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We study the backward problem with time-dependent coefficient which is a severely ill-posed
problem. We regularize this problem by combining quasi-boundary value method and quasi-

reversibility method and then obtain sharp error estimate between the exact solution and the regu-
larized solution. A numerical experiment is given in order to illustrate our results.

1. Introduction

We consider the inverse time problem for the nonlinear parabolic equation

ut(x/ t) - a(t)uxx(x/ t) = f(x/ tru(xr t))/ (x, t) € [0/‘72-] X (0/ T]r (11)
u(0,t) = u(sr,t) =0, te€][0,T], (1.2)
u(x,T)=g(x), x€l0,ux], (1.3)

where a(t) is thermal conductivity function of (1.1) such that there exist p, g > 0 satisfying

O<p<a()<g, (1.4)

forallt € [0,T].
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In other words, from the temperature distribution at a particular time t = T (final data),
we want to retrieve the temperature distribution at any earlier time ¢t < T. This problem is
called the backward heat problem (BHP), or final-value problem. As known, this problem is
severely ill-posed in Hadamard’s sense; that is, solutions do not always exist, and when they
exist, they do not depend continuously on the given data. In practice, datum g is based on
(physical) measurements. Hence, there will be measurement errors, and we would actually
have datum function gs such that ||gs - gll;2( ) < 6. Thus, form small error contaminating
physical measurements, the solutions corresponding to datum function gs have large errors.
This makes it difficult to make numerical calculations with perturbed data.

In our knowledge, there have been many papers on the linear homogeneous case of the
backward problem, but there are a few papers on the nonhomogeneous case and the nonlin-
ear case such as [1-6]; especially, the nonlinear case with time-dependent thermal conductiv-
ity coefficient is very scarce. Moreover, the thermal conductivity is the property of a material’s
ability to conduct heat. Therefore, the thermal conductivity is not a constant in some cases. In
this paper, we extend the result (in [7]) for the case of the time-dependent thermal conduc-
tivity a(t). In future, we will research the BHP problem for the case of the time- and space-
dependent thermal conductivity a(x,t).

In [8], the authors used the quasi-reversibility method to regularize a 1D linear
nonhomogeneous backward problem. Very recently, in [9], the methods of integral equations
and of Fourier transform have been used to solve a 1D problem in an unbounded region. In
recent articles considering the nonlinear backward heat problem, we refer the reader to [10].
In [11], the authors used the quasi-boundary value method to regularize the latter problem.
However, in [11], the authors showed that the error between the regularized solution and the
exact solution is

lus (-, t) —u(-,t)|| < K(t)6"T, 0<t<T. (1.5)

It is easy to see that the convergence of the error estimate between the regularized
solution and the exact solution is very slow when ¢ is in a neighborhood of zero. For this
reason, the error estimate in initial time is given by

1/4
lus(,t) - u(, £)] < K(ﬁ) . (16)

We can easily find that the exact solution of (1.1)—(1.3) satisfies

u(x,t) = > uk(t) sin(kx), (1.7)
k=1
where
T
w(t) = L AD-AD) g J A=A £ (1) (s)ds, (1.8)
t

fr(u)(s) = %ij(x, s,u(x,s)) sin(kx)dx, (1.9)
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5= 7 | stsingodr, (1.10)

A(t) = f;a(s)ds. (1.11)

In this paper, we will approximate (1.1)-(1.3) by using the regularization problem:

©  kAT)
(us);(x,t) = a(t) () v (x, t) ;mfk(”ﬁ)(t) sin(kx),
us(0,t) = us(or,t) =0, (1.12)
* e I MT)
Us (X, T) ; a 6) + e kN )gk sm(kx)

where ai(6) = 6k%. Actually, in [12], we also considered the problem (1.1)—(1.3) for the
homogeneous case f = 0 in R. Hence, we want to extend for the nonlinear case f(x,t,u)
in bounded region [0, «r], and this is the biggest different point in this paper.

The remainder of this paper is organized as follows. In Section 2, we shall regularize
the ill-posed problem (1.1)-(1.3) and give the error estimate between the regularized solution
and the exact solution. Then, in Section 3, a numerical example is given.

2. Regularization and Error Estimates

For clarity of notation, we denote the solution of (1.1)-(1.3) by u(x, t) and the solution of the
regularized problem (1.12) by us(x, t). Throughout this paper, we denote A; = max{1, \(T)},
and, 6 be a positive number such that 0 < 6 < A(T). Hereafter, we have a number of inequali-
ties in order to evaluate error estimates.

Lemma 2.1. Let a(t) be a function satisfying (1.4), ax(6) = 6k, Bs = (6 In(A(T)/6))™" and A(t)
be as in (1.11). Then for k > 0and 0 <t < s < T, one gets

(i) ekz()t(s)—l(t)—)t(T))/(ak(S) 4 e—kZ)L(T)) < M6 1n()L(T)/6))()‘(t)"“5))“(T)
11(36)(A(s)—1(t))/A(T),

(ii) e_kz)‘(t)/(lxk(6) + e—sz\(T)) < M (8In(M(T)/6)) AH-MT)/MT) _ A (Bﬁ)()t(T)—)t(f))//\(T)'
Proof of Lemma 2.1. The proof of Lemma 2.1 can be found in [12]. O

Theorem 2.2. Let ¢ € L*(0,or) and f € L®([0,or] x [0,T] x R) such that there exists L > 0
independent of x,t, u, v satisfying

|f(x,t,u) = f(x,t,0)| < Llu-1|. (2.1)
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Then problem (1.12) has a unique weak solution us € W = C([0,T]; L?(0,o)) satisfying the fol-
lowing equality:

oo [ KA JT R AE)-A)-AT))

D=2 w8 | e mm
ot ; 0c(6) + e PO T ), 5 (6) + e D

fk(ug)(s)ds] sin(kx), (2.2)

where

gk = % f: g(x) sin(kx)dx,
(2.3)

fr(us)(s) = %J:f(x, s,ug) sin(kx)dx.

Proof of Theorem 2.2. Step 1. The existence and the uniqueness of the solution of the problem

(2.2).
Put
F(u)(x,t) = D (Pe(t) — Ki(u)(t)) sin(kx), (2.4)
k=1
where
0]
P(t) = ——— 9,
) (£) 20 (6) + oA S
(2.5)
T ekZ(A(S)fl(t)*A(T))
Kmmn=ﬁaﬂ®+fmmnwnwm
We claim that, for every u,v € C([0,T]; L*(0,)), k > 1, we have
2 (T-tF
|F* a0 - F@ o) < Tl B et i ol ) 1y, 26

where C = max{1,T} and || - [|c(jo,r}; 12(0,)) 18 Supremum norm in C([0, T]; L?(0,r)). We shall
prove this inequality by induction. For k = 1, we have

IF(u)(-,t) = F@) (-, H)I”

= zi(Kk(u)(t) - Ki(0) (1))
23



International Journal of Mathematics and Mathematical Sciences 5

—

|
(ST
Mis

T ok (A(s)=A(H)-M(T)) 2
_[ ) (fi(u)(s) - fk(U)(S))dS]

(@) + T

[ 7 k() -A()-M(T)) \ T )
L <—> dsft (Fe(w)(s) - fu(v)(s))ds .

ai(6) + e kM)

IN
N[y
Ms

k=1
(2.7)
From Lemma 2.1, we get
IF@) (1) = F@) ¢, )]
T & T A1) (A(H-1())/AD)\ 2 T ) 5
< zé[ﬁ <J\1<61n< 5 >> > dsft (fr(u)(s) = fr(v)(s)) ds|.
(2.8)
It follows
IF@) (- £) = F@) (-, )]
w [ T T
<Zy f A3 (Bg)* OO g f (fr(u)(s) - fk<v)<s>)2ds]
2 k=117t t
o [ T T
< %; L f i (Be) P ds ft (fie(w)(s) - fk(v>(s>)2ds] 2.9)
o [ T T
<> f A%(Bﬁf‘f/f’dsf (fru)(s) - fk(v)(s))zds]
o1 L7t t
T por
= A%ng/p(T - t)f J (f(x,s,u(x,s)) - f(x,s,v(x, s)))zdx ds.
t Jo
Therefore, we have
IF@)(,t) = F(0) (-, )|
T por
< RLBAP(T - t) f j (u(x,s) - v(x,8))*dx ds (2.10)
tJo

2q/
<(T-1)B"PCAL?||lu - v||é([0,T]’_L2 0m)

where C = max{1,T}.
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Thus, (2.6) holds for k = 1. Supposing that (2.6) holds for k = n, we shall prove that
(2.6) holds for k = n + 1. In fact, we get

F™ ), 1) - F @) ()|

= S K" )6 - K (F () (O
k=1

(2.11)
© /(T KE\(s)-MB)-A(T)) 2
I3[ e U @) s) - AP @) (s)ds )
2 k=1 t “k(a) + ek M)
Hence, we obtain
2
[P @) (e, ) = P () (x )|
aT ) T o )
< 5 (Bs) PPRT =ty [ > (feF @) (s) = fi(F*(v))(s)) ds
t k=1
. (2.12)
= (Bs)*/PAN(T - t) f £ s, F" ) (,9)) = fil-rs, F*(0)(,5))||"ds
t
2 ! 2
< (Bs)™/PAN(T — )17 L IF"(w)(-, ) = F"(0)(,, )| ds.
Thus, we have
2
[ E7 G e, ) = P @) (x, 1) |
2q/p 2 2 ! 2n 2nq/p \2n (T -s)" n 2
S (Bﬁ) )‘1 (T - t)L , L (Bﬁ) )L] ! C ”u - v”C([O,T];LZ(O,Jr))dS
. . (2.13)
< Cn(B )2(n+1)q/p)th+2(T _ t)L2n+2”u _ Z)||2 (T - S) ds
= 5 1 c(orirom) ), — pl
(T B t)n+1 n+1 2(n+1)q/p y2n+2 2n+2 2
: (n+1)! " (Bo) AT -HL ”u_v”C([O,T];LZ(O,Jr))'
Therefore, by the induction principle, we have
£k £k (T- p)k/2 B \ka/PCk/2)\k K (2.14)
[Fao et - Fr@ e n| < = Bs) M = olleqory omy, @

for all u,v € C([0,T]; L*(0,)).
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We consider F : C([0,T]; L?>(0,ar)) — C([0,T]; L?*(0,r)). Since

( _ t)k/Z

(B )kq/p)tkck/2Lk N 0 (215)
Vk!

when k — oo, there exists a positive integer number kj such that

(T - t)ko/z

Vko!

(Bé)k“q/p/\ll(ocko/szo <1, (2.16)

and F% is a contraction. It follows that the equation F¥(u) = u has a unique solution us €
C([0,T]; L?(0,ar)).We claim that F(us) = us. In fact, one has F(F*(ugs)) = F(us). Hence,
F*(F(ug)) = F(us). By the uniqueness of the fixed point of F%, one has F(us) = us; that is,
the equation F(u) = u has a unique solution us € C([0,T]; L?(0,)).

Step 2. If us € W satisfies (2.2), then us is the solution of the problem (1.12). For 0 <t < T, we
have

S —kz)n(t) T kz(l(s) —A(t)-\(T)) _
us(x,t) = ;[ak(6)+e‘k2)‘(T Sk — o (6) o D fk(ug)(s)ds:I sin(kx). (2.17)

We can verify directly that us € C([0,T]; L*(0,or) n L*(0,T; Hy(0, o)) N
C'(0,T; Hy(0,)). In fact, us € C*([0,T]; H; (0, r)). Moreover, one has

< KA g IT kz(A(s)—A(t)—MT»fk(uﬁ)(s)ds)

ai(6) + e kMD)

(us),(x, t) = sin(kx)

©
k=1

% oK)
+ Z;Wfk(”&)(t) sin(kx)
(2.18)
—K2(T)
= - a(t)(u5)xx(xlt) + Z (6) 1 e k2MT) fk(u5)(t) Sin(kx)/
© L kA)

us(x,T) = z;mgk sin(kx).

Hence, ug is the solution of (1.12).
Step 3. The problem (1.12) has at most one solution us € C([0,T]; L*(0,7) N
L*(0,T; H}(0,r)) nCH0,T; H}(0,r)). In fact, let us and vs be two solutions of (1.12) such
that us, vs € W. Putting ws(x,t) = us(x,t) — vs(x,t), then w? satisfies

) e—kz)L(T)
— —(filu) () - o)) sin(kx).  (2.19)

(ws); — (Ws) yx = 216 e



8 International Journal of Mathematics and Mathematical Sciences

It follows that

) = o)l < g 35 Fe) ) foe0) )
k=1

< %“f(/ £, uﬁ('/ t)) - f(-,t,Uﬁ('/ t))llz
(2.20)

< L 2
= a””b‘(,t) - 06('/ t)”

LZ
= SllwsC DI

By using the result in Lees and Protter [13], we get ws(-,t) = 0. This completes the
proof of Step 3.
Finally, by combining three steps, we complete the proof of Theorem 2.2. O

Theorem 2.3 (stability of the modified method). Let fbe as in Theorem 2.2, ay(6) = 6k?, g and let
g5 in L2(0, o) satisfy ||gs — gl| < 6. If one supposes that us and vg defined by (2.2) are corresponding
to the final values g and gs in L*(0, or), respectively, then one obtains

(A(H-MT))/M(T)
s (-, ) — v5 (-, B)|| < V2A el NTT- f>5*<f>/*<”< (“?)) _ (2.21)

Proof of Theorem 2.3. Using the inequality (a + b)> < 2(a® + b?) and Lemma 2.1, we get the
estimate

l[us (-, £) = vs (-, DI

<3

) 2

2
+ I

o | (T ok*(A(s)-M(H)-M(T))
J‘ (fr(us)(s) = fr(vs)(s))ds

b ar(6) + e kD)

pt (2.22)

<3,

k=1

+Jr(T—t)kzzf

) 2

W( k= 8ks)

¢ \(6) + e D

kZ(A(s) =A(t)-MT)) 2
< (fix(us)(s) —fk(v,s)(S))> ds
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Thus, we get

s (-, t) = vs (-, 1)

< JZ_J\Z(B(S)Z()L(T)—)L(t))/)L(T) ng _ gk,élz
1 é (2.23)

w T
”f(T‘t)ZJ‘t 22(Bg2AO-MNAD | £ (113 (5) — fie(vs) (5) | ds.
k=1

Hence, we obtain

||u5('/ t) - 05('/ t) ”2

0
— 2
< yr)L%(B,s)z()‘(T) A(£)/M(T) E |gk _ gk,5|
k=1

o) T
+ 27T (B2 MDA § f (Bs)2 MDD £ (115 (5) — flws) (s)|*ds
k=17t

[ee]
- 2
< .n')u%(B,s)z()L(T) A1)/ M(T) E |gk - gk,6|
k=1

T [eS)
+)L%JZ_T(B(S)Z(A(T)—)L(t))//\(T)f (Bs) XXMM S| £ (u5) (5) — fi(v5) (5)| s
t k=1

(2.24)
Thus, we get
(Bs)* MO g (-, 1) — w5 (-, )|
2
<21lg - &l
T
+ZA§TJ (Bs)?AOAOAD £ 5, us(,8)) = £(-,5,05(, )] (2.25)
t
<213)|g - gsl’

T
+ ZLZJ\%TI (Bg)? MO M5, 5) — v5(-, 5) |1
t

By using Gronwall’s inequality, we have

(B MO D () g D <2 g5 —gE (220
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It follows

[us (-, ) = vs(-, )| < V24, HTTD (Bg) ADANAD) g g

. A(T)\ \ AOATN/AD (2.27)
< V2, P HTT-0 51 0/MD) <1n< s >> .
This completes the proof of Theorem 2.3. O
Theorem 2.4. Let u be the exact solution of problem (1.1)—(1.3) such that
Q(t) =313 TN i (, O)| < o0,
(2.28)

T pr o 2
M(t) = 6T\ T .[ I Z|kzek2)t(s) (us(x,8) — a(s)ue(x,s))| dxds < oo,
070 k=1

forall t € [0,T). Letting ax(6) = 6k* and vs(-, t) given by (2.2) corresponding to the perturbed data
gs, then one has for every t € [0,T)

A(T) \ \ LO-MD)/AT)
lu-,t) —vs(-, 1) < C(H)&HO/AD (m(T)) , (2.29)

where C(t) = V21X NTTH 1+ /Q(F) + M(b).

Proof of Theorem 2.4. From (1.1), we construct the regularized solution corresponding to the
exact data and the perturbed data

us(x,t) = D uks(t) sin(kx), (2.30)
k=1
vs(x,t) = D vks(t) sin(kx), (2.31)
k=1
where
e kA T ok (M(s)=A(H-MT))
H=z——" - — ds, 2.32
uk,5( ) ak((s) + e—kZJ\(T) gk ; ak((S) + e_kzj\(T) fk(uﬁ)(s) S ( )
e kMD T ok (M(s)-MH-M(T))
= —— - — ds. 2.33
vk,(fi( ) a (6) N e_kz./\(T) gk,5 J‘t a (6) N e_kzj\(T) fk ('06) (S) S ( )
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Since (1.8) and (2.32), we get

[k () — uks(t)]

_ k2 T 2 — —_
ax (6) + e~k MD) o (ar(8) + e M)

J.T ekz(A(s)—)L(t)—)u(T))

+
¢ ax(6) + e <MD

(fr(us)(s) = fi(u)(s))ds

(2.34)
From ay(6) = 6k?, we get
[k () — w5 (8|
Se KO S SeFUE)-Am-LT)
< | (T) 2 _k2\(T)
< ‘6k2 +e—’<2*(T)k Sk L K2 AT k“e fr(u)(s)ds
T ok*(M(s)-A(H-M(T))
), W(fk(”& () = fr(u)(s))ds
Se kM0 ) 2 T, (2.35)
- T o, _ 2 K2A(s)
s ‘61(2 + ek ke 8~k fo e fr(u)(s)ds
5o K0 L
e (s)
+ ‘51@ T J; |k2e2O fi ) (s) | ds
T ok*(M(s)-A(H-MT))
*), T emm Sewo)(s) - fiw)(s))ds).
By applying the inequality (a + b + ¢)* < 3(a? + b? + ¢2), we get
luaC, ) = us (., 1)1
‘71- (o)
= Ezmk,ﬁ(t) — u(t)?
k=1
© ok |? T 2
3ar 2 2
< 2 kzek AMT) _ kZJ‘ ek A(s) u)(s)ds
<5 kZ 5k2 T =k | O (s) 36

0

Se-k\)

2 & 6K2 + R

3ar

2 T 2
<f0 |k2ek2*<s) Fe(u)(s) |ds>

3 & | (T ek (Ms)-MH-MT) 2
fo tW(fk(ué)(S) Fe(w)(s))ds| .
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Using Lemma 2.1, we obtain

[ICHEITOH] &

< B—W)LZ(Ll(t) + Lo(t) + La(h)),

3ar MT) 2(M(6)-M(T))/M(T) )

S (o) o
k=1

2(A(H-MT))/MT) oo 2

e (n(R)) S [Jeonmole)

>> 2(M()-M(T))/M(T)

3o
37 )L2T52A(t)/A(T)< <
Toh 5
(T)\ \ 2HDAEN /AT &
)

T
x f 6—2)»(5)/J\(T) (1n<
t

S| (Frlus)(s) - f(u)(s)) | *ds,

k=1
(2.37)
where
20(t) /M(T) AT\ \24O- A(T))/A(T)
Li(t) =6 In _6
T 2(A(f)— A(T))/)L(T) z )
Ly(t) = 62/\(t)/)»(T)< < 6 >> <I |k2 kA(s)fk(u)(s)|ds> )
Ly(t) = 5210)/1@)( < (T) >>2(A(t> A(T))/\(T)
’ 6
-2M(s)/M(T MT) \ | 2HO=AED/AT)
J‘5 () ()<1 < 6 )) Zl(fk(uﬁ)(s) fk(u)(s))l ds.
(2.38)

Hence, we get the following estimates

2(MB)=MT))/ MT)
3—)8L1(t) < 30262 0/MD (1] ( <M6T) >> et (-, O) 1%,

MT 2(MB)-MT))/ MT) )
?ﬁlsz(t) < 3T 371' J\262/\(t)//\(T) (ln( ( )>> 0 Zk4€2k *(S)f,f(u)(s)ds,
k=1

MT) ) > 2(AM(H)-MT))/ M(T)

%)L%Lg(t)s:—;ﬁﬁm”ww ln( 5

T 2(M(T)-M(s))/A(T)
« f 6—2)L(s)/)m(T) <IH<A(6T) )) ||u(., S) — u(s(-, S) ||2d5.

t
(2.39)
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From the estimate (2.39), we get

-, t) = us(, t)|

< 312620 (| ( (MT) > >2(A(t)_MT)W(T)
Is)
T 4 _2k%\(s)
<||uxx( 0)|* + fo Zk fi <u)<5>d5> (2.40)
+3L2T)L25zm>/m)< (f\(T)>>2(A D
o

VTN CHD-24()/A(T) 2
I 5 2/\(5)/A(T)< ( ( )>> “u(-,s) —u'S(-,s)” ds.
Hence, we have

i T 2(MT)=A())/ M(T)
52000 (in(%57)) -, 8) - s, DI

<3A2<||uxx< 0)| +— Zk‘*e”‘”(”f,%(u)(s)ds)

0 k=1

(2M(T)-2(s))/MT) 2
+3L2T)L2J‘ 6RO/ T>< (MT))> [t 5) -, )] as.

(2.41)
Applying Gronwall’s inequality, we obtain
@MT)=2M(1))/M(T)
52010 (1n(252)) I ) = s, P
(2.42)

T o
- .
< 34 <l|uxx<-,o>||2 * an D kteHIO B <u><s>d5>’
0 k=1
Hence, we get

LTI\ 2210 /AT)
52010 (1n(25))) o ) — s, P

T o
22 (T Jr 2)\ (s
< 3A2PL XY <||uxX(-,O)||2 + ETIO Dkt ( fk(u)(s))2d5>
k=1
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T o T 2
=3)L%33L2“§(Tt)<||uxx(-,0)||2+ %TJ‘ Zk%ﬂﬂ(s) < I f(x,s,u(x,s))sin(kx)dx) ds>
0 k=1 0

k=1

T oo T
< 3A7 AT <||uxx(-,0)||2 +2T f Stk < f |f (x, 5, u(x,5)) |2dx) ds>.
0 0

(2.43)

From (1.1), we have

T (2M(T)-2A(8))/M(T)
5 M(tw(T)( < (6))> [, t) = us(-, 1)

s3x§e3L2“?<T‘“<lluxx( 0)|1? +2Tf Zk4 2\ S>( f | f(x,s,u(x,s))|2dx>ds>
0

2 2
<3 J\% ST (T-)

<||uxx( ik +2Tf f Z)kz ) (14 (x, 8) — a(8) e (X, s))| dxds>
0

k=1

=Q(t) + M(t),
(2.44)

where

Q(t) = 323 THTD 1y, (-, 0)|2,

(2.45)

M(t) = 6TA3SL TN - f>f Z|k2 KAG) (1 (x, ) — a(8)uex (X, 5))  dx ds.

0 k=1

Therefore, we get the estimate

(AMBH-MT))/MT)

llu(, t) —us(-,t)|| < \/Q(t) + M(t)§*®/ D <ln<$)> 7 . (2.46)

Let vs be the solution of (1.12) corresponding to the perturbed data gs, and let us be
the solution of (1.12) corresponding to the exact data g. From Theorem 2.3 and (2.46), we can

get

[0 (-, t) —u(, I < llvs(,t) —us(, O + l[us (-, £) —ul,

. \[)L eLZ)LZT(T t)5A(t)/)L(T)< ()L(T)>)(A(t)—A(T))/)»(T)
6
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+ \/m(smwm (ln < @ ) > (A(H=-A(T))/A(T)

A(H)-MT))/MT
:C(t)ﬁmmm<1n<m)>><“> EAm
6 4

(2.47)
where C(t) = v211ePMTTD 4\ /O(F) + M(P).
This completes the proof of Theorem 2.4. O
3. Numerical Experiment
Consider the nonlinear parabolic equation with time-dependent coefficient:
u(x, 1) — a(Oux (x, 1) = f(x, t,u(x, 1), (x,t) €[0,7x]x(0,1],
u(0,t) = u(r,t) =0, te][0,1], (3.1)
u(x,T) = g(x), x€[0,x],
where
a(t) = (2t+1),
f(x,t,u(x,t)) = u+4e' sin(x) cos(x) (2t + 1), (3.2)
g(x) = esin(x) cos(x).
The exact solution of the equation is
u(x,t) = e’ sin(x) cos(x). (3.3)
Letting ¢ = 0, from (3.3), we have
u(x,0) = sin(x) cos(x). (3.4)
Consider the measured data
(x) = 1+i (x)—<1+L> (x) (3.5)
SR = sl )3 T\ T 1708a )3V '

Then we have

lgs - gll = 6. (3.6)
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Table 1
6 llvs, (n)(-,0) = u(-,0)ll,
6, =107" 3.763414e — 001
6,=10"2 3.735245e — 001
6;=10"° 3.475127e — 001
6,=107"* 2.048545¢ — 001
65 =107 4.012725e — 002
66 =101 4.491189¢ — 007
6, =102 2.638466¢ — 013
65 =107 2.179771e - 013

From (2.31) and (3.5), we have the regularized solution for the case ¢ = 0 in the form
of iteration

vs(n)(w,0) = ivglk(n)(x,O) sin(kx), (3.7)
k=1
where
~ 1 Vexp{k*(s*+s-2)}
Do) (5,0 = e - | SRS (oot D) e)ds,

2 (" .
g5k = = J’O g5(x) sin(kx) dx, (3.8)

vs(1)(x,0) = (1 + 6) sin(x) cos(x),
ar(6) = 6k>.

We consider 61 = 10_1, Oy = 10_2, 63 = 10_3, 64 = 10_4, 65 = 10_5, 66 = 10_10, 67 = 10_20,
85 =107, and n = 10. Now, we get Table 1 for the case t = 0.

We have in Figure 1 the graphs of the regularized solution vg,(n)(:,t), i
n = 10.

We have in Figure 2 the graphs of the regularized solution vg,(n)(:,t), i
n = 10.

We have in Figure 3 the graphs of the exact solution u(-,t) and of the regularized
solution vs, (n)(+,t), i =7,8 and n = 10.

Now, Figure 4 can represent visually the exact solution and regularized solutions
corresponding to §;, i = 1,...,8 at initially time f = 0.

Notice that, in Figure4, the curve number 0 expressing the exact solution is
indistinguishable from the curve number i expressing the regularized solution corresponding
to 6;,i1=16,7,8.

1,2,3 and

4,5,6 and

Remark 3.1. From (1.7) and (3.5), we obtain the exact solution corresponding to the measured
data gs(x):

w(x,t) = iwk(t) sin(kx), (3.9)
k=1
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Figure 1: The regularized solutions corresponding to 6;, i = 1,2, 3.
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Figure 2: The regularized solutions corresponding to 6;, i = 4,5, 6.

T
wy(t) = ekz(K(T)—)»(t))g&k - j ekz()t(S)—)u(t))fk (w)(s)ds,
t

fr(w)(s)

86,k

% J‘: f(x,s,w(x,s))sin(kx)dx,

% Jj gs(x) sin(kx)dx.

17

(3.10)
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The regularized solution The regularized solution
(eps = 1e — 020) (eps = 1le — 050) The exact solution
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Figure 4: The exact solution and the regularized solutions corresponding to 6;, i = 1,...,8 at initial time
t=0.

Now, we cannot calculate the formula (3.9) exactly (we need to find fi(w)(s) while
we have not known w yet). From Theorem 2.2, we use the iteration for (3.9) at initial time
t =0 as follows:

w(n)(w,0) = iwk (n)(x,0) sin(kx), (3.11)
k=1
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Table 2

6 llws, (5)(-,0) = u(-, 0)ll,
6, =10" 1.1856¢ + 031
6,=107? 1.0e + 031
6;=10" 1.0e + 031

6, =10 1.0e + 031

65 =107 1.0e + 031

6o =101 1.0e + 031
6,=107% 1.0e + 031

65 =107 1.0e + 031

where

wi(n)(x,0) = exp{Zkz}gg,k - f: exp{k2 (sz + s> }fk(w(n -1))(s)ds,

86k = EJ gs(x) sin(kx)dx, (3.12)
T o

w(1)(x,0) = (1 + 6) sin(x) cos(x).

Then we get the error in the Table 2.
We can see that the error ||ws, (5)(-,0) — u(-,0)||, is very large. Therefore, the problem is
ill-posed and a regularization is necessary.
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