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The complete moment convergence of weighted sums for arrays of rowwise ¢-mixing random
variables is investigated. By using moment inequality and truncation method, the sufficient
conditions for complete moment convergence of weighted sums for arrays of rowwise ¢-mixing
random variables are obtained. The results of Ahmed et al. (2002) are complemented. As an
application, the complete moment convergence of moving average processes based on a ¢-mixing
random sequence is obtained, which improves the result of Kim et al. (2008).

1. Introduction

Hsu and Robbins [1] introduced the concept of complete convergence of {X,}. A sequence
{Xn,n=1,2,...} is said to converge completely to a constant C if

> P(X,-C|>e) <o, Ve>0. (1.1)

n=1

Moreover, they proved that the sequence of arithmetic means of independent identically
distributed (i.i.d.) random variables converge completely to the expected value if the variance
of the summands is finite. The converse theorem was proved by Erdés [2]. This result has
been generalized and extended in several directions, see Baum and Katz [3], Chow [4], Gut
[5], Taylor et al. [6], and Caiand Xu [7]. In particular, Ahmed et al. [8] obtained the following
result in Banach space.
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Theorem A. Let {X,;;i > 1,n > 1} be an array of rowwise independent random elements in a
separable real Banach space (B, || - ||). Let P(||Xyil| > x) < CP(|X| > x) for some random variable X,
constant C and all n,i and x > 0. Suppose that {a;,i > 1,n > 1} is an array of constants such that

supla,i| = O(n™), for some r >0,
i>1

w (1.2)

Z|am-| =0(n"), forsomeae|0,r).

i1

Let B be such that a + p# — 1 and fix 6 > 0 such that 1 + a/r < 6 < 2. Denote s = max(1 + (a + f +
1)/r, 8). FEIX|* <owand S, = 32, anXu — 0 in probability, then 322, nPP(]|S,|| > €) < oo
forall e > 0.

Chow [4] established the following refinement which is a complete moment
convergence result for sums of (i.i.d.) random variables.

Theorem B. Let EX; = 0,1 < p <2and r > p. Suppose that E[|X1|" + | X1|log(1 + |X1])] < oo.
Then

>

.
- en“P) <o, Ve>D0. (1.3)
i=1

i W(r/P)2-(/p) E<

n=1

The main purpose of this paper is to discuss again the above results for arrays of
rowwise (-mixing random variables. The author takes the inspiration in [8] and discusses
the complete moment convergence of weighted sums for arrays of rowwise ¢-mixing random
variables by applying truncation methods. The results of Ahmed et al. [8] are extended to (-
mixing case. As an application, the corresponding results of moving average processes based
on a (p-mixing random sequence are obtained, which extend and improve the result of Kim
and Ko [9].

For the proof of the main results, we need to restate a few definitions and lemmas for
easy reference. Throughout this paper, C will represent positive constants, the value of which
may change from one place to another. The symbol I(A) denotes the indicator function of A;
[x] indicates the maximum integer not larger than x. For a finite set B, the symbol §B denotes
the number of elements in the set B.

Definition 1.1. A sequence of random variables {X;,1 < i < n} is said to be a sequence of

(p-mixing random variables, if

k+m’

p(m) = sup{|P(B | A)-P(B)| ;A€ S, Bes? , P(A) > o} —0, asm-—o, (14)
k>1

where%;.‘=o{Xi;j§i§k},1Sjskgoo.

dominated by a random variable X (write {X;} < X) if there exists a constant C, such that
P{|X,| > x} <CP{|X|>x} forallx >0and n > 1.

Definition 1.2. A sequence {X,,n > 1} of random variables is said to be stochastically
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The following lemma is a well-known result.

Lemma 1.3. Let the sequence {X,,n > 1} of random variables be stochastically dominated by a
random variable X. Then for any p > 0,x >0

EIX,PI(1X,| < x) < C[EIXPPI(IX| < x) + X P{IX]| > x}], (1.5)

E|XuPI(|Xy] > x) < CEIX[PI(|X] > x). (1.6)

Definition 1.4. A real-valued function I(x), positive and measurable on [A, o) for some A > 0,
is said to be slowly varying if lim, . [(x\)/I(x) = 1 for each A > 0.

By the properties of slowly varying function, we can easily prove the following lemma.
Here we omit the details of the proof.

Lemma 1.5. Let I(x) > 0 be a slowly varying function as x — oo, then there exists C (depends only
on r) such that

(i) Ck™(k) < Zfl:l n’l(n) < Ck™1(k) for any r > —1 and positive integer k,

(i) Ck™(k) < 32, n"l(n) < Ck™ (k) for any r < =1 and positive integer k.

The following lemma will play an important role in the proof of our main results. The
proof is due to Shao [10].

Lemma 1.6. Let {X;,1 <i < n} beasequence of p-mixing random variables with mean zero. Suppose
that there exists a sequence {C,,} of positive numbers such that E(X54"™, X;)* < C, forany k > 0,n >
1,m < n. Then for any q > 2, there exists C = C(q, ¢(-)) such that

k+j q
Emax| Y X; gc[c?,/2+15 max |X;|7]. (1.7)
1<j<n P k+1<i<k+n

Lemma 1.7. Let {X;,1 < i < n} be a sequence of p-mixing random variables with 35, ¢'/?(i) < oo,
then there exists C such that for any k > 0and n > 1

k+n 2 k+n
1—:< > Xl-> <C > EX}. (1.8)

i=k+1 i=k+1
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Proof. By Lemma 5.4.4 in [11] and Hoélder’s inequality, we have

k+n 2 k+n
E<Z Xl-> DEXF+2 D EXiX;

i=k+1 i=k+1 k+1<i<j<k+n
kin 1/2 1/2
< > EXEr4 3 ¢ (i-i)(EX?) T (EX?)
i=k+1 k+1<i<j<k+n (1 9)
k+n ) k+n-1 k+n 1 5 )
< >VEXF+2 Y] 3¢V -i) (EXE+ EXD)
i=k+1 i=k+1 j=i+1
n k+n
< <1 +4Z(p1/2(i)> > EX?.
i=1 i=k+1
Therefore, (1.8) holds. O

2. Main Results
Now we state our main results. The proofs will be given in Section 3.

Theorem 2.1. Let {X,;,i > 1,n > 1} be an array of rowwise ¢-mixing random variables with EX,; =
0, {Xni}) < Xand ¥%_, ¢'/%(m) < co. Let I(x) > 0 be a slowing varying function, and {an;,i > 1,1 >
1} be an array of constants such that

suplan| =0(n™"), for somer>0,
i>1

2.1)

Z|‘1m’| =0(n%), for some a€[0,r).
i=1

(@ Ifa+p+1 > 0and there exists some 6 > 0 such that (a/r)+1 < 6 < 2,and s =
max(1+ ((a+p+1)/r),6), then EIX|*I1(|X|'") < oo implies

+
- e] <o, VYe>O0. (2.2)

k
Z am'Xm'

i=1

i nPl(n)E [sup
n=1

k>1

(b) If p= -1, > 0, then E|X|"@/") (1 +1(|X|"")) < oo implies

k
Z am'Xm'

.
- e] <o, VYe>O0. (2.3)
i=1

i nl(n)E [sup
n=1

k>1
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Remark 2.2. If a + p+1 <0, then E|X]| < oo implies that (2.2) holds. In fact,

"
Znﬁl(n)E[sup Y aniXu —e] <Sn f’l(n>Z|am|E|Xm|+eznﬂl(n)
k>1 |io1 n=1 i=1
(2.4)
<CY P Im)EX| +e > nPl(n) < oo.
n=1 n=1
Remark 2.3. Note that
+ o ) k
0 > Z nﬂl(n)E[sup Z i Xl - e] = Z nﬂl(n)f P{sup Z ApiXnil — € > x}dx
k>1 | i=1 n=1 0 k>1 | i=1
(2.5)
J Znﬂl(n)P sup Zam nil > x+epdx.
n= k>1 | i=1

Therefore, from (2.5), we obtain that the complete moment convergence implies the complete
convergence, that is, under the conditions of Theorem 2.1, result (2.2) implies

o0 k
Z nﬁl(n)P{sup Z Ani Xpi| > e} < o, (2.6)
n=1 k>1 | i=1
and (2.3) implies
0 k
Z n~l(n)P sup Z aniXni| > € < co. (2.7)
n=1 k>1 |i=1

Corollary 2.4. Under the conditions of Theorem 2.1,

() ifa+ p+1 > 0 and there exists some &6 > 0 such that (a/r) +1 < 6 < 2,and s =
max(1+ ((a+p+1)/7),6), then E|X|*1(|X|"/") < oo implies

[ee)
Z anani -
i=1

N
e] <oo, Ve>0, (2.8)

i nﬂl(n)E[
n=1

2) if p=-1,a >0, then E|X|" @/ (1 +1(|X|"")) < oo implies

[ee)
Z anani
i=1

+
- e] <o, Ve>0. (2.9)

i n‘ll(n)EI:
n=1

Corollary 2.5. Let {Xui,i > 1,n > 1} be an array of rowwise @-mixing random variables with
EXpi = 0,{Xpni} < Xand 3%_, ¢'/%(m) < co. Suppose that 1(x) > 0 is a slowly varying function.
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(1) Letp>1and 1 <t < 2. If E|IX|P'1(|X|") < oo, then

k

:E: )<ni
1

i=

Z P2 UD1(n)E [max

1<k<n

.
- enl/f] <o, VYe>D0. (2.10)

n=1

(2) Let 1 < t < 2. IFE|X|'[1 + I(IX|")] < oo, then

k

:E: )<ni
1

i=

> n " W0Im)E [max

o 1<k<n

.
- enl/f] <o, Ve>D0. (2.11)

Corollary 2.6. Suppose that X,, = 372 aiinYi, n > 1, where {a;,—oo < i < oo} is a sequence of

real numbers with 3% |a;| < oo, and {Y;,—oo < i < oo} is a sequence of @-mixing random variables
with EY; =0, {Y;} < Y and 3%_, ¢'/?(m) < co. Let I(x) be a slowly varying function.

(1) Let 1<t <2,7>1+ (t/2). FEY]I(|Y]) < oo, then

) n "
Z n(r/f)Z(l/t)l(n)E[ Z Xi‘ - enl/t:I <o, Ve>D0. (2.12)
n=1 i=1

(2) Let 1 < t < 2. IFE|Y['[1 + I(|Y]")] < oo, then

n +
> Xi‘ - enl/f] <oo, VYe>O0. (2.13)
i=1

i n—l—(l/t)l(n)E[

n=1

Remark 2.7. Corollary 2.6 obtains the result about the complete moment convergence of
moving average processes based on a ¢p-mixing random sequence with different distributions.
We extend the results of Chen et al. [12] from the complete convergence to the complete
moment convergence. The result of Kim and Ko [9] is a special case of Corollary 2.6 (1).
Moreover, our result covers the case of r = t, which was not considered by Kim and Ko.

3. Proofs of the Main Results

Proof of Theorem 2.1. Without loss of generality, we can assume

[ee)
suplan| <n”, > |an| <n". (3.1)
i=1

i>1
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Let Sk(x) = Z —1 AniXnil (|aniXnil < n7"x) forany k > 1, n > 1, and x > 0. First note that
EIX|PI()X|/") < oo implies E|X|* < oo for any 0 < t < s. Therefore, for x > n’,

k
x‘lnrsupEISnk(X)| = x‘lnrsupE Z i Xnil (|aniXni| > 17" x) (EX,i =0)
k>1 k1 |i;

[ee] [ee]
< Z ElananiII(|anani| > nirx) < Z ElaniX|I(|aniX| > n—rx) ( )
i=1 i=1 3.2

< > lan|EIX|I(1X] > x) < n*E|X|I(|X]| > x)
i=1

< x*TEIX|I(IX]| > x) < E|X|"@D1(X| > #n") — 0 as n —> co.

Hence, for n large enough we have sup,., E[Sqk(x)| < (¢/2)n""x. Then

.
Znﬂl(n)E sup Zam nil| =
k>1 | =1
o oo k
= Z nPl(n) P{sup Z aniXni| > x pdx
n=1 € k>1 | i=1
o oo k
Z p- rl(n)ef P{sup Zam'Xm' >en"x tdx (3.3)
n=1 n’ k>1 | i=1
< CZ nP1(n) P{suplam-Xm-l > n_rx}dx
n=1 n" i
+C > nP7I(n) P{suplSnk (x) = ESur(x)] > n’rxg }dx =1 + .
n=1 n’ k>1

Noting that a + § > -1, by Lemma 1.5, Markov inequality, (1.6), and (3.1), we have

L < Cznﬂ "1(n) j ZP | @i Xni| > 1" x}dx

n"

I/\

Z p- ’l(n)J‘ n'x 1ZE|am Xl I (|aniXni| > n"x)dx

—_

IN

[\/]8

C ﬂ”l(n)f x'E[X|I(|X| > x)dx

Il
—_

n

kr+1
nf*1(n) Zj xLE[X|I(|X]| > x)dx

Ms

I
—



8 International Journal of Mathematics and Mathematical Sciences

w© © k
<CY P U(n) Y KTEXI(IX] > k) < C Y KT EXI(IX] > k) > nP*l(n)

k=n k=1 n=1

Ms

11
—_

<C Y KPR EXI(IX] > k) < CE|X| (T P/01(1X]17) < oo,
k=1

(3.4)

Now we estimate I, noting that >, (pl/ 2(m) < oo, by Lemma 1.7, we have

2
m m
sup E<Z aniXm'I(lananil < n—rx) -E Z ananiI(|anani| < n—rx)>
1<m<co i=1 i=1

(3.5)
<C D Eay X2 I(|anXu| <n’'x).
i=1

By Lemma 1.6, Markov inequality, C, inequality, and (1.5), for any g > 2, we have

P4 sup|Spuk(x) — ESpk(x)| > nrxs < Cn"x TEsup|Suk(x) — ESuk(x)]
k21 2 k>1

© /2 &
< Cn"ix1 [<Z Ea X2 I (|aniXni < nrx)> + D Elan Xl 1 (|aniXnil <177 x)
i i1
(3.6)

s q/2 o
< Cn"ix™1 <Z Ea? X*I(|anX| < n_rx)> +Cn"x™ Y ElayX|'I(|lauX| < n”"x)
i=1 i=1

» a/2 %
+ C<Z P{la,X|> n"x}) + CZP{|am-X| >n"x}

i=1 i=1

=N+ o+ 3+ s

So,

L< 3Pt [+ o ot Jad, (3.7)
n=1 n’

From (3.4), we have 3., n#"I(n) [ Jadx < oo.
For J;, we consider the following two cases.
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If s > 2, then EX? < co. Taking g > 2 such that  + (g(a - r)/2) < -1, we have

> i) foo Jadx
n=1 n"

8

a/2
<C>.n ﬂ””’l(n)f xq< af”-> dx (3.8)
i=1

n=

—

8

(o)
< CZ nﬂ*ﬂml(n)nq(ufw/znr(fqﬂ) < CZ nﬂ+(q(afr)/2)l(n) < .

n=1

_

n=

If s <2, we choose s’ such that 1+ (a/r) < s’ < s. Taking g > 2 such that f + (qr/2)(1 + (a/7) -
s') < =1, we have

S i) [
n=1 n’

<C

Ms

q/2
n” '”‘71(11)f x q( > lanillanl* ™ Elan X[ X[ I(IamX|<n_’x)> dx

B
1]
—_

(3.9)

{ee)
nﬂ—r+rql(n)nqa/Zn—(qr/Z)(s’—l) l[ X9 (n—rx) (Q/Z)(Z—S,)dx

nr

IN
@)
Ms

1l
—

n

C nﬁ+(qr/2)(1+(a/r)fs')l(n) < oo.

IN
LMs

n

So, 3y nPI(n) [ Jidx < co.
Now, we estimate J,. Set I;; = {i > 1| (n(j + 1)) < |aul < (nj)”"}, j = 1,2,.... Then
Ujs1I,j = N, where N is the set of positive integers. Note also that forall k >1,n>1,

8

leaml = Z Z | @i

= j=1i€ly;
(3.10)
> D () (n(G+ 1)) 2 m™ Y (y) (G + 1) (k+ 1)
=1 =
Hence, we have
D (HTy)j " < Cn™ kT, (311)

j=k
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Note that

1) [
n=1 n"

=C Z nPr(n) I x1 Z Z ElanX|'I(|anX| < n”"x)dx
n=1 n’

j=1 i€ly;

© (k+1)"

-c3; ﬂ’”ql(n)Z(ﬁIn;)(nJ) X[ B S 1) e

—_

<C 3 Zl(ﬁzn,xn]) i Z KEEDIEIXFI(X] < (k+ 1) (j+1)")
n= ]
(3.12)
- (k+1)(j+1)-1

=C> nf" ’l(n)Zkr( a+1)- 12(141 DiTT D EIXPIG <X < (i+1)")

n=1 i=0

2(k+1)-1

ﬂfl(n)Zkf< ‘7”)12(111])]‘”7 > EIXFIG <|X[<(i+1)")

i=0

Ms

=
I
—_

(k+1)(j+1)

+C 2; nP"1(n) kz krCa+h-1 Z;(ﬁlnj)j"q > EX|I( < |X|<(i+1))
n= =n ]:

i=2(k+1)

= i+ i

Taking g > 2 large enough such that f + a —rq + r < -1, for J;, by Lemma 1.6 and (3.11), we
get

2(k+1)-1

]2<cznﬂ rl(n)Zk’( )1yt Z EIX|I(i" < |X| < (i +1)")

n=1

2(k+1)-1

o k
—CS RIS EXII( < |X] < i+ 1)) S Pl (n)

k=1 i=0 n=1
2(k+1)-1

SCY KPPy Y EIXIIG <X < (i+1))
k=1

i=0

SC+CEXPIG <IX[<@+1)") D KPra7i(k)
i=3 k=[i/2]

(o)
<C+C Y P G EXITI( < |X| < (i+1)) <C+ CE|X|1+((ﬁ+”‘+1)/’)l<|X|l/r> < .
i=3

(3.13)
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For JJ, we obtain

© o) 0 (j+1)(k+1)
J3 <C Y nP7I(n) DTN (L) Y. EIXIIGE <X < (i+1))
n=1 k=n j=1 i=2(k+1)
<CY nfi(n) Z e N EXPIGE <X <E+DT) D, ()i
n=1 k=n i=2(k+1) j:[z’(k+1)’1]—1

8

[ee] [ee]
<CY n7l(n) kz Kot N e TS EIX (7 < [X] < i+ 1))
=n

n=1 i=2(k+1) (3.14)
o © k
=CY Kk D TUPEXIIG < X[ < (i+1)") Y P l(n)
k=1 i=2(k+1) n=1
<CY KPI) D>, TTPEXITIE < X< i+ 1))
k=1 i=2(k+1)

<C NPT TIEIXIL(i7 < X[ < (i +1)) < CE|X|1+<</“““>/T>1<|X|1/f) < 0.

i=

i

So X2y nPI(n) [ Jodx < oo. Finally, we prove Y2, nPl(n) [ Jadx < oo. In fact, noting
1+ (a/r)<s' <sand p+ (qr/2)(1 + (a/r) — ') < -1, using Markov inequality and (3.1), we
get

n=1

q/2
Znﬂ fl(n)f Jadx < cZnﬂ rl(n)J <Z 1" x~ E|an X|° > dx
n=1

0]
Sci —rl(n)nqrs’/Zn—r(s’—l)(q/2)na(q/2)I x=5/2) g5

n=1 n’

8

IN

(o)
C ﬂfr+r(q/2)+a(q/2)l(n)nr(fs’(q/2)+1) < CZ nﬂ+(qr/2)(1+(a/2)fs')l(n) < oo.

n=

e

n=1

(3.15)

Thus, we complete the proof in (a). Next, we prove (b). Note that E|X|'**/" < oo implies that

(3.2) holds. Therefore, from the proof in (a), to complete the proof of (b), we only need to
prove

I, = CZ n’l’rl(n)f {suplSnk(x) ESk(x)| >n”"x= }dx < co. (3.16)
n=1 n"

k>1
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In fact, noting f= -1, a+ f+1>0,a+ p—r < -1and E|X|"*¥"(]X|'/") < co. By taking q = 2
in the proof of (3.12), (3.13), and (3.14), we get

’“’l(n) J' -2 Z Ea? X?I(|auX| < n”"x)dx < C + CE|X|"*®/] (|X|1/’) <. (3.17)

Then, by (3.17), we have

0

B<Con “l<n>f 1% 2E|Sxn — ESxn|*dx

Ms

1”l(n)f -2 Z Ea? X2 I(|anXni < n"x)dx

—

M8

n " (n) I 2 Z Ed?> XI(|anX| < n"x)dx (3.18)

_

Z 1rl(")f ZP |lanX| > n"x}dx

=1

<C>'m 1”l(n)f -2 Z Ea?® X*I(|anX| < n"x)dx + C < oo.
n=1

The proof of Theorem 2.1 is completed. O

Proof of Corollary 2.4. Note that

. + k +
Z aniXni| —€| < |sup Z aniXnil — €] . (3.19)
i=1 kx1 |1

Therefore, (2.8) and (2.9) hold by Theorem 2.1. O

Proof of Corollary 2.5. By applying Theorem 2.1, taking f = p—2, an =n''forl1 <i<n,
and a,; = 0 for i > n, then we obtain (2.10). Similarly, taking g = -1, a,; = nVtfor1<i<n,
and a,; = 0 for i > n, we obtain (2.11) by Theorem 2.1. O

Proof of Corollary 2.6. Let X,,; = Y; and a,; = ‘”tz;llalﬂ forallm > 1, -0 < i < oo.
Since 3% |ai| < oo, we have sup,|an| = O(n"!) and 37 |au| = O(n'"'*). By applying
Corollary 24, taking p=(r/t) -2, r=1/t,a=1-(1/t), we obtain

Z n(r/t -2 (1/t)l(n)E[

n=1

4
e] <o, Ve>D0.

] = i nﬂl(n)E[
n=1

[e'e]
Z AniXni| =
i=—c0

(3.20)

Therefore, (2.12) and (2.13) hold. O
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