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We establish some coupled fixed point theorems for a mapping satisfying some contraction

conditions in complete partial metric spaces. Our consequences extend the results of H. Aydi
(2011).

1. Introduction and Mathematical Preliminaries

The notion of a partial metric space (PMS) was introduced in 1992 by Matthews [1, 2].
Matthews proved a fixed point theorem on this spaces, analogous to the Banach’s fixed point
theorem. Recently, many authors have focused on partial metric spaces and their topological
properties (see e.g. [3-9]).

The definition of a partial metric space is given by Matthews (see [1, 2]) as follows:

Definition 1.1. Let X be a nonempty set and letp : X x X — R* satisfies
Pl)x=yopxx)=ply,y) =pxy) forallx,y € X,
(P2) p(x,x) <p(x,y), forall x,y € X,
(P3) p(x,y) =p(y,x), forall x,y € X,
(P4) p(x,y) <p(x,z)+p(z,y) —p(zz2), forall x,y,z € X.

Then the pair (X, p) is called a partial metric space and p is called a partial metric
on X.
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The function d), : X x X — R* defined by
dp(x,y) =2p(x,y) = p(x,2) = p(v,y) (L.1)

satisfies the conditions of a metric on X; therefore it is a (usual) metric on X.
Remark 1.2. if x = y, p(x, y) may not be 0.

(1) A famous example of partial metric spaces is the pair (R*,p), where p(x,y) =
max{x,y} for all x,y € R*. In this case, d, is the Euclidian metric d,,(x, y) = |x - y|.

(2) Each partial metric p on X generates a Ty topology 7, on X which has a base of open
p-balls B,(x, ), where x € X and € > 0 (B,(x,€) = {y € X : p(x,y) < p(x,x) +€}).

The following concepts has been defined as follows on a partial metric space.

Definition 1.3 (see e.g., [1, 2]). (i) A sequence {x,} in a PMS (X, p) converges to x € X if and
only if p(x, x) = lim, o p(x, x5).

(ii) A sequence {x,} ina PMS (X, p) is called Cauchy if and only if lim,, ,, — oo p(%n, Xp)
exists (and is finite).

(iii) A PMS { X, p} is said to be complete if every Cauchy sequence {x,} in X converges,
with respect to 7,, to a point x € X such that p(x, x) = lim;, », . oo P(Xn, Xm)-

The concept of coupled fixed point have been introduced in [10] by Bhaskar and
Lakshmikantham as follows.

Definition 1.4 (see [10]). An element (x,y) € X x X is called a coupled fixed point of mapping
F:XxX — Xifx=F(x,y)and y = F(y, x).

Aydi in [11] has obtained some coupled fixed point results for mappings satisfying
different contractive conditions on complete partial metric spaces. Some of these results are
the following cases.

Theorem 1.5 (see [11, Theorem 2.1]). Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X x X — X satisfies the following contractive condition:

p(F(x,y),F(u,v)) < kp(x,u) +Ip(y,v), (1.2)

forall x,y,u,v € X, where k,I are nonnegative constants with k + 1 < 1. Then, F has a unique
coupled fixed point.

Theorem 1.6 (see [11, Theorem 2.4]). Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X x X — X satisfies the following contractive condition:

p(F(x,y), F(u,0)) < kp(F(x,y),x) +1Ip(F(u,0),u), (1.3)

forall x,y,u,v € X, where k,l are nonnegative constants with k + 1 < 1. Then, F has a unique
coupled fixed point.
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Theorem 1.7 (see [11, Theorem 2.5]). Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X x X — X satisfies the following contractive condition:

p(F(x,y),F(u,0)) < kp(F(x,y),u) +1Ip(F(u,v),x), (1.4)
forall x,y,u,v € X, where k,l are nonnegative constants with k + 1 < 1. Then, F has a unique
coupled fixed point.

For a survey of fixed point theory, its applications, and related results in partial metric
spaces we refer the reader to [4, 5, 12-20] and the references mentioned therein. Also, many
researchers have obtained coupled fixed point results for mappings under various contractive
conditions in the framework of partial metric spaces (see, e.g., [21, 22]).

In this paper we establish some coupled fixed point results of contractive mappings
in the framework of complete partial metric spaces. Our results extend and generalize the
results of Aydi [11].

2. Main Results

We recall three easy lemmas which have an essential role in the proof of the main result. These
results can be derived easily (see, e.g., [1, 2, 6]).

Lemma 2.1. (1) A sequence {x,} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy
sequence in the metric space (X, dy).
(2) A PMS (X, p) is complete if and only if the metric space (X, dy) is complete. Moreover,

nli_r)r;odp(x, xn) =0 = p(x,x) = nli_r)r;op(x, Xy) = mlggoop(xn,xm). (2.1)

Lemma 2.2 (see [3]). Assume that x, — zasn — oo ina PMS (X,p) such that p(z,z) = 0.
Then, lim,,_, o p(xu,y) = p(z,y), for every y € X.

Lemma 2.3 (see, e.g., [3, 4]). Let (X, p) be a complete PMS. Then,

(a) if p(x,y) =0 then, x =y,
(b) if x#y, then p(x,y) > 0.

Throughout this paper, we assume that all of the constants are nonnegative. Our main
result is the following. The method of the proof can be found in [11].

Theorem 2.4. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(x,y),F(u,v)) < aip(x,u) + arp(y,v)
+asp(F(x,y),x) + aap(F(y,x), ) 22)
+asp(F(x,y),u) + aep(F(y,x),v) + asp(F(u,v), x) '

+agp(F(v,u),y) + aop(F(u,v),u) + arop(F (v, u),v),
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or every pairs (x, y), (u, v) € X x X, where 0 w; < 1. Then, F has a unique coupled fixed point
yp y i=1 q p p
in X.

Proof. Let x9,19 € X be arbitrary. Define x1, y; € X such that x; = F(xg, yo) and y1 = F(yo, xo)
and in this way, we construct the sequences {x,} and {y,} as x, = F(xy-1,Yn-1) and y,, =
F(yn-1,%n-1), foralln > 0.

We will complete the proof in three steps.

Step I. Let 6,, = p(xn-1, Xn) + P(Yn-1, Yn). We will show that lim,, ., 6, = 0.
Using (2.2) we obtain that

P, Xn1) = p(F (Xn-1,Yn-1), F (X, Yn))

< a1p(Xn-1, %) + 2P (Yn-1,Yn) + a3p(F (Xn-1, Yn-1), Xn-1)
+ a3p (F (Yn-1,Xn-1), Yn-1)
+ asp(F (Xn-1, Yn-1), %n) + a6p(F (Yn-1,Xn-1), Yn) + a7p(F (X, Yn), Xn-1)
+ asp (F (Y, Xn), Yn-1) + aop (F (Xn, Yn), Xn) + arop (F (Yn, Xn), Yn)

= a1p(Xn-1,%n) + Q2P (Yn, Yn1) + AP (Xn, Xp1) + Aap(Yn, Yn1) + asp(Xn, Xn)
+a6p (Yn, Yn) + a7p(Xns1, Xn-1) + asP (Yns1, Yn-1) + Aop(Xns1, Xn)
+ a10p(Yn+1, Yn)

< a1p(Xn-1, Xn) + AP (Yn-1,Yn) + a3p(Xn, Xn-1) + 4P (Y, Yn-1)
+ (a5 = a7)p(xn, Xn) + (a6 = as)p(Yn, Yn)
+ a7 [p(Xne1, Xn) + P(Xn, Xn-1)] + s [P (Yns1, Yn) + P (Yns Yn1)]

+ 9P (Xns1, Xn) + A10p (Yns1, Yn)-
(2.3)

Analogously, starting from p(x,+1, x,) = p(F(Xn, Yn), F(Xp-1, Yn-1)), we have

p(xni1,%n) = p(F (X0, Yn), F(Xn-1, Yn-1))
< a1p(xn, Xn-1) + 2P (Yn, Yn-1) + asp(F(Xn, Yn), Xn) + 4P (F (Yn, Xn), Yn)
+ asp(F(xn, Yn), Xn1) + a6p (F(Yn, Xn), Yn-1) + azp (F (Xn-1, Yn-1), Xn)
+agp(F(Yn-1,Xn-1),Yn) + @op (F(Xn-1, Yn-1), Xn-1) + @10p (F (Yn-1, Xn-1), Yn-1)
= a1 p(Xn-1, Xn) + @2p (Yn, Yn-1) + A3p(Xns1, Xn) + AP (Y1, Yn) + A5p(Xns1, Xno1)
+ 6P (Yne1, Yn1) + a7p(Xn, %) + 8P (Y, Yn) + Aop(Xn, Xn-1) + €10P (Yns Y1)
< a1p(Xn-1,%n) + 0P (Yn-1, Yn) + AP (Xns1, Xn) + AP (Yns1, Yn)

+ a5 [p(Xns1, Xn) + P(Xn, Xn-1)]| + A6 [P (Y1, Yn) + P (Y Yn-1) ]
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+ (a7 — as)p(xn, Xn) + (a5 — a6) P (Yn, Yn)
+ aop(xn, Xp-1) + €10P (Y, Yn-1)-
(2.4)

In a similar way, we have

P(Yn Yni1) = P(F(Yn-1, %n1), F (Yn, Xn))
S a1p(Yn-1,Yn) + a2p(Xn-1, %) + 3P (Y, Yn-1) + ap(Xn, Xp-1)
+ (a5 — a7)p(Yn, Yn) + (@6 — ag)p(xn, Xn) (2.5)
+a7[p(Yns1, Yn) + P (Yn Yn-1)] + as[p(xns1, x0) + (%0, Xn-1)]

+ 9P (Yns1, Yn) + X10P (X1, Xn)-
Analogously, starting from p(vy,+1, Yn) = P(F(Yn, Xn), F(Yn-1, Xn-1)), we have

P(Yne1, Yn) = p(F (Y, Xn), F(Yn-1, Xn-1))
< a1p(Yn-1,Yn) + 02p(Xn-1,%n) + a3p(Yns+1, Yn) + Aap(Xns1, Xn)
+ a5 [P(Yns1, Yn) + P(Yns Yn1)] + a6 [p(Xns1, Xn) + p(X0, Xn1)] (2.6)
+ (a7 = a5)p(Yn, Yn) + (a5 — a6)p(Xn, Xn)

+ aop (Yn, Yn-1) + a10p(Xn, Xn-1).
Adding (2.3), (2.4), (2.5), and (2.6) we obtain that

26n+1 < [26[1 + 20 + az+ag +as+ag+ay +ag +ag + a10]5n
2.7)
+ [0{3 +as+as+agt+ay+ag+ag + d10]6n+1,

or, equivalently,

67l+1 S -)L(Sn/ (28)

where, A = [2a1 +2a+az+ag+as+ag+ay+ag+ag+a]/ (2—[az+as+as+as+ay+ag+ag+a]).
Repeating the above mentioned process, we have

Sl S A8, S A%6pq < --- < NG, (2.9)
where, from our assumption about coefficients a;, A € [0, 1); hence,

lim 6,, = 0. (2.10)

n—>=ao
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Step II. {x,} and {y,} are Cauchy.

If 69 = 0 then, p(xo, x1) + p(yo,y1) = 0. Hence, we get xo = x1 = F(x0, o) and yo = y1 =
F(yo, x0); that is, (xg, yo) is a coupled fixed point of F. Now, let 69 > 0. For each m > n, we
have

P(Xm, %) + P (Y, Yn) < PXm, Xm1) + P (Yms Yim-1)
+ (X1, Xm—2) + P(Ym-1, Ym-2)

+...

+ p(Xns1, Xn) + P(Yns1, Yn) (211)

=Om+Om-1+-+0nn
n+1

1-1

< [)J" Py )J’“]&O < So.

So, we have limy, ;y— o P(Xn, Xm) + P(Yn, Ym) = 0. This proves that {x,} and {y,} are
Cauchy sequences in (X,p) and hence {x,} and {y,} are Cauchy sequences in the metric
space (X,d,). From Lemma 2.1, (X, d,) is complete, so {x,} and {y,} converge to some
x,y € X, respectively; that is, lim, . dp(x,,x) = 0 and lim, . dp(ys, y) = 0. Therefore,
from Lemma 2.1 and (2.10), we have

p(x,x) = lim p(xy, x) = lim_p(x, xm) =0, (2.12)
p(v,y) = limp(yny) = lim p(yn ym) =0. (2.13)

Step III. We will show that F has a unique coupled fixed point.
From the above step,

Jim p(F (xn, yn), x) = lim p(F (yn, Xn), y) = 0. (2.14)

Next, we will prove that x = F(x,y) and y = F(y, x).
We have

p(x, F(x,y)) <p(x, xn1) + P (Xne1, F(x,Y)) = p(Xni1, Xns1)- (2.15)

Taking the limit as n — oo in the above inequality, as x,.1 = F(x,,y,) and using
triangle inequality and (2.12), we have

p(x,F(x,y)) < lim p(x, xp1) + lim p(F(xn, yn), F(x,y))
(2.16)
= lim p(F(xn, yu), F(x, y)).
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But, for all n > 0, from (2.2),

p(F(xn,yn), F(x,y)) < a1p(xn, x) + a2p(yn, ¥)
+asp(F(xn, Yn), xn) + asp (F (Yn, Xn), Yn)
+asp(F(xn,Yn), x) + ap(F (Yn, Xn), y) + azp(F (x,y), xn)
+asp(F(y,x), yn) + aop(F (x,y),x) + a10p(F(y, x), y)
= a1p(xn, x) + 0p(Yn, y) + asp(xpi1, X)
+ 4P (Y1, V) + asp(Xni1, X) + a6p(Yni1,y) + azp(F(x, ), x,)
+agp(F(y,x),yn) + asp(F(x,y),x) + awop(F(y,x),y)-
(2.17)
In the above inequality, if n — oo, using (2.12) and Lemma 2.2 we have
nlilr;op(F(xn,yn),F(x,y)) < (a7 + a9)p(F (x, ), x) + (as + a10)p(F (v, %), y)- (2.18)
Analogously,

Py, F(y,x)) <p(Y, Yne1) + P(Yns1, F(Y, %)) = P (Yns1, Yns1)- (2.19)

Taking the limit as n — oo in the above inequality, since y,.1 = F(y4, x,) and using
triangle inequality and (2.13), we have

p(v, F(y,x)) < lim p(y, yuar) + Im p(F(yn xn), F(y, %))
(2.20)
= lim p(F (yn,xn), F(y,%))-

Similar to (2.17), we have

Hm p(F (yn, xn), F(y,x)) < (a7 + a0)p(F(v,x),y) + (as + mo)p(F(x,y),x).  (2.21)

n—aoo

Adding (2.18) and (2.21) and using (2.15) and (2.19), we obtain that

p(x, F(x,y)) +p(y, F(y,x))

(2.22)
< (a7 +ag +ag +a10) [p(x, F(x,y)) +p(y, F(y,x))].

Therefore, p(x, F(x,y)) + p(y, F(y,x)) = 0; thatis, F(x,y) = xand F(y,x) = y. O

Remark 2.5. (1) If in the above theorem, we assume that a; = 0, for all 3 < i < 10, then we
obtain the result of Aydi in [11] which is noted here in Theorem 1.5.
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(2) If in the above theorem, a; = 0, for all 1 <i <10, unless i = 3,9, then we obtain the
result of Aydi in [11] which is mentioned here in Theorem 1.6.

(3) If in the above theorem, we assume that a; = 0, for all 3 <i <10, except thati#5,7,
then we obtain the result of Aydi in [11] (Theorem 1.7).

Many results can be deduced from the above theorem as follows.

Corollary 2.6. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(x,y), F(u,0)) < aip(F(x,y),x) + a2p(F (y,x),y)

(2.23)
+ azp(F(u,v),u) + asp(F (v, u),v),

for every pairs (x,y), (u,v) € X x X, where Y+, a; < 1. Then, F has a unique coupled fixed point in
X.

Corollary 2.7. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(x,y), F(u,0)) < aip(F(x,y),u) + a2p(F (y,x),v)

(2.24)
+ a3P(F(u/ U),X) + “4P(F(Ur u)/ y)’

for every pairs (x,y), (u,v) € X x X, where 3+, a; < 1. Then, F has a unique coupled fixed point in
X.

Corollary 2.8. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(x,y),F(u,v)) < arp(F(x,y),x) + azp(F(y,x),y)

(2.25)
+asp(F(u,v),x) + asp(F(v,u),y),

for every pairs (x,y), (u,v) € X x X, where a1 + ap + az + a4 < 1. Then, F has a unique coupled fixed
point in X.

Corollary 2.9. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(x,y), F(u,0)) < arp(F(x,y),u) +azp(F(y,x),0)

(2.26)
+ azp(F(u,v),u) + asp(F (v, u),v),

for every pairs (x,y), (u,v) € X x X, where X+, a; < 1. Then, F has a unique coupled fixed point in
X.

Also, we have the following results, when the constants in the above corollaries are
equal.
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Corollary 2.10. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

P(F(oy), F1,0)) < 5 [p(x,10) + p(y,0)]

v S (F (), %) +p(F(,2), )]

# 5P (F Gy ) +p(F ), 0)] + 5 (PP, 0),2) + p(F(,0, )
+ % [p(F(u,v),u) + p(F(v,u),v)],
(2.27)

for every pairs (x,y), (u,v) € X x X, where k + 1+ r + s+t < 1. Then, F has a unique coupled fixed
point in X.

Corollary 2.11. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

k
p(E(x,y), F(u,0)) < 5[p(F(x,y),x) +p(F(y,x),y)]
Z (2.28)
+ E [p(F(u, Z)), u) + P(F(U/ u)r ‘0)] s
for every pairs (x,vy), (u,v) € X x X, where k +1 < 1. Then, F has a unique coupled fixed point in X.

Corollary 2.12. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that
k
p(F(x,y), F(w,0)) < 7 [p(F(x,y),u) + p(F(y,%),0)]
l (2.29)
*3 [p(F(u,v),x) +p(F(v,u),y)],
for every pairs (x,y), (u,v) € X x X, where k +1 < 1. Then, F has a unique coupled fixed point in X.
Corollary 2.13. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that
k
p(F(x,y) Fu,0) < 5[p(F(x,y),x) +p(F(y,x),y)]
l (2.30)
*t3 [p(F(u,v),x) +p(F(v,u),y)],

for every pairs (x,y), (u,v) € X x X, where k +1 < 1. Then, F has a unique coupled fixed point in X.
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Corollary 2.14. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

p(F(xy), Fw,0) < 5 [p(x,u) + p(y,0)]

+ é[P(F(x’y)’x) +p(F(y,x),y) +p(F(u,v),u) +p(F(v,u),v)]

+ L p(F (o)) + p(F(y,2),0) + p(E(w,0), ) + p(F(w, ), 9)],
(2.31)

for every pairs (x,y), (u,v) € X x X, where k + 1+ r < 1. Then, F has a unique coupled fixed point
in X.

Corollary 2.15. Let (X, p) be a complete partial metric space and F : X x X — X be a mapping such
that

k
p(F(x,y), Fu,0) < 5 [p(F(x,y),u) +p(F(y,x),0)]
(2.32)
+ % [p(F(u,v),u) + p(F(v,u),v)],

for every pairs (x,y), (u,v) € X x X, where k +1 < 1. Then F has a unique coupled fixed point in X.

Example 2.16. Let X = [0,00) and p on X be given as p(a,b) = max{a,b}. Obviously, the
partial metric space (X, p) is complete (see, e.g., Example 2.3 of [11]).

Define F: X x X — X as F(x,y) = (x +y)/30, forall x,y € X.

Now, we have

p(F(x,y),F(u,v)) = %max{x +y,u+v}

l[max{x,u} +max{y,v}]

IN

27
1
< E[max{x,u} +max{y,v}]
17 + +
+ﬁ-max{x3oy,x +max{y30x,y
17 + + ]
+ 55 -max{x30y,u +max{y30x,v
+ ! —max B0 el fmax] 228
27| 30 30 Y
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+ l [max{w u} -|'I'I’IaX{M U}
27 30 ' 30 '

= aip(x,u) + aop(y,v) + asp(F(x,y),x) + asp(F (y,%),y)
+asp(F(x,y),u) + asp(F (y,x),v) + azp(F(u,v), x)

+agp(F(v,u),y) + agp(F(u,v),u) + arop(F(v,u),v).
(2.33)

Thus, (2.2) is satisfied with a; = 1/27. Obviously, all the conditions of Theorem 2.4 are
satisfied. Moreover, (0, 0) is the unique coupled fixed point of F.
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