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We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in R
n (n = 2, 3)with

an asymptotically straight reference curve. We give uniqueness results for the inverse problem
associated to the reconstruction of the curvature by using either observations of spectral data or a
boot-strapping method.

1. Introduction and Main Results in Dimension n = 2

The spectral properties of curved quantum guides have been studied intensively for several
years, because of their applications in quantum mechanics electron motion. We can cite
among several papers [1–7].

However, inverse problems associated with curved quantum guides have not been
studied to our knowledge, except in [8]. Our aim is to establish uniqueness results for the
inverse problem of the reconstruction of the curvature of the quantum guide: the data of one
eigenpair determines uniquely the curvature up to its sign and similar results are obtained
by considering the knowledge of a solution of Poisson’s equation in the guide.

We consider the Laplacian operator on a nontrivially curved quantum guide Ω ⊂ R
2

which is not self-intersecting, with Dirichlet’s boundary conditions, denoted by −ΔΩ
D. We

proceed as in [1]. We denote by Γ = (Γ1,Γ2) the function C3-smooth (see [7, Remark 5])which
characterizes the reference curve and byN = (N1,N2) the outgoing normal to the boundary
ofΩ. We denote by d the fixed width ofΩ and byΩ0 := R× ] − d/2, d/2[. Each point (x, y) of
Ω is described by the curvilinear coordinates (s, u) as follows:

̂f : Ω0 −→ Ω with
(

x, y
)

= ̂f(s, u) = Γ(s) + uN(s). (1.1)



2 International Journal of Mathematics and Mathematical Sciences

We assume Γ′1(s)
2 + Γ′2(s)

2 = 1 and we recall that the signed curvature γ of Γ is defined by

γ(s) = −Γ′′1(s)Γ′2(s) + Γ′′2(s)Γ
′
1(s), (1.2)

named so because |γ(s)| represents the curvature of the reference curve at s. We recall that a
guide is called simply bent if γ does not change sign in R. We assume throughout this paper
the following.

Assumption 1.1. One has the following.

(i) ̂f is injective.

(ii) γ ∈ C2(R) ∩ L∞(R), γ /≡ 0, (i.e., Ω is nontrivially curved).

(iii) d/2 < 1/‖γ‖∞, where ‖γ‖∞ := sups∈R
|γ(s)| = ‖γ‖L∞(R).

(iv) γ(s) → 0 as |s| → +∞ (i.e., Ω is asymptotically straight).

Note that by the inverse function theorem, the map ̂f (defined by (1.1)) is a local
diffeomorphism provided 1 − uγ(s)/= 0, for all u, s, which is guaranteed by Assumption 1.1
and since ̂f is assumed to be injective, the map ̂f is a global diffeomorphism. Note also that
1−uγ(s) > 0 for all u and s. More precisely, 0 < 1− (d/2)‖γ‖∞ ≤ 1−uγ(s) ≤ 1+ (d/2)‖γ‖∞ for
all u, s. The curvilinear coordinates (s, u) are locally orthogonal, so by virtue of the Frenet-
Serret formulae, the metric in Ω is expressed with respect to them through a diagonal metric
tensor, (e.g., [4])

(

gij
)

=

(

(

1 − uγ(s))2 0
0 1

)

. (1.3)

The transition to the curvilinear coordinates represents an isometric map of L2(Ω) to
L2(Ω0, g

1/2dsdu)where

(

g(s, u)
)1/2 := 1 − uγ(s) (1.4)

is the Jacobian ∂(x, y)/∂(s, u). So we can replace the Laplacian operator −ΔΩ
D acting on L2(Ω)

by the Laplace-Beltrami operatorHg acting on L2(Ω0, g
1/2dsdu) relative to the given metric

tensor (gij) (see (1.3) and (1.4))where

Hg := −g−1/2∂s
(

g−1/2∂s
)

− g−1/2∂u
(

g1/2∂u
)

. (1.5)

We rewrite Hg (defined by (1.5)) into a Schrödinger-type operator acting on L2(Ω0, ds du).
Indeed, using the unitary transformation

Ug : L2
(

Ω0, g
1/2dsdu

)

−→ L2(Ω0, ds du)

ψ �−→ g1/4ψ,

(1.6)
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setting

Hγ := UgHgU
−1
g , (1.7)

we get

Hγ = −∂s
(

cγ(s, u)∂s
) − ∂2u + Vγ(s, u), (1.8)

with

cγ(s, u) =
1

(

1 − uγ(s))2
, (1.9)

Vγ(s, u) = − γ2(s)

4
(

1 − uγ(s))2
− uγ ′′(s)

2
(

1 − uγ(s))3
− 5u2γ ′2(s)

4
(

1 − uγ(s))4
. (1.10)

We will assume throughout all this paper that the following assumption is satisfied.

Assumption 1.2. γ ∈ C2(R) and γ (k) ∈ L∞(R) for each k = 0, 1, 2 where γ (k) denotes the kth
derivative of γ .

Remarks 1. Since Ω is nontrivially curved and asymptotically straight, the operator −ΔΩ
D has

at least one eigenvalue of finite multiplicity below its essential spectrum (see [4, 7]; see also
[1] under the additional assumptions that the width d is sufficiently small and the curvature
γ is rapidly decaying at infinity; see [3] under the assumption that the curvature γ has a
compact support).

Furthermore, note that such operator Hγ admits bound states and that the minimum
eigenvalue λ1 is simple and associated with a positive eigenfunction φ1 (see [9, Section 8.17]).
Then, note that by [10, Theorem 7.1] any eigenfunction of Hγ is continuous and by [11,
Remark 25 page 182] any eigenfunction ofHγ belongs toH2(Ω0).

Finally, note also that (λ, φ) is an eigenpair (i.e., an eigenfunction associated with its
eigenvalue) of the operator Hγ acting on L2(Ω0, ds du) means that (λ,U−1

g φ) is an eigenpair
of −ΔΩ

D acting on L2(Ω). So the data of one eigenfunction of the operatorHγ is equivalent to
the data of one eigenfunction of −ΔΩ

D.
We first prove that the data of one eigenpair determines uniquely the curvature.

Theorem 1.3. LetΩ be the curved guide in R
2 defined as above. Let γ be the signed curvature defined

by (1.2) and satisfying Assumptions 1.1 and 1.2. Let Hγ be the operator defined by (1.8) and (λ, φ)
be an eigenpair ofHγ .

Then

γ2(s) = −4Δφ(s, 0)
φ(s, 0)

− 4λ, (1.11)

for all s when φ(s, 0)/= 0.
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Note that the condition φ(s, 0)/= 0 in Theorem 1.3 is satisfied for the positive eigen-
function φ1 and for all s ∈ R. Then, we prove later in the paper under the following assump-
tion.

Assumption 1.4. γ ∈ C5(R) and γ (k) ∈ L∞(R) for each k = 0, . . . , 5, that one weak solution φ of
the problem

Hγφ = f inΩ0

φ = 0 on ∂Ω0,
(1.12)

(where f is a known given function) is in fact a classical solution and the data of φ determines
uniquely the curvature γ .

Theorem 1.5. LetΩ be the curved guide in R
2 defined as above. Let γ be the signed curvature defined

by (1.2) and satisfying Assumptions 1.1 and 1.4. Let Hγ be the operator defined by (1.8). Let f ∈
H3(Ω0) ∩ C(Ω0) and let φ ∈ H1

0(Ω0) be a weak solution of (1.12).
Then we have γ2(s) = −4(Δφ(s, 0)/φ(s, 0)) − 4(f(s, 0)/φ(s, 0)) for all s when φ(s, 0)/= 0.

In the case of a simply bent guide (i.e., when γ does not change sign in R), we can
restrain the hypotheses upon the regularity of γ . We obtain the following result.

Theorem 1.6. LetΩ be the curved guide in R
2 defined as above. Let γ be the signed curvature defined

by (1.2) and satisfying Assumptions 1.1 and 1.2. We assume also that γ is a nonnegative function. Let
Hγ be the operator defined by (1.8). Let f ∈ L2(Ω0) be a non null function and let φ be a weak solution
inH1

0(Ω0) of (1.12). Assume that there exists a positive constantM such that |f(s, u)| ≤M|φ(s, u)|
a.e. in Ω0. Then (f, φ) determines uniquely the curvature γ .

Note that the above result is still valid for a nonpositive function γ .
This paper is organized as follows. In Section 2, we prove Theorems 1.3, 1.5, and 1.6.

In Sections 3 and 4, we extend our results to the case of a curved quantum guide defined in
R

3.

2. Proofs of Theorems 1.3, 1.5, and 1.6

2.1. Proof of Theorem 1.3

Recall that φ is an eigenfunction ofHγ , belonging toH2(Ω0). Since φ is continuous andHγφ =
λφ, then Hγφ is continuous too. Thus, noticing that cγ(s, 0) = 1, we deduce the continuity of
the function (s, 0) �→ Δφ(s, 0) and from (1.8) to (1.10), we get

−Δφ(s, 0) − γ2(s)
4

φ(s, 0) = λφ(s, 0), (2.1)

and equivalently,

γ2(s) = −4Δφ(s, 0)
φ(s, 0)

− 4λ ifφ(s, 0)/= 0. (2.2)
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2.2. Proof of Theorem 1.5

First, we recall from [11, Remark 25 page 182] the following lemma.

Lemma 2.1. For a second-order elliptic operator defined in a domain ω ⊂ R
n, if φ ∈ H1

0(ω) satisfies

∫

ω

∑

i,j

aij
∂φ

∂xi

∂ψ

∂xj
=
∫

ω

fψ ∀ψ ∈ H1
0(ω) (2.3)

then if ω is of class C2

(

f ∈ L2(ω), aij ∈ C1(ω), Dαaij ∈ L∞(ω) ∀i, j, ∀α, |α| ≤ 1
)

imply
(

φ ∈ H2(ω)
)

(2.4)

and form ≥ 1, if ω is of class Cm+2

(

f ∈ Hm(ω), aij ∈ Cm+1(ω), Dαaij ∈ L∞(ω) ∀i, j, ∀α, |α| ≤ m + 1
)

imply
(

φ ∈ Hm+2(ω)
)

.

(2.5)

Now we can prove Theorem 1.5.
We haveHγφ = f , so

∫

Ω0

[

cγ
(

∂sφ
)(

∂sψ
)

+
(

∂uφ
)(

∂uψ
)]

=
∫

Ω0

[

f − Vγφ
]

ψ, ∀ψ ∈ H1
0(Ω0) (2.6)

with cγ defined by (1.9) and Vγ defined by (1.10).
Using Assumption 1.4, since γ (k) ∈ L∞(Ω0) for k = 0, 1, 2 then Vγ ∈ L∞(Ω0) and f −

Vγφ ∈ L2(Ω0). From the hypotheses γ ∈ C1(R) and γ ′ ∈ L∞(R), we get that cγ ∈ C1(Ω0),
Dαcγ ∈ L∞(Ω0) for any α, |α| ≤ 1, and so, using Lemma 2.1 for (2.6), we obtain that φ ∈
H2(Ω0).

By the same way, we get that f − Vγφ ∈ H1(Ω0), cγ ∈ C2(Ω0) and Dαcγ ∈ L∞(Ω0) for
any α, |α| ≤ 2 (from γ ∈ C3(R), γ (k) ∈ L∞(R) for any k = 0, . . . , 3). Using Lemma 2.1, we obtain
that φ ∈ H3(Ω0).

We apply again Lemma 2.1 to get that φ ∈ H4(Ω0) (since f − Vγφ ∈ H2(Ω0), cγ ∈
C3(Ω0), Dαcγ ∈ L∞(Ω0) for all α, |α| ≤ 3, from the hypotheses γ ∈ C4(R) and γ (k) ∈ L∞(R) for
k = 0, . . . , 4).

Finally, using Assumption 1.4 and Lemma 2.1, we obtain that φ ∈ H5(Ω0).
Due to the regularity of Ω0, we have φ ∈ H5(R2) and Δφ ∈ H3(R2). Since ∇(Δφ) ∈

(H2(R2))2 and H2(R2) ⊂ L∞(R2), we can deduce that Δφ is continuous (see [11, Remark 8
page 154]).

Therefore, we can conclude by using the continuity of the function

(s, 0) �→ −∂s
(

cγ(s, 0)∂sφ(s, 0)
) − ∂2uφ(s, 0) = f(s, 0) − Vγ(s, 0)φ(s, 0). (2.7)



6 International Journal of Mathematics and Mathematical Sciences

Therefore, we get −Δφ(s, 0) − (γ2(s)/4)φ(s, 0) = f(s, 0) and equivalently,

γ2(s) = −4Δφ(s, 0)
φ(s, 0)

− 4
f(s, 0)
φ(s, 0)

ifφ(s, 0)/= 0. (2.8)

2.3. Proof of Theorem 1.6

We prove here that (f, φ) determines uniquely γ when γ is a nonnegative function.
For that, assume thatΩ1 andΩ2 are two quantum guides in R

2 with same width d. We
denote by γ1 and γ2 the curvatures, respectively, associated with Ω1 and Ω2, and we suppose
that each γi satisfies Assumption 1.2 and is a nonnegative function. Assume that Hγ1φ = f =
Hγ2φ.

Then φ satisfies

−∂s
((

cγ1(s, u) − cγ2(s, u)
)

∂sφ(s, u)
)

+
(

Vγ1(s, u) − Vγ2(s, u)
)

φ(s, u) = 0. (2.9)

Assume that γ1 /≡ γ2.

Step 1. First, we consider the case where (for example) γ1(s) < γ2(s) for all s ∈ R.
Let ε > 0, ωε := R × Iε with Iε = ] − ε, 0[. Multiplying (2.9) by φ and integrating over

ωε, we get

∫

ωε

(

cγ1 − cγ2
)(

∂sφ
)2 −

∫

∂ωε

(

cγ1 − cγ2
)(

∂sφ
)

φνs +
∫

ωε

(

Vγ1 − Vγ2
)

φ2 = 0. (2.10)

Since ε � 1, Vγi(s, u) � −γ2i (s)/4 for i = 1, 2, and so Vγ1(s, u) − Vγ2(s, u) > 0 in ωε.
Moreover, since

cγ1(s, u) − cγ2(s, u) =
u
(

γ1(s) − γ2(s)
)(

2 − u(γ1(s) + γ2(s)
))

(

1 − uγ1(s)
)2(1 − uγ2(s)

)2
, (2.11)

we have cγ1(s, u) > cγ2(s, u) in ωε.
Since

∫

∂ωε

(

cγ1 − cγ2
)(

∂sφ
)

φνs = 0 (2.12)

Thus, from (2.10)−(2.12), we get

∫

ωε

(

cγ1 − cγ2
)(

∂sφ
)2 +

∫

ωε

(

Vγ1 − Vγ2
)

φ2 = 0, (2.13)

with cγ1 − cγ2 > 0 in ωε and Vγ1 − Vγ2 > 0 in ωε. We can deduce that φ = 0 in ωε.
Using a unique continuation theorem (see [12, Theorem XIII.63 page 240]), from

Hγφ = f , noting that −Δ(U−1
g φ) = U−1

g f = g−1/4f , (recall that Ug is defined by (1.6)) and
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so by |f | ≤ M|φ| we have |Δ(U−1
g φ)| ≤ M|g−1/4φ| with g > 0 a.e., and we can deduce that

φ = 0 in Ω0. So we get a contradiction (since Hγφ = f and f is assumed to be a non null
function).

Step 2. From Step 1, we obtain that there exists at least one point s0 ∈ R such that γ1(s0) =
γ2(s0). Since γ1 /≡ γ2, we can choose a ∈ R and b ∈ R ∪ {+∞} such that (for example) γ1(a) =
γ2(a), γ1(s) < γ2(s) for all s ∈ ]a, b[ and γ1(b) = γ2(b) if b ∈ R.

We proceed as in Step 1, considering, in this case, ωε := ]a, b[× Iε. We study again
(2.10) and as in Step 1, we have

∫

∂ωε

(

cγ1 − cγ2
)(

∂sφ
)

φνs = 0. (2.14)

Indeed from (2.11) and γ1(a) = γ2(a)we have cγ1(a, u) = cγ2(a, u) and so

∫0

−ε

(

cγ1(a, u) − cγ2(a, u)
)

∂sφ(a, u)φ(a, u)du = 0. (2.15)

By the same way, if b ∈ R, we also have cγ1(b, u) = cγ2(b, u). Thus, (2.10) becomes (2.13) with
cγ1 − cγ2 > 0 in ωε and Vγ1 − Vγ2 > 0 inωε. So φ = 0 in ωε and as in Step 1, by a unique con-
tinuation theorem, we obtain that φ = 0 in Ω0. Therefore, we get a contradiction.

Note that the previous theorem is true if we replace the hypothesis “γ is nonnegative”
by the hypothesis “γ is nonpositive.” Indeed, in this last case, we just have to take Iε = ]0, ε[
and the proof rests valid.

3. Uniqueness Result for a R
3-Quantum Guide

Now, we apply the same ideas for a tubeΩ in R
3. We proceed here as in [7]. Let s �→ Γ(s), Γ =

(Γ1,Γ2,Γ3), be a curve in R
3. We assume that Γ : R → R

3 is a C4-smooth curve satisfying the
following hypotheses

Assumption 3.1. Γ possesses a positively oriented Frenet frame {e1, e2, e3} with the following
properties

(i) e1 = Γ′,

(ii) for all i ∈ {1, 2, 3}, ei ∈ C1(R,R3),

(iii) for all i ∈ {1, 2}, for all s ∈ R, e′i(s) lies in the span of e1(s), . . . , ei+1(s).

Recall that a sufficient condition to ensure the existence of the Frenet frame of
Assumption 3.1 is to require that for all s ∈ R the vectors Γ′(s), Γ′′(s) are linearly independent.

Then we define the moving frame {ẽ1, ẽ2, ẽ3} along Γ by following [7]. This moving
frame better reflects the geometry of the curve and it is still called the Tang frame because it is
a generalization of the Tang frame known from the theory of three-dimensional waveguides.
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Given a C5 bounded open connected neighborhood ω of (0, 0) ∈ R
2, let Ω0 denote the

straight tube R ×ω. We define the curved tube Ω of cross-section ω about Γ by

Ω := ˜f(R ×ω) = ˜f(Ω0),

˜f(s, u2, u3) := Γ(s) +
3
∑

i=2

ui
3
∑

j=2

Rij(s)ej(s) = Γ(s) +
3
∑

i=2

uiẽi(s),
(3.1)

with u = (u2, u3) ∈ ω and

R(s) :=
(

Rij(s)
)

i, j∈{2, 3} =

(

cos(θ(s)) − sin(θ(s))

sin(θ(s)) cos(θ(s))

)

, (3.2)

θ being a real-valued differentiable function such that θ′(s) = τ(s) the torsion of Γ. This dif-
ferential equation is a consequence of the definition of the moving Tang frame (see [7,
Remark 3]).

Note that R is a rotation matrix in R
2 chosen in such a way that (s, u2, u3) are ortho-

gonal “coordinates” in Ω. Let k be the first curvature function of Ω. Recall that since Ω ⊂ R
3,

k is a nonnegative function. We assume throughout all this section that the following hypo-
thesis holds:

Assumption 3.2. One has the following.
k ∈ C2(R) ∩ L∞(R), a := supu∈ω‖u‖R2 < 1/‖k‖∞, k(s) → 0 as |s| → +∞Ω does not

overlap.

Assumption 3.2 assures that the map ˜f (defined by (3.1)) is a diffeomorphism (see [7])
in order to identifyΩwith the Riemannianmanifold (Ω0, (gij))where (gij) is themetric tensor
induced by ˜f , that is, (gij) :=t J( ˜f) · J( ˜f), (J( ˜f) denoting the Jacobian matrix of ˜f). Recall that
(gij) = diag(h2, 1, 1) (see [7])with

h(s, u2, u3) := 1 − k(s)(cos(θ(s))u2 + sin(θ(s))u3). (3.3)

Note that Assumption 3.2 implies that 0 < 1−a‖k‖∞ ≤ 1−h(s, u2, u3) ≤ 1+a‖k‖∞ for all s ∈ R

and u = (u2, u3) ∈ ω. Moreover, setting

g := h2, (3.4)

we can replace the Dirichlet Laplacian operator −ΔΩ
D acting on L2(Ω) by the Laplace-Beltrami

operator Kg acting on L2(Ω0, hdsdu) relative to the metric tensor (gij). We can rewrite Kg

into a Schrödinger-type operator acting on L2(Ω0, ds du). Indeed, using the unitary trans-
formation

Wg : L2(Ω0, hds du) −→ L2(Ω0, ds du)

ψ �−→ g1/4ψ,
(3.5)
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setting

Hk :=WgKgW
−1
g , (3.6)

we get

Hk = −∂s
(

h−2∂s
)

− ∂2u2 − ∂2u3 + Vk, (3.7)

where ∂s denotes the derivative relative to s and ∂ui denotes the derivative relative to ui and
with

Vk := − k2

4h2
+
∂2sh

2h3
− 5(∂sh)

2

4h4
. (3.8)

We assume also throughout all this section that the following hypotheses hold:

Assumption 3.3. One has the following.

(i) k′ ∈ L∞(R), k′′ ∈ L∞(R)

(ii) θ ∈ C2(R), θ′ = τ ∈ L∞(R), θ′′ ∈ L∞(R).

Remarks 2. Note that as for the 2-dimensional case, such operatorHk (defined by (3.3)−(3.8))
admits bound states and that the minimum eigenvalue λ1 is simple and associated with a
positive eigenfunction φ1 (see [7, 9]). Still note that (λ, φ) is an eigenpair of the operator
Hk acting on L2(Ω0, ds du) means that (λ,W−1

g φ) is an eigenpair of −ΔΩ
D acting on L2(Ω)

(withWg defined by (3.5)). Finally, note that by [10, Theorem 7.1] any eigenfunction ofHk is
continuous and by [11, Remark 25 page 182] any eigenfunction ofHk belongs toH2(Ω0).

As for the 2-dimensional case, first we prove that the data of one eigenpair determines
uniquely the curvature.

Theorem 3.4. Let Ω be the curved guide in R
3 defined as above. Let k be the first curvature function

of Ω. Assume that Assumptions 3.1 to 3.3 are satisfied. LetHk be the operator defined by (3.3)−(3.8)
and (λ, φ) be an eigenpair ofHk.

Then k2(s) = −4(Δφ(s, 0, 0)/φ(s, 0, 0)) − 4λ for all s when φ(s, 0, 0)/= 0.

Then, One has the following.

Assumption 3.5. One has the following.

(i) k ∈ C5(R), k(i) ∈ L∞(R) for all i = 0, . . . , 5,

(ii) θ ∈ C5(R), θ(i) ∈ L∞(R) for all i = 1, . . . , 5,

where k(i) (resp., θ(i)) denotes the ith derivative of k (resp. of θ), we obtain the following
result.

Theorem 3.6. Let Ω be the curved guide in R
3 defined as above. Let k be the first curvature function

ofΩ. Assume that Assumptions 3.1 to 3.5 are satisfied. LetHk be the operator defined by (3.3)−(3.8).
Let f ∈ H3(Ω0) ∩ C(Ω0) and let φ ∈ H1

0(Ω0) be a weak solution ofHkφ = f in Ω0.
Then φ is a classical solution and k2(s) = −4(Δφ(s, 0, 0)/φ(s, 0, 0))−4(f(s, 0, 0)/φ(s, 0, 0))

for all s when φ(s, 0, 0)/= 0.
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Remarks 3. Recall that in R
3, k is a nonnegative function and that the condition imposed on φ

(φ(s, 0, 0)/= 0) in Theorems 3.4 and 3.6 is satisfied by the positive eigenfunction φ1.
As for the two-dimensional case, we can restrain the hypotheses upon the regularity

of the functions k and θ.
For a guide with a known torsion, we obtain the following result.

Theorem 3.7. Let Ω be the curved guide in R
3 defined as above. Let k be the first curvature function

of Ω and let τ be the second curvature function (i.e., the torsion) of Ω. Denote by θ a primitive of τ
and suppose that 0 ≤ θ(s) ≤ π/2 for all s ∈ R. Assume that Assumptions 3.1 to 3.3 are satisfied. Let
Hk be the operator defined by (3.3)−(3.8). Let f ∈ L2(Ω0) be a non null function and let φ ∈ H1

0(Ω0)
be a weak solution of Hkφ = f in Ω0. Assume that there exists a positive constant M such that
|f(s, u)| ≤M|φ(s, u)| a.e. in Ω0.

Then the data (f, φ) determines uniquely the first curvature function k if the torsion τ is given.

4. Proofs of Theorems 3.4, 3.6, and 3.7

4.1. Proof of Theorem 3.4

Recall that φ is an eigenfunction of Hk. Since φ is continuous, Hkφ = λφ and φ ∈ H2(Ω0)
then Hkφ is continuous. Therefore, for u = (u2, u3) = (0, 0), we get: −Δφ(s, 0, 0) − (k2(s)/4)
φ(s, 0, 0) = λφ(s, 0, 0) and equivalently, k2(s) = −4(Δφ(s, 0, 0)/φ(s, 0, 0)) − 4λ if φ(s, 0, 0)/= 0.

4.2. Proof of Theorem 3.6

We follow the proof of Theorem 1.5. We haveHkφ = f with φ ∈ H1
0(Ω0). So

∫

Ω0

[

h−2
(

∂sφ
)(

∂sψ
)

+
(

∂u2φ
)(

∂u2ψ
)

+
(

∂u3φ
)(

∂u3ψ
)

]

=
∫

Ω0

[

f − Vkφ
]

ψ, ∀ψ ∈ H1
0(Ω0),

(4.1)

with h defined by (3.3) and Vk defined by (3.8).
From Assumptions 3.2 and 3.3, since k, k′, k′′, θ′, θ′′ are bounded, we deduce that

Vk ∈ L∞(Ω0). Therefore, f − Vkφ ∈ L2(Ω0). Moreover, we have also h−2 ∈ C1(Ω0) and
Dα(h−2) ∈ L∞(Ω0) for any α, |α| ≤ 1. Thus, using Lemma 2.1 for (4.1), we obtain that
φ ∈ H2(Ω0).

By the same way, we get that f − Vkφ ∈ H1(Ω0), h−2 ∈ C2(Ω0) and Dα(h−2) ∈ L∞(Ω0)
for any α, |α| ≤ 2 (since k ∈ C3(R), θ ∈ C3(R) and all of their derivatives are bounded). Using
Lemma 2.1, we obtain that φ ∈ H3(Ω0).

We apply again Lemma 2.1 to get that φ ∈ H4(Ω0) (since f − Vγφ ∈ H2(Ω0), cγ ∈
C3(Ω0), Dαcγ ∈ L∞(Ω0) for all α, |α| ≤ 3, from the hypotheses γ ∈ C4(R) and γ (k) ∈ L∞(R) for
k = 0, . . . , 4).

Finally, using Assumption 3.5 and Lemma 2.1, we obtain that φ ∈ H5(Ω0). Due to the
regularity of Ω0 (see [11, Note page 169]), we have φ ∈ H5(R3) and Δφ ∈ H3(R3). Since
∇(Δφ) ∈ (H2(R3))3 and H2(R3) ⊂ L∞(R3), we can deduce that Δφ is continuous (see [11,
Remark 8 page 154]).
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Thus, we conclude as in Theorem 1.5 and for u = (u2, u3) = (0, 0), we get −Δφ(s, 0, 0)−
(k2(s)/4)φ(s, 0, 0) = f(s, 0, 0) and equivalently, k2(s) = −4(Δφ(s, 0, 0)/φ(s, 0, 0))−4(f(s, 0, 0)/
φ(s, 0, 0)) if φ(s, 0, 0)/= 0.

4.3. Proof of Theorem 3.7

We prove here that (f, φ, θ) determines uniquely k.
Assume that Ω1 and Ω2 are two guides in R

3. We denote by k1 and k2 the first cur-
vatures functions associated withΩ1 andΩ2 and we denote by θ a primitive of τ the common
torsion of Ω1 and Ω2. We suppose that k1, k2 and θ satisfy Assumptions 3.2 and 3.3 and that
0 ≤ θ(s) ≤ π/2 for all s ∈ R. Assume thatHk1φ = f = Hk2φ.

Then φ satisfies

−∂s
((

h−21 (s, u2, u3) − h−22 (s, u2, u3)
)

∂sφ(s, u2, u3)
)

+ (Vk1(s, u2, u3) − Vk2(s, u2, u3))φ(s, u2, u3) = 0,
(4.2)

where h1 (associated with k1) is defined by (3.3), Vk1 is defined by (3.8), h2 (associated with
k2) is defined by (3.3), and Vk2 is defined by (3.8).

Assume that k1 /≡ k2.

Step 1. First, we consider the case where (for example) k1(s) < k2(s) for all s ∈ R. Recall that
each ki is a nonnegative function.

Let ε > 0 and denote by Jε := ] − ε, 0[× ] − ε, 0[, Oε := R × Jε with ε small enough to
have Jε ⊂ ω (recall that Ω0 = R ×ω).

Multiplying (4.2) by φ and integrating over Oε, we get

∫

Oε

(

h−21 − h−22
)

(

∂sφ
)2 +

∫

∂Oε

(

h−21 − h−22
)

(

∂sφ
)

φνs +
∫

Oε

(Vk1 − Vk2)φ2 = 0. (4.3)

Since ε � 1, Vki � −k2i (s)/4 for i = 1, 2, and so Vk1(s, u2, u3) − Vk2(s, u2, u3) > 0 in Oε.
Moreover, note that

h−21 (s, u2, u3) − h−22 (s, u2, u3)

=
α(s, u2, u3)(k1(s) − k2(s))(h1(s, u2, u3) + h2(s, u2, u3))

h21(s, u2, u3)h
2
2(s, u2, u3)

,
(4.4)

with α(s, u2, u3) := cos(θ(s))u2 + sin(θ(s))u3.
Since (u2, u3) ∈ Jε and 0 ≤ θ(s) ≤ π/2 for all s ∈ R, we have α(s, u2, u3) < 0. Therefore,

by (4.4), we deduce that h−21 − h−22 > 0 in Oε.
Thus,

∫

Oε
(h−21 − h−22 )(∂sφ)

2 +
∫

Oε
(Vk1 − Vk2)φ2 ≥ 0.

Note also that

∫

∂Oε

(

h−21 − h−22
)

(

∂sφ
)

φνs = 0. (4.5)
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Therefore, from (4.3) and (4.5) we get

∫

Oε

(

h−21 − h−22
)

(

∂sφ
)2 +

∫

Oε

(Vk1 − Vk2)φ2 = 0, (4.6)

with h−21 − h−22 > 0 in Oε and Vk1 − Vk2 > 0 in Oε.
From (4.6) we can deduce that φ = 0 in Oε. Using a unique continuation theorem (see

[12, Theorem XIII.63 page 240]), fromHk1φ = f , noting that −Δ(W−1
g φ) = W−1

g f = g−1/4f , by
|f | ≤ M|φ| a.e. in Ω0, we can deduce that φ = 0 in Ω0. So we get a contradiction since f is
assumed to be a non null function.

Step 2. From Step 1, we obtain that there exists at least one point s0 ∈ R such that k1(s0) =
k2(s0). Since k1 /≡ k2, we can choose a ∈ R and b ∈ R ∪ {+∞} such that (for example) k1(a) =
k2(a), k1(s) < k2(s) for all s ∈ ]a, b[ and k1(b) = k2(b) if b ∈ R. We proceed as in Step 1, con-
sidering in this case Oε := ]a, b[× Jε. From k1(a) = k2(a), we get that h−21 (a, u2, u3) =
h−22 (a, u2, u3). Therefore, we obtain

∫

∂Oε
(h−21 − h−22 )(∂sφ)φνs = 0. So (4.3) becomes (4.6) with

h−21 −h−22 > 0 inOε and Vk1 −Vk2 > 0 inOε. So φ = 0 inOε and as in Step 1, by a unique contin-
uation theorem, we obtain that φ = 0 in Ω0. Therefore, we get a contradiction.
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[1] P. Exner and P. Šeba, “Bound states in curved quantum waveguides,” Journal of Mathematical Physics,
vol. 30, no. 11, pp. 2574–2580, 1989.

[2] M. Cristofol and P. Gaitan, “Inverse problem for a perturbed stratified strip in two dimensions,”
Mathematical Methods in the Applied Sciences, vol. 27, no. 1, pp. 1–17, 2004.

[3] J. Goldstone and R. L. Jaffe, “Bound states in twisting tubes,” Physical Review B, vol. 45, no. 24, pp.
14100–14107, 1992.
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