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We have studied subclass of multivalent harmonic functions with missing coefficients in the open
unit disc and obtained the basic properties such as coefficient characterization and distortion
theorem, extreme points, and convolution.

1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a simply
connected complex domain D ⊂ C if both u and v are real harmonic in D. It was shown
by Clunie and Sheil-Small [1] that such harmonic function can be represented by f = h + g,
where h and g are analytic in D. Also, a necessary and sufficient condition for f to be locally
univalent and sense preserving in D is that |h′(z)| > |g ′(z)| (see also, [2–4]).

Denote by H the family of functions f = h + g, which are harmonic univalent and
sense-preserving in the open-unit discU = {z ∈ C : |z| < 1}with normalization f(0) = h(0) =
f ′
z(0) − 1 = 0.

For m ≥ 1, 0 ≤ β < 1, and γ ≥ 0, let R(m, β, γ) denote the class of all multivalent
harmonic functions f = h + g with missing coefficients that are sense-preserving in U, and
h, g are of the form

h(z) = zm +
∞∑

n=m+1

an+1z
n+1, g(z) =

∞∑
n=m

bn+1z
n+1 (m ≥ 1; z ∈ U) (1.1)



2 International Journal of Mathematics and Mathematical Sciences

and satisfying the following condition:

Re
{(

1 + γeiφ
)zf ′(z)
z′f(z)

− γmeiφ
}

≥ mβ
(
m ≥ 1; 0 ≤ β < 1; γ ≥ 0; φ real

)
, (1.2)

where

z′ =
∂

∂θ

(
z = reiθ

)
, f ′(z) =

∂

∂θ
f
(
reiθ
)
. (1.3)

We note that:

(i) R(m, β, 1) = R(m, β)with am+1; bm /= 0 (see Jahangiri et al. [5]);

(ii) R(1, β, γ) = JH(α, β, γ) (see Kharinar and More [6]);

(iii) R(1, β, 1) = GH(β) with a2; b1 /= 0 (see Rosy et al. [7] and Ahuja and Jahangiri [2]).

Also, the subclass denoted by T(m, β, γ) consists of harmonic functions f = h + g, so
that h and g are of the form

h(z) = zm −
∞∑

n=m+1

an+1z
n+1, g(z) =

∞∑
n=m

bn+1z
n+1 (an+1; bn+1 ≥ 0; m ≥ 1; z ∈ U). (1.4)

We note that:

(i) T(m, β, 1) = T(m, β)with am+1; bm /= 0 (see Jahangiri et al. [5]);

(ii) T(1, β, γ) = JH(α, β, γ) (see Kharinar and More [6]);

(iii) T(1, β, 1) = GH(β)with a2; b1 /= 0 (see Rosy et al. [7] and Ahuja and Jahangiri [2]).

FromAhuja and Jahangiri [2]with slightmodification and among other things proved,
if f = h + g is of the form (1.1) and satisfies the coefficient condition

∞∑
n=m−1

[
(n + 1) −mβ

m
(
1 − β

) |an+1| +
(n + 1) +mβ

m
(
1 − β

) |bn+1|
]
≤ 2 (am = 1;am+1 = bm = 0), (1.5)

then the harmonic function f is sense-preserving, harmonic multivalent with missing
coefficients and starlike of order β (0 ≤ β < 1) in U. They also proved that the condition
(1.5) is also necessary for the starlikeness of function f = h + g of the form (1.4).

In this paper, we obtain sufficient coefficient bounds for functions in the class
R(m, β, γ). These sufficient coefficient conditions are shown to be also necessary for functions
in the class T(m, β, γ). Basic properties such as distortion theorem, extreme points, and
convolution for the class T(m, β, γ) are also obtained.

2. Coefficient Characterization and Distortion Theorem

Unless otherwise mentioned, we assume throughout this paper that m ≥ 1, 0 ≤ β < 1, γ ≥
0, and φ is real. We begin with a sufficient condition for functions in the class R(m, β, γ).
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Theorem 2.1. Let f = h + g be such that h and g are given by (1.1). Furthermore, let

∞∑
n=m−1

[(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) |an+1| +
(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) |bn+1|
]
≤ 2, (2.1)

where am = 1 and am+1 = bm = 0. Then f is sense-preserving, harmonic multivalent in U and
f ∈ R(m, β, γ).

Proof. To prove f ∈ R(m, β, γ), by definition, we only need to show that the condition (2.1)
holds for f . Substituting h + g for f in (1.2), it suffices to show that

Re

⎧⎨
⎩
(
1 + γeiθ

)(
zh′(z) − zg ′(z)

)
−m
(
β + γeiθ

)(
h(z) + g(z)

)
h(z) + g(z)

⎫⎬
⎭ ≥ 0, (2.2)

where h′(z) = (∂/∂z)h(z) and g ′(z) = (∂/∂z)g(z). Substituting for h, g, h′, and g ′ in (2.2),
and dividing bym(1 − β)zm, we obtain Re(A(z)/B(z)) ≥ 0, where

A(z) = 1 +
∞∑

n=m+1

(n + 1)
(
1 + γeiθ

) −m
(
β + γeiθ

)
m
(
1 − β

) an+1z
n−m+1

−
(
z

z

)m ∞∑
n=m+1

(n + 1)
(
1 + γe−iθ

)
+m
(
β + γe−iθ

)
m
(
1 − β

) bn+1z
n−m+1,

B(z) = 1 +
∞∑

n=m+1

an+1z
n−m+1 +

(
z

z

)m ∞∑
n=m+1

bn+1z
n−m+1.

(2.3)

Using the fact that Re(w) ≥ 0 if and only if |1+w| > |1−w| inU, it suffices to show that |A(z)+
B(z)| − |A(z) − B(z)| ≥ 0. Substituting for A(z) and B(z) gives

|A(z) + B(z)| − |A(z) − B(z)|

=

∣∣∣∣∣2 +
∞∑

n=m+1

(n + 1)
(
1 + γeiθ

) −m
(−1 + 2β + γeiθ

)
m
(
1 − β

) an+1z
n−m+1

−
(
z

z

)m ∞∑
n=m

(n + 1)
(
1 + γe−iθ

)
+m
(−1 + 2β + γe−iθ

)
m
(
1 − β

) bn+1z
n−m+1

∣∣∣∣∣
−
∣∣∣∣∣

∞∑
n=m+1

(n + 1)
(
1 + γeiθ

) −m
(
1 + γeiθ

)
m
(
1 − β

) an+1z
n−m+1

−
(
z

z

) ∞∑
n=m

(n + 1)
(
1 + γe−iθ

)
+m
(
1 + γe−iθ

)
m
(
1 − β

) bn+1z
n−m+1

∣∣∣∣∣
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≥ 2 −
∞∑

n=m+1

(n + 1)
(
1 + γ

) −m
(
2β + γ − 1

)
m
(
1 − β

) |an+1| |z|n−m+1

−
∞∑

n=m

(n + 1)
(
1 + γ

)
+m
(
2β + γ − 1

)
m
(
1 − β

) |bn+1| |z|n−m+1

−
∞∑

n=m+1

(n + 1)
(
1 + γ

) −m
(
1 + γ

)
m
(
1 − β

) |an+1| |z|n−m+1

−
∞∑

n=m

(n + 1)
(
1 + γ

)
+m
(
1 + γ

)
m
(
1 − β

) |bn+1| |z|n−m+1

≥ 2

{
1 −

∞∑
n=m+1

(n + 1)
(
1 + γ

) −m
(
β + γ

)
m
(
1 − β

) |an+1|

−
∞∑

n=m

(n + 1)
(
1 + γ

)
+m
(
β + γ

)
m
(
1 − β

) |bn+1|
}

≥ 0 by (2.1)

(2.4)

The harmonic functions

f(z) = zm +
∞∑

n=m+1

m
(
1 − β

)
(n + 1)

(
1 + γ

) −m
(
β + γ

)xnz
n+1

+
∞∑

n=m

m
(
1 − β

)
(n + 1)

(
1 + γ

)
+m
(
β + γ

)ynz
n+1,

(2.5)

where
∑∞

n=m+1 |xn|+
∑∞

n=m |yn| = 1, show that the coefficient boundary given by (2.1) is sharp.
The functions of the form (2.5) are in the class R(m, β, γ) because

∞∑
n=m+1

[(
1 + γ

)
(n + 1) −m

(
β + γ

)
m
(
1 − β

) |an+1| +
∞∑

n=m

(
1 + γ

)
(n + 1) +m

(
β + γ

)
m
(
1 − β

) |bn+1|
]

=
∞∑

n=m+1

|xn| +
∞∑

n=m+1

∣∣yn

∣∣ = 1.

(2.6)

This completes the proof of Theorem 2.1.

In the following theorem, it is shown that the condition (2.1) is also necessary for
functions f = h + g, where h and g are of the form (1.4).
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Theorem 2.2. Let f = h+g be such that h and g are given by (1.4). Then f ∈ T(m, β, γ) if and only
if

∞∑
n=m−1

[(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1 +

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1

]
≤ 2. (2.7)

Proof. Since R(m, β, γ) ⊂ T(m, β, γ), we only need to prove the “only if” part of the theorem.
To this end, for functions f of the form (1.4), we notice that the condition Re{(1 +
γeiθ)(zf ′(z))/(z′f(z)) − γmeiθ} ≥ mβ is equivalent to

Re

⎧⎨
⎩
(
1 + γeiθ

)(
zh′(z) − zg ′(z)

)
−m
(
β + γeiθ

)(
h(z) + g(z)

)
h(z) + g(z)

⎫⎬
⎭ > 0, (2.8)

which implies that

Re

{[
m
(
1 + γeiθ

) −m
(
β + γeiθ

)]
zm −∑∞

n=m+1
[(
1 + γeiθ

)
(n + 1) −m

(
β + γeiθ

)]
an+1z

n+1

zm −∑∞
n=m+1 an+1zn+1 +

∑∞
n=m bn+1z

n+1

−
∑∞

n=m
[(
1 + γeiθ

)
(n + 1) +m

(
β + γeiθ

)]
bn+1z

n+1

zm −∑∞
n=m+1 an+1zn+1 +

∑∞
n=m bn+1z

n+1

}

= Re

{
m
(
1 − β

) −∑∞
n=m+1

[(
1 + γeiθ

)
(n + 1) −m

(
β + γeiθ

)]
an+1z

n−m+1

1 −∑∞
n=m+1 an+1zn−m+1 +

∑∞
n=m bn+1z

n−m+1

−
∑∞

n=m
[(
1 + γeiθ

)
(n + 1) +m

(
β + γeiθ

)]
bn+1z

n−m+1

1 −∑∞
n=m+1 an+1zn−m+1 +

∑∞
n=m bn+1z

n−m+1

}
> 0.

(2.9)

Since Re(eiθ) ≤ |eiθ| = 1, the required condition is that (2.9) is equivalent to

{
1 −∑∞

n=m+1
([(

1 + γ
)
(n + 1) −m

(
β + γ

)]
/m
(
1 − β

))
an+1r

n−m+1

1 −∑∞
n=m+1 an+1rn−m+1 +

∑∞
n=m bn+1rn−m+1

−
∑∞

n=m
([(

1 + γ
)
(n + 1) +m

(
β + γ

)]
/m
(
1 − β

))
bn+1r

n−m+1

1 −∑∞
n=m+1 an+1rn−m+1 +

∑∞
n=m bn+1rn−m+1

}
≥ 0.

(2.10)

If the condition (2.7) does not hold, then the numerator in (2.10) is negative for z = r
sufficiently close to 1. Hence there exists z0 = r0 in (0, 1) for which the quotient in (2.10)
is negative. This contradicts the required condition for f ∈ T(m, β, γ), and so the proof of
Theorem 2.2 is completed.

Corollary 2.3. The functions in the class T(m, β, γ) are starlike of order (γ + β)/(1 + γ).
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Proof. The proof follows from (1.5), by putting (2.7) in the form

∞∑
n=m−1

[
(n + 1) −m

((
γ + β

)
/
(
1 + γ

))
m
(
1 − ((γ + β

)
/
(
1 + γ

))) an+1 +
(n + 1) +m

((
γ + β

)
/
(
1 + γ

))
m
(
1 − ((γ + β

)
/
(
1 + γ

))) bn+1

]
≤ 2. (2.11)

Theorem 2.4. Let f ∈ T(m, β, γ). Then for |z| = r < 1, we have

∣∣f(z)∣∣ ≤ (1 + bm+1r)rm +

{
m
(
1 − β

)
m
(
1 − β

)
+ 2
(
1 + γ

) − m
(
1 + 2γ + β

)
+
(
1 + γ

)
m
(
1 − β

)
+ 2
(
1 + γ

) bm+1

}
rm+2,

∣∣fm(z)∣∣ ≥ (1 − bm+1r)rm −
{

m
(
1 − β

)
m
(
1 − β

)
+ 2
(
1 + γ

) − m
(
1 + 2γ + β

)
+
(
1 + γ

)
m
(
1 − β

)
+ 2
(
1 + γ

) bm+1

}
rm+2.

(2.12)

Proof. We prove the left-hand-side inequality for |f |. The proof for the right-hand-side
inequality can be done by using similar arguments.

Let f ∈ T(m, β, γ), then we have

∣∣f(z)∣∣ =
∣∣∣∣∣zm −

∞∑
n=m+1

an+1z
n+1 +

∞∑
n=m

bn+1z
n+1

∣∣∣∣∣
≥ rm − bm+1r

m+1 −
∞∑

n=m+1

(an+1 + bn+1)rm+2

≥ rm − bm+1r
m+1

− m
(
1 − β

)
(
1 + γ

)
(m + 2) −m

(
γ + β

) ∞∑
n=m+1

(
1 + γ

)
(m + 2) −m

(
γ + β

)
m
(
1 − β

) (an+1 + bn+1)rn+1

≥ rm − bm+1r
m+1

− m
(
1 − β

)
(
1 + γ

)
(m + 2) −m

(
γ + β

) ∞∑
n=m+1

{(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1

+

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1

}
rn+1
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≥ (1 − bm+1r)rm

− m
(
1 − β

)
(
1 + γ

)
(m + 2) −m

(
γ + β

)
{
1 −
(
1 + γ

)
(m + 1) +m

(
γ + β

)
m
(
1 − β

) bm+1

}
rm+2

≥ (1 − bm+1r)rm

−
{

m
(
1 − β

)
m
(
1 − β

)
+ 2
(
1 + γ

) − m
(
1 + 2γ + β

)
+
(
1 + γ

)
m
(
1 − β

)
+ 2
(
1 + γ

) bm+1

}
rm+2.

(2.13)

This completes the proof of Theorem 2.4.

The following covering result follows from the left-side inequality in Theorem 2.4.

Corollary 2.5. Let f ∈ T(m, β, γ), then the set

{
w : |w| < 2

(
1 + γ

)
m
(
1 − β

)
+ 2
(
1 + γ

) −
(
1 + γ

) − 2m
(
γ + β

)
m
(
1 − β

)
+ 2
(
1 + γ

)bm+1

}
(2.14)

is included in f(U).

3. Extreme Points

Our next theorem is on the extreme points of convex hulls of the class T(m, β, γ), denoted by
clco T(m, β, γ).

Theorem 3.1. Let f = h + g be such that h and g are given by (1.4). Then f ∈ clco T(m, β, γ) if and
only if f can be expressed as

f(z) =
∞∑

n=m

[
Xn+1hn+1(z) + Yn+1gn+1(z)

]
, (3.1)

where

hm(z) = zm,

hn+1(z) = zm − m
(
1 − β

)
(
1 + γ

)
(n + 1) −m

(
γ + β

)zn+1 (n = m + 1, m + 2, ...),

gn+1(z) = zm +
m
(
1 − β

)
(
1 + γ

)
(n + 1) +m

(
γ + β

)zn+1 (n = m,m + 1, m + 2, ...),

Xn+1 ≥ 0, Yn+1 ≥ 0,
∞∑

n=m
[Xn+1 + Yn+1] = 1.

(3.2)

In particular, the extreme points of the class T(m, β, γ) are {hn+1} and {gn+1}, respectively.
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Proof. For functions f(z) of the form (3.1), we have

f(z) =
∞∑

n=m
[Xn+1 + Yn+1]zm −

∞∑
n=m

m
(
1 − β

)
(
1 + γ

)
(n + 1) −m

(
γ + β

)Xn+1z
n+1

+
∞∑

n=m

m
(
1 − β

)
(
1 + γ

)
(n + 1) +m

(
γ + β

)Yn+1z
n+1.

(3.3)

Then

∞∑
n=m+1

(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

)
(

m
(
1 − β

)
(
1 + γ

)
(n + 1) −m

(
γ + β

)
)
Xn+1

+
∞∑

n=m

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

)
(

m
(
1 − β

)
(
1 + γ

)
(n + 1) +m

(
γ + β

)
)
Yn+1

=
∞∑

n=m+1

Xn+1 +
∞∑

n=m
Yn+1 = 1 −Xm ≤ 1,

(3.4)

and so f(z) ∈ clco T(m, β, γ). Conversely, suppose that f(z) ∈ clco T(m, β, γ). Set

Xn+1 =

(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1 (n = m + 1, ...),

Yn+1 =

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1 (n = m,m + 1, ...),

(3.5)

then note that by Theorem 2.2, 0 ≤ Xn+1 ≤ 1 (n = m+1, ...) and 0 ≤ Yn+1 ≤ 1 (n = m,m+1, ...).
Consequently, we obtain

f(z) =
∞∑

n=m

[
Xn+1hn+1(z) + Yn+1gn+1(z)

]
. (3.6)

Using Theorem 2.2 it is easily seen that the class T(m, β, γ) is convex and closed, and so
clco T(m, β, γ) = T(m, β, γ).

4. Convolution Result

For harmonic functions of the form

f(z) = zm −
∞∑

n=m+1

an+1z
n+1 +

∞∑
n=m

bn+1z
n+1, (4.1)

G(z) = zm −
∞∑

n=m+1

An+1z
n+1 +

∞∑
n=m

Bn+1z
n+1, (4.2)



International Journal of Mathematics and Mathematical Sciences 9

we define the convolution of two harmonic functions f and G as

(
f ∗G)(z) = f(z) ∗G(z)

= zm −
∞∑

n=m+1

an+1An+1z
n+1 +

∞∑
n=m

bn+1Bn+1z
n+1.

(4.3)

Using this definition, we show that the class T(m, β, γ) is closed under convolution.

Theorem 4.1. For 0 ≤ β < 1, let f(z) ∈ T(m, β, γ) and G(z) ∈ T(m, β, γ). Then f(z) ∗ G(z) ∈
T(m, β, γ).

Proof. Let the functions f(z) defined by (4.1) be in the class T(m, β, γ), and let the functions
G(z) defined by (4.2) be in the class T(m, β, γ). Obviously, the coefficients of f and G must
satisfy a condition similar to the inequality (2.7). So for the coefficients of f ∗G we can write

∞∑
n=m−1

(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1An+1 +

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1Bn+1

≤
∞∑

n=m−1

[(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1 +

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1

]
,

(4.4)

where the right hand side of this inequality is bounded by 2 because f ∈ T(m, β, γ). Then,
f(z) ∗G(z) ∈ T(m, β, γ).

Finally, we show that T(m, β, γ) is closed under convex combinations of its members.

Theorem 4.2. The class T(m, β, γ) is closed under convex combination.

Proof. For i = 1, 2, 3, .... let fi ∈ T(m, β, γ), where the functions fi are given by

fi(z) = zm −
∞∑

n=m+1

an+1,iz
n+1 +

∞∑
n=m

bn+1,iz
n+1 (an+1,i; bn+1,i ≥ 0;m ≥ 1). (4.5)

For
∑∞

i=1 ti = 1; 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = zm −
∞∑

n=m+1

( ∞∑
i=1

tian+1,i

)
zn+1 +

∞∑
n=m

( ∞∑
i=1

tibn+1,i

)
zn+1 (4.6)
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Then by (2.7), we have

∞∑
n=m−1

[(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) ∞∑
i=1

tian+1,i +

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) ∞∑
i=1

tibn+1,i

]

=
∞∑
i=1

ti

{ ∞∑
n=m−1

[(
1 + γ

)
(n + 1) −m

(
γ + β

)
m
(
1 − β

) an+1,i +

(
1 + γ

)
(n + 1) +m

(
γ + β

)
m
(
1 − β

) bn+1,i

]}

≤ 2
∞∑
i=1

ti = 2.

(4.7)

This is the condition required by (2.7), and so
∑∞

i=1 tifi(z) ∈ T(m, β, γ). This completes the
proof of Theorem 4.2.

Remark 4.3. Our results form = 1 correct the results obtained by Kharinar and More [6].
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