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The author establish several Hermite-Hadamard and Simpson-like type inequalities for mappings

whose first derivative in absolute value aroused to the gth (g > 1) power are (a, m)-convex. Some
applications to special means of positive real numbers are also given.

1. Introduction

Recall that, for some fixed a € (0,1] and m € [0,1], a mapping f : I C [0,00) — R is said to
be (a, m)-convex on an interval I if the inequality

fltx+m(1-1t)y) <t*f(x) +m(1-t%)f(y) (1.1)

holds for x,y €I, and t € [0, 1].

Denote by K, (I) the set of all (a, m)-convex mappings on I. For recent results and
generalizations concerning m-convex and (a, m)-convex mappings, see [1-4].

For the simplicities of notations, for f € K¥,(I), let us denote

mb
(a—mb)St(f)(a,m,r) = %{f(a) L (r- 2)f<“ +2’"b> + f(mb)} - mbl_ _ | fax.
(1.2)
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In [1, 3], Klari¢i¢ Bakula and Ozdemir et al., proved the following Hadamard’s
inequalities for mappings whose second derivative in absolute value aroused to the g-th
(g > 1) power are (a, m)-convex.

Theorem 1.1. Let f : 1 C [0,b*] — R be a twice differentiable mapping on the interior 1° of an
interval 1 such that f" € Li([a,b]), where a,b € Twith a < b and b* > 0. If | f"|1 is (a, m)-convex
on [a,b] for (a,m) € [0, 1] and q>1withl/p+1/q =1, then the following inequality holds:

_ 1/
@ [st(n@m 2] <=2 (1) T iul @l s mol o)) (13)
where
1 a% +5a
P a+@+3) T 6@+2@+3) (14)
_ 1/p
(b) SZ(f)(a,m,6)( < mbz a(%) {/40|f”(a)|q+mv0|f”(b)|q}1/q, (1.5)
where
_ q T'(a+2)T(q)
#0—<q+a+2>r(q+zx+l)' L6)
= 1 _< q )T(a+2)r(q) :
O_(q+l)(q+2) g+a+2/T(g+a+1)’
where
I'(x) = ro et ldt, x>0. (1.7)
0

Theorem 1.2. Under the same notations in Theorem 2.2, if |f"|7 is (a, m)-convex on [a,b] for
(a,m) € [0,1]% and g > 1 with 1/p +1/q = 1, then the following inequality holds:

b—al T(w+1) "7 1 1/4
Sl;(f)(a,m,Z)' < m8 a{r(;}i’;/)z)} {|fll(a)|th+1 +m|fﬂ(b)|q<ai1>} . (1.8)

Note that for (o, m) € {(0,0), («,0), (1,0), (1,m), (1,1), (a,1)} one obtains the following
classes of functions: increasing, a-starshaped, starshaped, m-convex, convex, and a-convex.
For the definitions and elementary properties of these classes, see [4-8].

For recent years, many authors present some new results about Simpson’s inequality
for (a,m)-convex mappings and have established error estimations for the Simpson’s
inequality: for refinements, counterparts, generalizations, and new Simpson’s type inequali-
ties, see [1-3, 6].

In [9], Dragomir et al. proved the following theorem.
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Theorem 1.3. Let f : I C [0,00) — R be an absolutely continuous mapping on [a,b] such that
f' € L,([a,b]), where a,b € Twith a < b. Then the following inequality holds:

, b-ay 2417
snasel< O ZLEL 19)

The readers can estimate the error (f) in the generalized Simpson’s formula without
going through its higher derivatives which may not exist, not be bounded, or may be hard to
find.

In this paper, the author establishes some generalizations of Hermite-Hadamard and
Simpson-like type inequalities based on differentiable (a, m)-convex mappings by using the
following new identity in Lemma 2.1 and by using these results, obtain some applications to
special means of positive real numbers.

2. Generalizations of Simpson-Like Type Inequalities on K/ (I)

In order to generalize the classical Simpson-like type inequalities and prove them, we need
the following lemma [6].

Lemma 2.1. Let f : 1 C [0,b*] — R be a differentiable mapping on the interior 1° of an interval 1,
where a,b € Twith 0 < a < band b* > 0. If f' € L'([a,b]), then, for r > 2 and h € (0,1) with
1/r < h < (r—1)/r, the following equality holds:

1
SU(f)(a,m,7) = f p(r,t) f'(ta + m(1 - t)b)dt (2.1)
0

for f € K& ([a,b]) and each t € [0, 1], where

1 11
p(r,t) = T - [O 2] (2.2)

r—1 1
t——— te(=,1].
= re(z]

By the similar way as Theorems 1.1-1.3, we obtain the following theorems.

Theorem 2.2. Let f : 1 C [0,b*] — R be a differentiable mapping on 1° such that f' € L([a,b]),
where a,b € Twith0 < a < b < co and b* > 0. If |f'| € K% ([a, b]), for some (a,m) € (0,1]% and
mb > a, then, for any r > 2, the following inequality holds:

Sa(F) @ mn)| < {u+ i+ + i} F @]+ (] +9F 9] + v fml £ @), (2.3)
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where
- 1
M= @)@+ 2)re’
- 1 +(1x+1)r—2(1x+2)
M= arD@r2r? " 2 2(ar )(a+2)r
s (r=1)? . Aa+2)-3r
M= G iD@rr? T 22y D@+ 2)r
s (=1 (a+2) -1
M= G iD@ryr? T ar D@+ 2)r (2.4)

1
v = ﬁ‘ﬂ%r

2_(7’—2)2 2

V| = 372 — M1,
3 _ (r - 2)2 3
1 g2 v
4 1

!
vl_zrz Hq-

Proof. From Lemma 2.1 and using the properties of the modulus, we have the following;:

1/r

SZ(f)(oc,m,r)| < f <% - t) |f (ta + m(1 - t)b)|dt

0

+ f1/2<t - %) |f'(ta +m(1-t)b)|dt

1(”1)/ 2.5)
r0/r s q , )
+f1/2 ( r _t>|f(t“+m(1 t)b)|dt
1 1
B ' —~ t)b)|dt.
JrJ‘(r—l)/r<t T )lf (ta+m(1-t)b)|dt
Since |f'| is (&, m)-convex on [a, b], we know that for any ¢ € [0,1]
|f(ta+ m(1-Db)|[ <] f'(a)] + m(1 - )| f'(B)]- (26)

By (2.5) and (2.6), we get the following:

1/r
0

Si(N@mn| <[ (-0 {Elf @] +m -7 o)

1/2 1 ol N :
+J (t—;){t IF(@)] + m(1 - )| f'(b)| ) dt

1/r
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(r-1)/r _
+f <rT1—t){t“|f’(a)|+m(1—t“)|f’(b)|}dt

1/2

! r—1 P e
+J(r—1)/r<t__>{t |f'(@)| + m(1 )| f'(b)|}at

.
1/2 1 _
< {J Ly t“dt+f -1y t“dt}|f’(a)|
o |7 1/2
1/2 1 _
+ f 1—t‘(l—t"‘)dt+f R R Y 0]
o |7 1/2

= (Wi i} F @)+ {v]+9F 03+ vi | £ )],

(2.7)
which completes the proof. O
Corollary 2.3. In Theorem 2.2, (i) if we choose & = 1 and r = 2, then we have the following:
b mb
|(mb_a)sl;(f)(1,m,z)| - ‘f(a) +f(mb) 1 f F)dx
2 mb—a
a (2.8)
mb-a ,
<——{If@|+m|f®]},
and (ii) if we choose & = 1 and r = 6, then we have the following
1 a+mb 1 mb
—a)st . -
|mb - @)$1(£) (1, m,6)| ‘ @ (S7) + s - o [ poax
5 ! !
< o (mb = a){|f'(@)] +m| f' )]}
(2.9)

Theorem 2.4. Under the same notations in Theorem 2.2, if |f'|7 € K& ([a,b]), for some (a, m) €
(0,11, mb > aand g > 1 with 1/p +1/q = 1, then, for any r > 2, the following inequality holds:

Sh(f)(am, )|
< {%}/p{ (1f @7+ wiml £ ®)]7) " + (1 (@) + v%mlf’<b>|q>l/q}

1/p
' {%<_2>} {<ﬂ?|f’<a>lq evtml P @)+ (417 @) +v§’m|f'(b)|q>l/q}.
(2.10)
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Proof. From Lemma 2.1 and using the properties of modulus, we have the following:

1/r

SZ(f)(a,m,r)| < f G - t) |f (ta + m(1 - £)b) | dt

0

+ fl/z (t - %) |f'(ta+m(1-1t)b)|dt

1/r

+ f(r_l)/rc -1 t) |F'(ta+ m(1 - Hb)|dt

1/2 r

+f1 (t— r;1>|f’(ta+m(1 — B)b)|dt.

(r-1)/r

(2.11)

Using the power-mean integral inequality and (a, m)-convexity of |f'|7 for any t €
[0,1], we have the following

(a)
1/r
Ty f'(ta+m@1-1)b)|"dt < pi|f'(@)|" +vim|f )|, (2.12)
)l ["at < | @ +vim|
(b)
1/2
j (t - 1) |f(ta+m@1 -t)b)|"dt <3| f (a)|" +vim|f (b)|*, (2.13)
1/r r
(©)
r-1)/r _
f <r 1—t>|f(ta+m(1—t)b)|"dtgy§|f'(a)|q+v§m|f'(b)|q, (2.14)
1/2 r
(d)

r < r—1
t_
(r-1)/r r

By the similar way as the above inequalities (a)-(d), we have the following:

(@)

) |f(ta+m(1-0b)|"dt < | f'(@)|" +vim|f ()]". (215)

1/q
'

[ (2-ireasmo-omlars (L) @ smiror)”, o
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(b")

1/2 1 / 1/7r-2\2 1/p , : 1/q
fl/r<t—;>|f(ta+m(1—t)b)|dt§{§< - )} {1B1f @7+ vim|f®)]}
(2.17)

(c)

r-0/r s _q 1/7r-2\2 Vp 1/q
j < —t>|f’(ta+m(1—t)b)|dt§{§< . >} {y?|f’(a)|q+vfm|f’(b)|q} i

1/2 r
(2.18)
(d)
! r=1Y\, . LY L ay o ia s bt g1
L”W(t— - >|f (ta+m(1-t)b)|dt < {272} {1 @]+ vim|f @)} .
(2.19)
By (2.11) and (2.16)—(2.19) the assertion (2.10) holds. O
Corollary 2.5. In Theorem 2.4, (i) if we choose & = 1 and r = 2, then we have that
f(a) + f (mb) ™
- f(x)dx
' 2 ) mb—a L (2.20)
-1/q
< & b - @[ (1 @]+ 5m|F O} + (51 @]+ ml )]},
and (ii) if we choose & = 1 and r = 6, then we have that
1 b 1 ("
‘g{f(ﬂ) eaf () pon) | - o [ podx
- 1\ (L v "(q) |9 N
< (mb ”>[<72><18> (@] +17m] f ®)]) o1

2/q
+ @)@+ mlr O} + (55) ()
<@ @]+ 11m| £ )|+ (1] £ @]+ 7m| £ 0)|T) ]
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Theorem 2.6. Under the same notations in Theorem 2.2, if |f'|7 € K% ([a,b]), for some (a,m) €
(0,11%, mb > aand q > 1 with 1/p +1/q = 1, then, for any r > 2, the following inequality holds:

S5(F) (@,m, )]

< {
| pptl
+ {

(r-2)r*
2p+lypp+l

where

Proof. Suppose that g > 1.

following:

S5(F) (@ m, )| < {

+

}1/P{ <#%|f’(a)|5l + V%m|f,(b)|q>l/q + <#§|f’(a)|”l + v§m|f/(b)|q> }

1/r

)

1/q

1/p
} [(atr@U s imlr o)« (alr @)+ smlrwl) "],

(2.22)
1 1
2= retl(a+1)
) ra+1 _2a+1
H2 = 2"‘+11‘"‘+1(0£+ 1)’
5 2a+1 (7’ _ 1)DC+1 _ ra+1
Hy = Dat+lpa+l (a+1) /
. ra+1 _ (T _ 1)a+1
Y L (2.23)
1
v, = P #ar
2 =2 5
V2= 5 T Hy
r—2
v; = 21, +/’l§’
1
vy = P Iz

From Lemma 2.1, using the Holder integral inequality, we get the

G ) t>pdt}1/p{f:/r |f(th +m(1 - t)a)|”dt}

1/2 t—l pdt}l/P{ 1/2

’[t:rl)(/, r> P flf;P (r-1)/7

L/z ( —t) dt} {L/z |f’(tb+m(1—t)a)|th}
/

ijm <t - >pdt}1 p{f(lr—l)/r

1/q

1/q
|f'(tb+m(1 - t)a)|‘7dt}

1/q

r—1

r

r—1
r

1/q
|f’(tb+m(1—t)a)|th}
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1/p 1/r
(e} [ e ma-poral
ot Y VP (2 1/q
" %(:2) } {L/ |f'(tb+m(1—t)a)|"dt}

1 /r—a\P )P ( (- \
+ "(th + m(1 - t)a)|%dt
2r+t ( r > } {L/z f |

1/ 1 1/q
+ r:+1} p{f |f’(tb+m(1—t)a)|th} ,

1/q

1/q

(r-1)/r
(2.24)

where we have used the fact that 1/2 < (1/(p + MNYP <1.
Since | f'|7 € K}}([a, b]) for some fixed & € (0, 1] and m € [0, 1], we have the followings:

1/r
J‘o |f(tb+ (1= Ha)|"dt < | f'(@)|" + vym|f'(B)]",

1/2
L/ |f(tb+ (1= t)a)|"dt <3| f'(a)|" + vim|f (b)]",

(r-1)/r (225)
J |f'(tb+ (1 - t)ya)|"dt < 3| f'(a)|" + vam| £ ()|,
1/2
1
[, 1fea-palias gy @l simlr o)
r-1)/r
Hence, if we combine the inequalities in (2.24)-(2.25), we get the desired result. O
Corollary 2.7. In Theorem 2.6, (i) if we choose & = 1 and r = 2, then we have that
(a) + f(mb) 1 mb
! Zf  mb-a fx)dx
“ (2.26)

1+1/q
< @ (mb - a){(|f' @] +3m|f ®)[)"" + G| f @] +m|f ®)])"},

and (ii) if we choose a = 1 and r = 6, then we have

‘%{f(a)+4f<a+2mb)+f(mb)}— L (" foax

mb-a ),

1+2/q
<omb-a| (3) 7 (@@t @) s qul@p i)

2+1/g
() {(|f'<“)|"+2m|f’<b>lq)””’+(2|f'<a>|"+m|f'<b>|‘7)1”}],
(2.27)

where we have used the fact that (1/ 2)1/ 7<1.
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3. Applications to Special Means

Now using the results of Section 2, we give some applications to the following special means
of positive real numbers a, b € R* with b > a.

(1) The arithmetic mean: A(a,b) = (a+b)/2.

(2) The geometric mean: G(a,b) = Vab.

(3) The logarithmic mean: L(a,b) = (b —a)/(Inb —Ina) for a#b.
(4) The harmonic mean: H(a,b) = 2ab/(a + b).

(5) The power mean: M, (a,b) = ((a" + br)/2)1/r, r>1,a beR.
)

(6) The generalized logarithmic mean:

bn+1 _ an+1 1/n
Ln(ll, b) = [m] , a # b. (31)

(7) The identric mean:

a
I(a,b)=11/b\" "™ , (3.2)
- a#b.

Proposition 3.1. For n € (-00,0) U [1,00) \ {-1} and [a,b] € [0,b*] with b* > 0, we have the
following inequalities:

mb—a
8

©) | 5At" ) + 3400, m) - Ly, mb)| (33

(a) |A(a", m"b") - L"(a, mb)| < |n|M:j (a, ml/(n—l)b>'

5 n-1 1/(n-1)
< <ﬁ> (mb — a)|n|M"] (a,m b).

Proof. The assertions follow from Corollary 2.3 for f(x) = x™. O

Proposition 3.2. For [a,b] € [0, b*], we have the following inequalities:

(a) |H*1(a,mb) —L’l(a,mb)| < <M>M§<ml/2a,b>,

8a2b?
< <M>M§ <m1/2a, b>.

1, 2 1 (3.4)
(b) ‘gH (a,mb)+§A (a,mb) — L™ (a, mb) a2l

Proof. The assertions follow from Corollary 2.3 for f(x) =1/x. O
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Proposition 3.3. For n € (-o0,0) U [1,00) \ {-1} and [a,b] € [0,b*], we have the following
inequalities:

(a) |A(a", m"b") - L;,(a, mb)|

-1/
: <3 8 q>(mb ~ @l x {Al/q<a(n—1)q’ Smb(nil)q>l/q + AVa <5a("*1)q,mb(n—1)q>1/q}’

(b) '%A(a",m”b") + 2 A (a,mb) - Lz(a,mb>|

< <%> <é>1/q(mb —a)|n| x {Al/q<a("_1)q, 17mb("‘1)q> + A4 (17a(”‘1)q, mb("‘l)q> }

25\ /2\"4
+ (@) <£) (mb—a)|n|
x {AV1(7aD9, 11mb D7) + AV (11219, 7mp"-D7) |
(3.5)
Proof. The assertions follow from Corollary 2.5 for f(x) = x™. O
Proposition 3.4. For n € (-o0,0) U [1,00) \ {-1} and [a,b] € [0,b*], we have the following
inequalities:
n nipn n 1
(@) [A(a®,m"b") = Ly(a,b)| < o575 )Inl(mb = a)
y {Al/q (a(nfl)q’3mb(nfl)q> + Al/a <3a(n71)q,mb(nfl>q> },
(b) '%A(a”,m"b") + gA"(a, mb) — Ly (a, mb)‘

1 1+1/q 1 1/!]
< (6) (5) |n|(mb — a) x {Al/q (a(”’l)q, 11mb("*1)‘7> + Al <11a(”’1>‘7, mb(”*l)‘7> }

1 2+1/q 1
z q _ 1/ ( 4(n-1)q (n-1)q 1/9 (0 4m-1)q (n-1)q
+<3> <2 >|n|(mb u)x{A <a ,2mb >+A <2a ,mb )}
(3.6)
Proof. The assertions follow from Corollary 2.7 for f(x) = x™. O
Proposition 3.5. For [a,b] € [0, b*], we have the following inequalities:

) < s

I(a,b) b—al /1\"* q ay1/4 a4 pny/a
<— [(E) {(a + 11619 + (11a7 + bY) } (37)

G1/3(a,b)A2/3(a,b)
+(= {(aq+2b‘7) 9+ (22 + b) q} .

(b) |ln

3

Proof. The assertions follow from Corollary 2.7 for f(x) = —Inxand m = 1. O
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