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We study the general semilinear second-order ODE u′′ + g(t, u, u′) = 0 under different two-
point boundary conditions. Using the method of upper and lower solutions, we obtain an
existence result. Moreover, under a growth condition on g, we prove that the set of solutions of
u′′ + g(t, u, u′) = 0 is homeomorphic to the two-dimensional real space.

1. Introduction

The Dirichlet problem for the semilinear second-order ODE

u′′ + g
(
t, u, u′

)
= 0 (1.1)

has been studied by many authors from the pioneering work of Picard [1], who proved the
existence of a solution by an application of the well-known method of successive approxi-
mations under a Lipschitz condition on g and a smallness condition on T . Sharper results
were obtained by Hamel [2] in the special case of a forced pendulum equation (see also
[3, 4]). The existence of periodic solutions for this case has been first considered by Duffing
[5] in 1918. Variational methods have been also applied when g = g(t, u) by Lichtenstein [6],
who considered the functional

I(u) =
∫T

0

(
u′2

2
−G(t, u)

)

dt (1.2)
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with G(t, u) =
∫u
0 g(t, s)ds. When g depends on u′, the problem is nonvariational, and

different techniques are required, for example, the shooting method introduced in 1905 by
Severini [7] and the more general topological approach, which makes use of Leray-Schauder
Degree theory. For an overview of the problem and further results, we refer the reader to
[8]. A different kind of nonlinear boundary value PDE (quasilinear elliptic equations) was
studied extensively in [9, 10].

This problem is recently studied in [11]. Also, this problem is generalized in [12–14].
Several much more general forms of the problem have been studied in [15–17] via lower
and upper solution method. We will study the existence of solutions of (1.1) under Dirichlet,
periodic, and nonlinear boundary conditions of the type

u′(0) = f1(u(0)), u′(T) = f2(u(T)), (1.3)

where f1 and f2 are given continuous functions. Note that if fi(x) = aix + bi, then (1.3)
corresponds to a particular case of Sturm-Liouville conditions and Neumann conditions
when a1 = a2 = 0.

In the second section, we impose a growth condition on g in order to obtain unique
solvability of the Dirichlet problem. Furthermore, we prove that the trace mapping

Tr :
{
u ∈ H2(0, T) : u′′ + g

(
t, u, u′

)
= 0
}
−→ R

2 (1.4)

given by Tr(u) = (u(0), u(T)) is a homeomorphism, and we apply this result to obtain
solutions for other boundary conditions in some specific cases.

In the third section, we construct solutions of the aforementioned problems by an
iterative method based on the existence of an ordered couple (α, β) of a lower and an upper
solution. This method has been successfully applied to different boundary value problems
when g does not depend on u′. For general g, existence results have been obtained assuming
that |g(t, u, u′)| ≤ B(t, |u′|), where B : [0, T] × [0,+∞) → [0,+∞) is a Bernstein function for
someN ≥ ‖α′‖∞, ‖β′‖∞, namely,

(i) B is nondecreasing in u′,

(ii) for α ≤ u ≤ β, if |u′′(t)| ≤ B(t, |u′(t)|) for any t, then ‖u′‖∞ ≤N (see, e.g., [18]).

We will assume instead a Lipschitz condition with respect to u′ and construct in
each case a nonincreasing (resp., nondecreasing) sequence of upper (lower) solutions that
converges to a solution of the problem.

2. A Growth Condition for g

For simplicity, let us assume that g is continuous. We may write it as

g
(
t, u, u′

)
= r(t)u′ + h

(
t, u, u′

)
, (2.1)
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with r being continuous. We will assume that h satisfies a global Lipschitz condition on u′,
namely,

∣
∣
∣
∣
∣
h(t, u, x) − h(t, u, y)

x − y

∣
∣
∣
∣
∣
≤ k < π

T
for x /=y. (2.2)

Remark 2.1. Without loss of generality, we may assume that r ∈W1,∞(0, T). Indeed, if not, we
may multiply (1.1) for any positive p such that r := rp − p′ ∈ W1,∞(0, T) in order to get the
modified equation:

(
pu′
)′ + ru′ + ph

(
t, u, u′

)
= 0. (2.3)

Note that in this case the value π/T in (2.2) must be replaced by
√
λ1/‖p‖∞, where λ1 is the

first eigenvalue of (−pu′)′ for the Dirichlet conditions.
Furthermore, assume that h satisfies the following one-sided growth condition on u:

h(t, u, x) − h(t, v, x)
u − v ≤ c, (2.4)

for u/=v, with

c + k
π

T
<
(π
T

)2
+
1
2
inf
0≤t≤T

r ′(t). (2.5)

Under these assumptions, the set S of solutions of (1.1) is homeomorphic to R
2. More

precisely, one has the following.

Theorem 2.2. Assume that (2.2)–(2.4) hold and let a, b ∈ R. Then there exists a unique solution ua,b
of (1.1) satisfying the nonhomogeneous Dirichlet condition:

ua,b(0) = a, ua,b(T) = b. (2.6)

Furthermore, the trace mapping Tr : (S, ‖ · ‖H2) → R
2 given by Tr(u) = (u(0), u(T)) is a homeo-

morphism.

Proof. For any u ∈ H1(0, T) let u be the unique solution of the linear problem:

u′′ = −[ru′ + h(t, u, u′)],
u(0) = a, u(T) = b.

(2.7)

It is immediate that the operator A : H1(0, T) → H1(0, T) given by A(u) = u is compact.
Moreover, if Sσu := u′′ + σ[ru′ + h(t, u, u′)] with σ ∈ [0, 1], a simple computation shows that
the following a priori bound holds for any u, v ∈ H2(0, T) with u − v ∈ H1

0(0, T):

∥∥u′ − v′∥∥
L2 ≤ μ‖Sσu − Sσv‖L2 , (2.8)
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where

μ =

⎧
⎪⎪⎨

⎪⎪⎩

1
π/T − k , if c ≤ 1

2
inf r ′,

π/T

π/T − k + ((1/2) inf r ′ − c)T/π , otherwise.
(2.9)

Hence, if u = σAu (i.e., Sσ(u) = 0) for some σ ∈ [0, 1], setting la,b(t) = ((b − a)/T)t + a, we
obtain

∥
∥
∥u′ − σl′a,b

∥
∥
∥
L2

≤ μ‖Sσ(σla,b)‖L2 ≤M (2.10)

for some fixed constant M. Thus, existence follows from Leray-Schauder Theorem. Unique-
ness is an immediate consequence of (2.8) for σ = 1.

Hence, Tr is bijective, and its continuity is clear. On the other hand, if (a, b) → (a0, b0),
applying (2.8) to u = ua,b − la,b and v = ua0,b0 − la0,b0 , it is easy to see that ua,b → ua0,b0 for the
H1-norm. As ua,b and ua0,b0 satisfy (1.1), we conclude that also u′′a,b → u′′a0,b0 for the L

2-norm
and the proof is complete.

Remark 2.3. The proof of Theorem 2.2 still holds under more general assumptions for g. In
fact, if g satisfies Caratheodory-type conditions, we may assume only that

h(t, u, x) − h(t, v, y)

u − v ≤ c + k
∣∣∣∣
x − y
u − v

∣∣∣∣ (2.11)

(for u/=v and c, k as before), which is not equivalent to (2.2)–(2.4) when h is noncontinuous.
Thus, the result may be considered a slight extension of well-known results (see, e.g., [19],
Corollary V.2).

As a simple consequence we have the following.

Corollary 2.4. Assume that (2.2) and (2.4) hold. Further, assume that there exists a constantM > 0
such that

h(t, u, 0) sgn(u) ≥ 0 for |u| ≥M,

∥∥∥∥
h(·, u, 0)

u

∥∥∥∥
L2

≤ δ

T1/2μ
for |u| ≥M ,

(2.12)

where μ is the constant defined by (2.9) and δ < 1. Then (1.1) admits at least one T -periodic solution,
which is unique if c < 0 in (2.4).

Proof. With the notations of the previous theorem, let us consider the mapping ϕ : R → R

given by

ϕ(a) = u′a,a(T) − u′a,a(0). (2.13)
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From Theorem 2.2, ϕ is continuous, and it is clear that u is a periodic solution of the problem
if and only if u = ua,a for some awith ϕ(a) = 0.

From (2.8), if |a| ≥ M, we take v = a and σ = 1. Observe that S1uaa = 0. Therefore it
follows that

∥
∥ua,a′

∥
∥
L2 ≤ μ‖h(·, a, 0)‖L2 ≤ δ

T1/2
|a|, (2.14)

where in the last inequality we used (2.6). Hence |ua,a − a| ≤
∫T
0 |u′a,a| ≤ δ|a| or, equivalently:

(1 − δ)|a| ≤ |ua,a| ≤ (1 + δ)|a|. (2.15)

Let p be the unique solution (in distributional sense) of the following problem:

[
p′ − (r + ξ)p

]′ = 0, p(0) = p(T) = 1, (2.16)

where ξ ∈ L∞(0, T) is given by

ξ(t) =
h
(
t, ua,a, u

′
a,a

) − h(t, ua,a, 0)
u′a,a

, (2.17)

with ξ(t) = 0 if u′a,a(t) = 0. A simple computation shows that p is positive, and multiplying
the equation by p, we obtain

ϕ(a) =
∫T

0

(
pu′a,a

)′ = −
∫T

0
ph(t, ua,a, 0). (2.18)

Hence by (2.12) ϕ(a) ≤ 0 ≤ ϕ(−a) for (1 − δ)a ≥ M and existence follows from the continuity
of ϕ. On the other hand, if u and v are periodic solutions of the problem, then

(u − v)′′ + (r + ψ)(u − v)′ + h(t, u, v′) − h(t, v, v′) = 0, (2.19)

where

ψ(t) =
h(t, u, u′) − h(t, u, v′)

u′ − v′ ∈ L∞(0, T). (2.20)
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Now take p > 0 as the unique solution of the problem [p′ − (r + ψ)p]′ = 0, p(0) = p(T) = 1.
Multiplying the previous equality by p(u− v) and applying the boundary conditions for p, u,
and v, we observe

∫T

0
p(u − v)(u − v)′′ = −

∫T

0

[
p′(u − v) + p(u′ − v′)](u − v)′

= −
∫T

0
p′(u − v)(u − v)′ +

∫T

0
p
(
u′ − v′)2,

∫T

0
p
(
r + ψ

)
(u − v)(u − v)′ = −

∫T

0

(
p
(
r + ψ

))′ (u − v)2
2

= −
∫T

0
p′′

(u − v)2
2

=
∫T

0
(u − v)(u − v)′p′.

(2.21)

Thus we obtain

0 =
∫T

0
p
(
u′ − v′)2 −

∫T

0
p
[
h
(
t, u, v′) − h(t, v, v′)](u − v)

≥
∫T

0
p
(
u′ − v′)2 − c

∫T

0
p(u − v)2.

(2.22)

If c < 0, we conclude that u = v.

Remark 2.5. In the previous proof, note that the sign condition on h is only used for (1−δ)|a| ≤
|u| ≤ (1 + δ)|a|. Thus, (2.12) may be replaced by the weaker condition

h(t, ·, 0)|I1 ≥ 0 ≥ h(t, ·, 0)|I2 (2.23)

where Ij = [aj − δj |aj |, aj + δj |aj |] for some aj ∈ R, δj < 1 with

∥∥∥∥
h(·, u, 0)

u

∥∥∥∥
L2

≤ δj

T1/2μ
for u ∈ Ij . (2.24)

Remark 2.6. As a particular case of Corollary 2.4, we deduce the existence of T -periodic
solutions under the following Landesman-Lazer type conditions (see, e.g., [20]):

lim inf
|u|→∞

h(t, u, 0) sgn(u) ≥ 0 ,

lim
|u|→∞

∥∥∥∥
h(·, u, 0)

u

∥∥∥∥
L2

= 0.
(2.25)

As in the standard Duffing equation u′′ + h(u) = θ(t), the asymptotic condition (2.6) can be
dropped if the sign in (2.12) is reversed. More precisely, we have the following.
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Corollary 2.7. Assume that (2.2) and (2.4) hold. Further, assume that there exists a constantM > 0
such that

h(t, u, 0) sgn(u) < 0 for |u| ≥M. (2.26)

Then (1.1) is solvable under periodic or Sturm-Liouville conditions:

u′(0) = a1u(0) + b1, u′(T) = a2u(T) + b2, a1 ≥ 0 ≥ a2. (2.27)

Furthermore, if c < 0 in (2.4), then the respective solutions are unique.

Proof. For the periodic problem, define ϕ as in the previous corollary. For a ≥M, if ua,a(t0) > a
for some t0, we may assume that t0 is maximum, and hence

u′′(t0) = −g(t0, u(t0), 0) = −h(t0, u(t0), 0) > 0, (2.28)

a contradiction. Thus, u ≤ a, which implies that ϕ(a) ≥ 0. In the same way, we deduce that
ϕ(a) ≤ 0 for a ≤ −M. Uniqueness follows as in Corollary 2.4.

For (2.27) conditions, let us first note that if λ > 0, the linear problem

v′′ + rv′ − λv = 0, v′(0) = a1v(0) + b1, v′(T) = a2v(T) + b2 (2.29)

is uniquely solvable, and setting w = u − v problem (1.1)–(2.27) is equivalent to

w′′ + g
(
t,w,w′) = 0, w′(0) = a1w(0), w′(T) = a2w(0), (2.30)

where g(t,w,w′) := g(t,w + v,w′ + v′) − λv satisfies the hypothesis. Hence, it suffices to
consider only the homogeneous case b1 = b2 = 0. In the same way as before, define ϕ : R

2 →
R

2 by

ϕ(a, b) =
(
u′a,b(0), u

′
a,b(T)

)
. (2.31)

For a ≥ M ≥ |b|, we obtain that u′
a,b
(0) ≤ 0 ≤ u′−a,b(0), and for b ≥ M ≥ |a|, it holds that

u′
a,b
(T) ≥ 0 ≥ u′

a,−b(T). By the generalized intermediate value theorem, we deduce that ϕ has
a zero in [−M,M] × [−M,M]. Uniqueness can be proved as in the periodic case.

3. Iterative Sequences of Upper and Lower Solutions

In this section, we construct solutions of (1.1) under the mentioned two-point boundary
conditions by an iterative method. As before, consider g(t, u, u′) = r(t)u′ + h(t, u, u′) where
r ∈W1,∞(0, T) and h is globally Lipschitz on u′ with constant k < π/T .
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We will need the following auxiliary lemmas.

Lemma 3.1. Assume that (2.2) holds and let λ > 0 be large enough. Then for any z, θ ∈ C([0, T]),

u′′ + ru′ + h
(
t, z, u′

) − λu = θ(t) (3.1)

is uniquely solvable under Dirichlet, periodic, or (2.27) conditions. Furthermore, the application T :
C([0, T])2 → C([0, T]) given by T(z, θ) = u is compact.

Proof. Taking λ > kπ/T−(π/T)2−(1/2) inf r ′, existence and uniqueness follow as a particular
case of Theorem 2.2 and Corollary 2.7 for

g
(
t, u, u′

)
= ru′ + h

(
t, z, u′

) − λu − θ(t). (3.2)

Let (z, θ) → (z0, θ0), and set u = T(z, θ), u0 = T(z0, θ0). Then

(u − u0)′′ +
(
r + ψ

)
(u − u0)′ − λ(u − u0) = h

(
t, z, u′0

) − h(t, z0, u′0
)
+ θ − θ0, (3.3)

where ψ(t) = h(t, z, u′)−h(t, z, u′0)/u′−u′0. Hence, it suffices to prove that the following a priori
bound holds for any w satisfying periodic or homogeneous Dirichlet or (2.27) conditions:

‖w‖H1 ≤ c
∥∥w′′ +

(
r + ψ

)
w′ − λw∥∥L2 , (3.4)

where the constant c depends only on k. For Dirichlet and (2.27) conditions, apply Cauchy-
Schwartz inequality to the integral − ∫T0 pLw·wwhere Lw = w′′+(r+ψ)w′−λw and p = e

∫T
0 (r+ψ),

and observe that 0 < m ≤ p ≤ M for some m and M depending only on k (note that under
homogeneous (2.27) conditions, it holds that −pww′|T0 = p(0)a1w(0)2 −p(T)a2w(T)2 ≥ 0). For
periodic conditions, take p such that p′ = (r +ψ)p − r with r constant and p(0) = p(T) = 1 and
the proof follows.

Lemma 3.2. Let φ ∈ L∞(0, T) and assume that w′′ + φw′ − λw ≥ 0 a.e. for λ > 0. Then w ≤ 0,
provided that w satisfies one of the boundary conditions:

(i) w(0), w(T) ≤ 0,

(ii) w(T) −w(0) = 0 ≥ w′(T) −w′(0),

(iii) w′(0) − a1w(0) ≥ 0 ≥ w′(T) − a2w(T), a1 ≥ 0 ≥ a2.

Proof. For w(0), w(T) ≤ 0, the result is the well-known maximum principle for Dirichlet
conditions. If (ii) holds and w(0) = w(T) > 0, as w cannot achieve a positive maximum
on (0, T), we have that w′(0) = w′(T) = 0 and w,w′ ≥ 0 over a maximal interval (t0, T].
Taking p = e

∫ t
0 φ, we deduce that pw′ is nondecreasing on [t0, T], a contradiction. If (iii) holds

and, for example,w(0) > 0, restrictingw up to its first zero if necessary, it suffices to consider
only the casew ≥ 0. As before, we get a contradiction from the fact that pw′ is nondecreasing.
The proof is similar if we assume that w(T) > 0.
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In order to prove the main result of this section, we recall that (α, β) is an ordered
couple of a lower and an upper solution for (1.1) if α ≤ β and

α′′ + g
(·, α, α′) ≥ 0 ≥ β′′ + g(·, β, β′), (3.5)

under the following boundary conditions.
For the Dirichlet problem,

α(0) ≤ a ≤ β(0), α(T) ≤ b ≤ β(T). (3.6)

For the periodic problem,

α(T) − α(0) = 0 = β(T) − β(0), α′(T) − α′(0) ≤ 0 ≤ β′(T) − β′(0). (3.7)

For the problem (1.3),

α′(0) − f1(α(0)) ≥ 0 ≥ β′(0) − f1
(
β(0)

)
, α′(T) − f2(α(T)) ≤ 0 ≤ β′(T) − f2

(
β(T)

)
. (3.8)

We make the following extra assumption.
There exists a constant R > 0 such that

h(t, u, α′) − h(t, v, α′)
u − v ≤ R, h

(
t, u, β′

) − h(t, v, β′)

u − v ≥ −R, (3.9)

for any u, v such that α(t) ≤ u(t), v(t) ≤ β(t), and for (1.3): there exists a constant R > 0 such
that

f1(x) − f1
(
y
)

x − y ≤ R for α(0) ≤ x, y ≤ β(0),

f2(x) − f2
(
y
)

x − y ≥ −R for α(T) ≤ x, y ≤ β(T).
(3.10)

Then we have the following.

Theorem 3.3. Assume that there exists an ordered couple (α, β) of a lower and an upper solution for
Dirichlet, periodic, or (1.3) conditions. Further, assume that (2.2) and (3.9) hold (and also (3.10),
for the (1.3) case). Then the respective boundary value problem admits at least one solution u with
α ≤ u ≤ β.

Remark 3.4. Observe that a Lipschitz condition is a particular case of a Nagumo condition.
This result can also be obtained as a Corollary of Theorem 3.2 in [21].

Proof. For λ ≥ R large enough and u ∈ C([0, T]) define Tu = u to be the unique solution of the
following problem:

u′′ + ru′ + h
(
t, u, u′

) − λu = −λu (3.11)
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satisfying, respectively, Dirichlet, periodic, or the Sturm-Liouville condition:

u′(0) − Ru(0) = f1(u(0)) − Ru(0), u′(T) + Ru(T) = f2(u(T)) + Ru(T). (3.12)

Compactness of T follows easily from Lemma 3.1. Moreover, if u ≤ β, then

u′′ + ru′ + h
(
t, u, u′

)
+ Ru − λu = (R − λ)u ≥ (R − λ)β

≥ (R − λ)β + β′′ + rβ′ + h(t, β, β′).
(3.13)

Hence, setting

ψ(t) =
h(t, u, u′) − h(t, u, β′)

u′ − β′ , (3.14)

we deduce that

(
u − β)′′ + (r + ψ)(u − β)′ − λ(u − β) ≥ [h(t, β, β′) + Rβ] − [h(t, u, β′) + Ru] ≥ 0. (3.15)

For Dirichlet and periodic cases, it follows that u ≤ β. For (1.3), note that

u′(0) − Ru(0) = f1(u(0)) − Ru(0) ≥ f1
(
β(0)

) − Rβ(0) ,
u′(T) + Ru(T) = f2(u(T)) + Ru(T) ≤ f2

(
β(T)

)
+ Rβ(T).

(3.16)

Hence,

(
u − β)′(0) − R(u − β)(0) ≥ 0 ≥ (u − β)′(T) − R(u − β)(T), (3.17)

and from Lemma 3.2, we also obtain that u ≤ β. In the same way, if u ≥ α, we obtain that u ≥ α
and the proof follows from Schauder Fixed Point Theorem.

Remark 3.5. Existence conditions in Corollary 2.7 are easily improved by applying
Theorem 3.3. Indeed, under condition (2.26), it is immediate that (−M,M) is an ordered
couple of a lower and an upper solution.

Remark 3.6. In the context of the previous theorem, from Lemma 3.1, we deduce the existence
of a constant K such that if u = Tu for α ≤ u ≤ β, then

∥∥u′
∥∥
L∞ ≤ K. (3.18)

Example 3.7. It is easy to see that the problem

u′′ − u = 0,

u′(0) = u(0), u′(T) = u(T) + 1
(3.19)
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has no solution, although α = −1 is a lower solution. From the previous theorem, we
deduce that no upper solution β ≥ −1 exists. This can be proved directly from the following
conditions:

β′′ − β ≤ 0, β′(0) ≤ β(0), β′(T) ≥ β(T) + 1. (3.20)

Indeed, as no negative minimum exists, if β(0), β(T) ≥ 0, we may take t0 maximum such that
β′ > 0 over (t0, T]. Hence, (β′)2(T)−β2(T) ≤ (β′)2(t0)−β2(t0) ≤ 0, a contradiction. On the other
hand, if β(0) < 0, then β′ < 0 on [0, T) and β′(T) = 0, a contradiction since β′′ ≤ β. The case
β(0) ≥ 0 > β(T) can be easily reduced to the previous one.

In order to construct solutions by iteration, we need a stronger assumption on h.
There exists a constant R such that

|h(t, u, x) − h(t, v, x)| ≤ R|u − v| (3.21)

for u, v such that α(t) ≤ u(t), v(t) ≤ β(t), and x ∈ R.

Corollary 3.8. Assume that there exists an ordered couple (α, β) of a lower and an upper solution for
Dirichlet, periodic, or (1.3) conditions. Further, assume that (2.2) and (3.21) hold (and also (3.10),
for the (1.3) case). Set λ ≥ R large enough, and define the sequences {un} and {un} given by

u0 = α, u0 = β, (3.22)

and un+1, un+1 are the (unique) solutions of the following problems:

u′′n+1 + ru
′
n+1 + h

(
t, un, u

′
n+1
) − λun+1 = −λun,

u′′n+1 + ru
′
n+1 + h

(
t, un, u

′
n+1

) − λun+1 = −λun,
(3.23)

under the respective boundary conditions. Then (un un) is an ordered couple of a lower and an upper
solution. Furthermore, {un} (resp., {un}) is nonincreasing (nondecreasing) and converges to a solution
of the problem.

Remark 3.9. Observe that this is also a classical result that can be found in the works of Adje
[22] or Cabada [23], for example.

Proof. From the previous theorem, we know that α ≤ u1 ≤ β. Moreover,

u′′1 + ru
′
1 + h

(
t, u1, u

′
1
)
= (λ − R)(u1 − β

)
+
[
h
(
t, u1, u

′
1
)
+ Ru1

] − [h(t, β, u′1
)
+ Rβ

] ≤ 0.
(3.24)

Hence, u1 is an upper solution of the problem. Inductively, it follows that un is an upper
solution for every n, with α ≤ un+1 ≤ un. Hence un converges pointwise to a function u.

From

u′′n+1 + ru
′
n+1 + h

(
t, un, u

′
n+1
) −→ 0 (3.25)
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pointwise. Moreover, by Lemma 3.1, we know that {un} is bounded in H1(0, T); hence in
H2(0, T), it follows easily that

u′′ + ru′ + h
(
t, u, u′

)
= 0. (3.26)

Thus, u is a solution of the problem. The proof for un is analogous. Moreover, if we assume
that un ≤ un, it is immediate that un+1 ≤ un+1.

References

[1] E. Picard, “Sur l’application desm ethodes d’approximations successives. a l’ etude de certaines equa-
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477, Birkhäuser, Basel, Switzerland, 1994.

[9] J.-P. Gossez, “Boundary value problems for quasilinear elliptic equations with rapidly increasing co-
efficients,” Bulletin of the American Mathematical Society, vol. 78, pp. 753–758, 1972.

[10] J.-P. Gossez, “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) in-
creasing coefficients,” Transactions of the American Mathematical Society, vol. 190, pp. 163–205, 1974.

[11] C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lowerand Upper Solutions, vol. 205 of
Mathematics in Science and Engineering, Elsevier, Amsterdam, The Netherlands, 1st edition, 2006.

[12] R. A. Khan, “Positive solutions of four-point singular boundary value problems,”Applied Mathematics
and Computation, vol. 201, no. 1-2, pp. 762–773, 2008.

[13] R. Vrabel, “Nonlocal four-point boundary value problem for the singularly perturbed semilinear dif-
ferential equations,” Boundary Value Problems, vol. 2011, Article ID 570493, 9 pages, 2011.

[14] R. Vrabel, “A priori estimates for solutions to a four point boundary value problem for singularly per-
turbed semilinear differential equations,” Electronic Journal of Differential Equations, vol. 2011, no. 21, 7
pages, 2011.

[15] J. R. Graef, L. Kong, and Q. Kong, “Higher order multi-point boundary value problems,” Mathema-
tische Nachrichten, vol. 284, no. 1, pp. 39–52, 2011.

[16] J. R. Graef, L. Kong, and F. M. Minhós, “Higher order boundary value problems with φ-Laplacian and
functional boundary conditions,” Computers & Mathematics with Applications, vol. 61, no. 2, pp. 236–
249, 2011.

[17] J. R. Graef and L. Kong, “Existence of solutions for nonlinear boundary value problems,” Communica-
tions on Applied Nonlinear Analysis, vol. 14, no. 1, pp. 39–60, 2007.

[18] A. Ja. Lepin and F. Zh. Sadyrbaev, “The upper and lower functions method for second order systems,”
Journal for Analysis and Its Applications, vol. 20, no. 3, pp. 739–753, 2001.

[19] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, vol. 40 of CBMS Regional
Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1979.

[20] N. Rouche and J. Mawhin, Ordinary Differential Equations, vol. 5 of Surveys and Reference Works in
Mathematics, Pitman (Advanced Publishing Program), Boston, Mass, USA, 1980.



International Journal of Mathematics and Mathematical Sciences 13

[21] Ch. Fabry and P. Habets, “Upper and lower solutions for second-order boundary value problemswith
nonlinear boundary conditions,”Nonlinear Analysis: Theory, Methods & Applications, vol. 10, no. 10, pp.
985–1007, 1986.

[22] A. Adje, “Existence et multiplicité des solutions d’équations différentielles ordinaires du premier or-
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