:

(1) ‖A‖‖B‖ ∈ M(A)B ∩M(B)A;

(2) ‖MA,B +MB,A‖ = 2‖A‖‖B‖.

3. Hilbert Space Case

Let E = H be a complex Hilbert space and A ∈ B(H). The maximal numerical range of A
[11] denoted byW0(A) is defined by

{λ ∈ C : ∃(xn), ‖xn‖ = 1, such that lim〈Axn, xn〉 = λ and lim‖Axn‖ = ‖A‖}, (3.1)

and its normalized maximal range, denoted byWN(A), is given by

WN(A) =

⎧
⎨
⎩
W0

(
A

‖A‖
)

if A/= 0

0 if A = 0.
(3.2)

The set W0(A) is nonempty, closed, convex, and contained in the closure of the numerical
range of A.

In this section we prove that if E = H, the conditions

‖A1‖‖A2‖ ∈ M(A1)A2
∩M(A2)A1

, ‖B1‖‖B2‖ ∈ M(B1)B2
∩M(B2)B1

(3.3)

would imply that

∥∥A∗
2A1
∥∥ = ‖A1‖‖A2‖,

∥∥B2B
∗
1

∥∥ = ‖B1‖‖B2‖,
WN

(
A∗

2A1
) ∩WN

(
B2B

∗
1

)
/= ∅.

(3.4)
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Proposition 3.1. Let H be a complex Hilbert space, A1, A2, B1, B2 ∈ B(H).
If ‖A1‖‖A2‖ ∈ M(A1)A2

∩M(A2)A1
and ‖B1‖‖B2‖ ∈ M(B1)B2

∩M(B2)B1
, then ‖A∗

2A1‖ =
‖A1‖‖A2‖ and ‖B2B

∗
1‖ = ‖B1‖‖B2‖ andWN(A∗

2A1) ∩WN(B2B
∗
1)/= ∅.

Proof. If A1 = 0 or A2 = 0 and B1 = 0 or B2 = 0, the result is obvious.
The proof will be done in four steps, we choose one and the others will be proved

similarly. Suppose thatA1 /= 0 andA2 /= 0, if ‖A1‖‖A2‖ ∈ M(A1)A2
, then there exists a sequence

(xn)n ∈ SH(A2) such that

‖A1‖‖A2‖ = lim〈A1xn,A2xn〉. (3.5)

We have |〈A∗
2A1xn, xn〉| ≤ ‖A∗

2A1‖ ≤ ‖A1‖‖A2‖; this yields

lim
∥∥A∗

2A1xn
∥∥ =
∥∥A∗

2A1
∥∥ = ‖A1‖‖A2‖. (3.6)

From (3.5) and (3.6) we get

∥∥A∗
2A1
∥∥ = ‖A1‖‖A2‖, 1 ∈W0

(
A∗

2A1∥∥A∗
2A1
∥∥
)
. (3.7)

Suppose now that B1 /= 0 and B2 /= 0, if ‖B1‖‖B2‖ ∈ M(B1)B2
, then there exists a sequence

(yn)n ∈ SH(B2) such that

‖B1‖‖B2‖ = lim〈B1yn, B2yn〉. (3.8)

Since limn‖B1yn‖ = ‖B1‖, then limn(B∗
1B1yn − ‖B1‖2yn) = 0.

Suppose that wn = B1yn/‖B1‖, then yn = B∗
1wn/‖B1‖ + zn such that limnzn = 0.

Hence

〈
B2yn, B1yn

〉
=
〈
B2

(
B∗
1wn

‖B1‖
)
, ‖B1‖wn

〉

=
〈
B2B

∗
1wn,wn

〉
+ 〈B2zn, ‖B1‖wn〉.

(3.9)

From this, we derive that

lim
∥∥B2B

∗
1wn

∥∥ =
∥∥B2B

∗
1

∥∥ = ‖B1‖‖B2‖. (3.10)

From (3.8) and (3.10)we have

∥∥B2B
∗
1

∥∥ = ‖B1‖‖B2‖, 1 ∈W0

(
B2B

∗
1∥∥B2B
∗
1

∥∥
)
. (3.11)

From (3.7) and (3.11) we get ‖A∗
2A1‖ = ‖A1‖‖A2‖ and ‖B2B

∗
1‖ = ‖B1‖‖B2‖ and WN(A∗

2A1) ∩
WN(B2B

∗
1)/= ∅.
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Remark 3.2. We remark that in the case E = Hwe obtain an implication given by Boumazgour
[12].
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