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We present an inverse method for the study of the seepage from soil channels without lining. We
give integral representations of the complex potential, velocity field, stream lines, free phreatic
lines, and contour of the channel by means of Levi-Civitá’s function ω. For different values of the
Taylor coefficients of ω, we calculate numerically the contour of the channel, the phreatic lines, the
seepage loss, the velocity field, the stream lines, and the equipotential lines. Examples are given
for various symmetric or asymmetric channels, with smooth contours or with angular points.

1. Introduction

The study of the seepage from soil channels is important for drainage, irrigation, or water
transportation. In this paper, we present a new inverse method for investigating the seepage
from soil channels (watercourses) with no lining.

The inverse methods do not solve the direct seepage problem: given the contour of the
channel, calculate the corresponding seepage loss, but there is a reason to pay attention to this
kind of methods: the possibility to obtain exact analytical results.

A valuable tool for studying the direct problem by means of the inverse method
is Kacimov’s comparison theorem [1] which states that for two arbitrary channels having
the cross sections S1 and S2, the relation S1 ⊆ S2 implies the relation Q1 ≤ Q2 between
the corresponding seepage discharges. Therefore, it is important to have a great number of
channel contours obtained by means of the inverse method. We shall review some papers
where various alternatives of the inverse method for the seepage problem from soil channels
have been employed. Kozeny (see [2, 3]) studied the seepage from a curved channel using
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Zhukovskii’s function and found that the resultant channel has a trochoid form. In [4],
Anakhaev obtained a solution for curvilinear watercourses by representing the watercourse
profiles in the Zhukovskii plane by means of the equation of a family of lemniscates. Other
types of watercourses with different relative widths were studied by Anakhaev in [5]. For
the particular case of a circular base of the watercourse profile, the solution of Anakhaev
coincides with the known exact solutions derived by Vedernikov [6] and Pavlovskii [7].
Chahar utilized in [8] the inverse method to obtain an exact solution for seepage from a
curved channel whose boundary is mapped on a circle from the complex velocity plane. The
channel shape is an approximate semiellipse with the top width as the major axis and twice
the water depth as the minor axis and vice versa. The average of the corresponding ellipse
and parabola gives almost the exact shape of the channel. In a subsequent paper dedicated
to the same class of curvilinear bottomed channels Chahar [9] discusses the optimal section
properties from the least area and minimum seepage loss points of view. In [10], Chahar
extends his method to the case of seepage from curved channels with a drainage layer at
shallow depth. Kacimov and Obsonov [11] used the inverse method to find the shape of a
soil channel of constant hydraulic gradient. In [11, 12] the authors utilized an inverse method
where the shape of the unknown channel is searched as part of the solution.

In most of the above cited papers, the profiles of the channels are considered to be
symmetric. In reality the great majority of watercourses do not have symmetric profiles. Even
the channels which are symmetric by construction become asymmetric because of erosion or
sediments.

There are some papers dedicated to the study of the seepage from asymmetric
watercourses. For example in [13], Anakhaev and Temukuev conceived a semi-inverse
method based on successive conformal mappings of the domain from the Zhukovskii plane
onto the complex potential domain.

In the present paper, we present a new variant of the complex velocity-complex
potential pair method for studying the seepage from asymmetric soil channels. The
symmetric case, which herein is considered as a particular case, was already investigated in
[14, 15]. We consider the conformal mapping f(ζ) of the unit half-disk onto the half-strip from
the complex potential plane. We shall use Levi-Civitá’s functionω(ζ) in order to construct the
conformalmapping z(ζ) of the unit half-disk onto the flow domain. The radii [−1, 0) and (0, 1]
of the unit half-disk correspond through the conformal mapping z(ζ) to the free (phreatic)
lines of the flow domain. On these radii, the imaginary part of ω(ζ) vanishes by virtue of
the conditions imposed on the free lines. According to Schwarz’s principle of symmetry, we
may extend the domain of definition of ω(ζ) to the whole unit disk. The analytic function ω
is afterwards expanded into a Taylor series. In comparison to the above mentioned inverse
method, our method is more general; it is not restricted to special classes of contours of the
channel. We have to give only the expression of the function ω(ζ) (in fact we shall give the
coefficients of the Taylor series ofω(ζ) and some additional terms for the case of profiles with
angular points) in order to construct the channel profile and solve the corresponding free
boundary seepage problem. In fact, an inverse method has the maximum efficiency if it can
be employed to solve the direct problem. Ourmethod satisfies this requirement; by successive
attempts, for every a priori given contour, we may endeavor to guess the corresponding
coefficients of the Taylor series and so, to use the inverse method in order to solve the direct
problem.

In Section 6, we present some calculated channel profiles and the corresponding
phreatic lines, stream lines, equipotential lines and seepage losses. The integrals occurring
in the corresponding integral representations are numerically calculated. In fact, we have
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conceived a Matlab code. The input data consist of the Taylor coefficients of (ζ). The
output consists of the contour of the channel, seepage loss, phreatic lines, stream lines, and
equipotential lines calculated in the nodes of a mesh from the flow domain.

2. The Free Boundary Value Problem

From the equation of continuity we have

div v = 0 (2.1)

and from Darcy’s law for a homogeneous isotropic porous medium

v = grad ϕ, ϕ = −k
(
p

ρg
+ y

)
+ const, (2.2)

we deduce that

Δϕ = 0. (2.3)

Here ϕ is the potential of the velocity, v = (u, ν) is the velocity, p is the pressure and ρ is the
density of the fluid, k is the constant filtration coefficient (hydraulic conductivity), g is the
gravity constant, and (x, y) are the Cartesian coordinates.

Let ψ (the stream function) be the harmonic conjugate of ϕ. For z = x + iy the analytic
function f(z) = ϕ(x, y) + iψ(x, y) is the complex potential and

df

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
= w, (2.4)

where

w = u − iv (2.5)

is the complex velocity.
Now we are going to establish the boundary conditions. We consider a soil channel

whose profile is a curve which has the following equation:

y = y(x), x ∈ [−L, L], y(L) = y(−L) = 0. (2.6)

Let y = 0 be the level of the water in the channel (Figure 1(a)). Assuming that there is
no lining of the bottom AB of the channel, the pressure on AB is

p = patm − ρgy (2.7)
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Figure 1: (a) Flow domain in the porous medium. (b) Half-strip in the plane of the complex potential. (c)
Half disk.

(patm is the atmospheric pressure), whence we deduce that

ϕAB = 0. (2.8)

On AB the tangential velocity ∂ϕ/∂s vanishes, hence we have

arg w(z)AB = arg (u − iν) = − arctan
dy

dx
+
π

2
. (2.9)

The free boundaries (phreatic lines) λ1 and λ2 are streamlines, whence

ψλ1 =
Q

2
, ψλ2 = −Q

2
, (2.10)

where Q is the seepage loss. We study the seepage flow without capillarity, evaporation, or
infiltration. Hence on the free phreatic lines the pressure has the constant value patm. We have
therefore

ϕ + kyλ1∪λ2 = 0. (2.11)
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Deriving along the tangential direction we get

∂ϕ

∂s
+ k

∂y

∂s λ1∪λ2
= 0 =⇒ u2 + ν2 + kνλ1∪λ2 = 0. (2.12)

The subscripts in (2.8)–(2.12) indicate that the relations we have in view are valid on the
corresponding boundaries AB, λ1, λ2, λ1 ∪ λ2.

3. Levi-Civitá’s Function

From (2.8) and (2.10) it follows that the image of the domain of motion in the plane of the
complex potential is a half-strip (Figure 1(b)). The function

f = −Q
π

ln ζ +
Qi

2
, ζ = ξ + iη, ln(−1 + 0i) = πi, ln(−1 − 0i) = −πi, (3.1)

is the conformal mapping of the unit half-disk from the ζ-plane (Figure 1(c)) onto the half-
strip from the f-plane. From (2.4) and (3.1) we deduce that f , z, and w may be regarded
as functions of ζ, (z(ζ) is the conformal mapping of the unit half-disk from the ζ-plane onto
the flow domain from the z-plane). The free lines λ1 and λ2 represent the image of the real
diameter ζ = ξ + iη, η = 0, ξ ∈ [−1, 0) ∪ (0, 1] by the conformal mapping z(ζ) and the contour
of the channel is the imagine of the half-circle ζ = exp(is), s ∈ [0, π] by the same mapping.

We introduce the auxiliary function w∗(ζ) by means of the relation

w∗(ζ) = w(ζ) − ik

2
= u − i

(
ν +

k

2

)
. (3.2)

From (2.12) and (3.2) it results

V ∗(ξ) = |w(ξ)| = k

2
, ξ ∈ [−1, 0) ∪ (0, 1]. (3.3)

In the sequel we introduce Levi-Civitá’s function ω(ζ) = σ(ξ, η) + iτ(ξ, η) by means of
the relation

w∗(ζ) =
k

2
exp(−iω(ζ)). (3.4)

Since w∗ = V ∗ exp(i argw∗), from (3.4) we deduce that

σ = − argw∗, τ = ln
2V ∗

k
. (3.5)

At infinity, under the channel, the direction of the velocity is assumed to be vertical.
Hence

w(0) = ik, w∗(0) =
ik

2
, ω(0) = −π

2
. (3.6)
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From (3.3) and (3.5) it follows that

τ(ξ, 0) = 0, ξ ∈ [−1, 0) ∪ (0, 1]. (3.7)

According to Schwarz’s principle of symmetry, the function ω(ζ) can be extended to
the whole unit disk by means of the relation

ω(ζ) = ω
(
ζ
)
. (3.8)

From (3.6) and (3.8) it follows that the Taylor’s series of the analytic complex function
ω(ζ) is

ω(ζ) = −π
2
+

∞∑
j=1

ajζ
j , aj ∈ R, |ζ| < 1. (3.9)

Denoting σ(s) = σ(cos s, sin s), and τ(s) = τ(cos s, sin s), we deduce from (3.9) on the
unit circle the Fourier expansions

σ(s) = −π
2
+

∞∑
j=1

aj cos js, s ∈ [0, 2π], aj ∈ R,

τ(s) =
∞∑
j=1

aj sin js, s ∈ [0, 2π], aj ∈ R.

(3.10)

For the symmetric channels we have

τ
(
ξ, η

)
= τ

(−ξ, η), σ
(
ξ, η

)
= −π − σ(−ξ, η), (3.11)

and taking into account (3.9) and (3.11) we get the following Taylor and Fourier expansions

ω(ζ) = −π
2
+

∞∑
j=1

a2j+1ζ
2j+1, a2j+1 ∈ R, |ζ| < 1,

σ(s) = −π
2
+

∞∑
j=1

a2j+1 cos
(
2j + 1

)
s, s ∈ [0, 2π], a2j+1 ∈ R,

τ(s) =
∞∑
j=1

a2j+1 sin
(
2j + 1

)
s, s ∈ [0, 2π], a2j+1 ∈ R.

(3.12)
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4. Channel Profiles with Angular Points

We assume that the points z(exp isk), 0 < sk < π , s = 1, 2, . . . , n, of the channel profile are
angular points. In this case the function σ(s) is discontinuous at sk. We denote by μkπ the
jump of σ in sk, that is,

μkπ = lims↘skσ(s) − lims↗skσ(s). (4.1)

Let ωk(ζ) be the analytic function in the unit disk such that

Reωk

(
exp(is)

)
=

{
α, s ∈ [0, sk) ∪ (2π − sk, 2π],
α + μkπ, s ∈ (sk, 2π − sk).

(4.2)

We observe that for ζ = exp(is)we have

Re
(
−i ln exp(2iπ − isk) − ζ

exp(isk) − ζ
)

= arg
exp(2iπ − isk) − ζ

exp(isk) − ζ

=

{
meas�

(
exp(2πi − isk), ζ, exp(isk)

)
, ζ = ζ1 = exp(is), s ∈ [0, sk) ∪ (2π − sk, 2π],

meas�
(
exp(2πi − isk), ζ, exp(isk)

)
, ζ = ζ2 = exp(is), s ∈ (sk, 2π − sk),

=

{
π − sk, s ∈ [0, sk) ∪ (2π − sk, 2π],
2π − sk, s ∈ (sk, 2π − sk),

(4.3)

where meas means the measure of the corresponding angle.
Assigning to ωk the expression ωk(ζ) = −ia ln(exp(2iπ − isk) − ζ)/(exp(isk) − ζ) + b,

and determining a and b from the boundary conditions (4.2), it follows that

ωk(ζ) = −iμk ln
exp(2iπ − isk) − ζ

exp(isk) − ζ − μkπ + μksk + α. (4.4)

Imposing ωk(0) = 0, we get the final expression

ωk(ζ) = −iμk ln
exp(2iπ − isk) − ζ

exp(isk) − ζ − 2μkπ + 2μksk. (4.5)

The expression of Levi-Civitá’s function will be

ω(ζ) = −π
2
+

n∑
k=1

ωk(ζ) +
∞∑
j=1

ajζ
j , aj ∈ R, |ζ| < 1. (4.6)
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Separating in (4.6) the real and the imaginary parts, we have for ζ = exp(is)

σ(s) = −π
2
+

n∑
k=1

σk(s) +
∞∑
j=1

aj cos js, s ∈ [0, 2π], aj ∈ R, (4.7)

with

σk(s) =

{
−μπ + μsk, s ∈ [0, sk) ∪ (2π − sk, 2π],
μsk, s ∈ (sk, 2π − sk),

(4.8)

τ(s) =
n∑
k=1

τk(s) +
∞∑
j=1

aj sin js, s ∈ [0, 2π], aj ∈ R, (4.9)

with

τk(s) = −μ ln
∣∣∣∣sin(s/2 + sk/2)sin(s/2 − sk/2)

∣∣∣∣. (4.10)

5. Integral Representations and Conformal Mappings

From the relation

df

dz
= w(ζ) = w∗(ζ) +

ik

2
, (5.1)

it follows that

dz =
df

w∗(ζ) + ik/2
. (5.2)

Taking into account (3.1) and (3.4)we get

dz =
−2Q

kπ
(
i + exp(−iω(ζ)))

dζ

ζ
, (5.3)

whence one obtains the following integral representation of the conformal mapping z(ζ):

z(ζ) = z(ζ0) −
∫ ζ

ζ0

2Q
kπ

(
i + exp

(
i + exp(−iω(ζ))))

dζ

ζ
. (5.4)

Considering ζ = exp(is) in (5.3) it results in

dx + idy =
−2Qids

kπ
(
i + exp(−iσ(s) + τ(s))) (5.5)
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on the profile of the channel. Separating in (5.5) the real parts and the imaginary ones, we
obtain

dx

ds
= −2Q

kπ

1 − sinσ(s) exp(τ(s))
1 − 2 sinσ(s) exp(τ(s)) + exp(2τ(s))

,

dy

ds
= −2Q

kπ

cosσ(s) exp(τ(s))
1 − 2 sinσ(s) exp(τ(s)) + exp(2τ(s))

,

(5.6)

whence it follows

x(s) = L − 2Q
kπ

∫ s

0

1 − sinσ(s) exp(τ(s))
1 − 2 sinσ(s) exp(τ(s)) + exp(2τ(s))

ds, (5.7)

y(s) = −2Q
kπ

∫s

0

cosσ(s) exp(τ(s))
1 − 2 sinσ(s) exp(τ(s)) + exp(2τ(s))

ds. (5.8)

6. The Inverse Method: Numerical and Analytical Results

6.1. Smooth Profiles

Assigning in (3.9) various values to the Taylor coefficients aj and using the formulas (3.2)
and (3.4) and the integral representations (5.4)–(5.8)we calculate numerically the contour of
the channel, the phreatic lines, the seepage loss, the velocity field, the stream lines, and the
equipotential lines.

The integrals are numerically computed (we utilized the trapezium formula). The
conformal mapping z(ζ) is:

z(ζ) = z(ζ0) − 2Q
kπi

∫ ζ

ζ0

1

1 + exp
(
−i∑∞

j=1 ajζ
j
) dζ
ζ
. (6.1)

If ζ = r exp(is), 0 < r < 1, we choose ζ0 = exp(is), z(ζ0) = x(s) + iy(s). The path of
integration is the segment [ζ0, ζ]. For the numerical computations we used in the ζ-complex
plane the mesh points {ζjl = (j/n) exp(lπ/m), j = 1, 2, . . . , n, l = 0, 1, . . . , m}. In the flow
domain we considered the mesh points z(ζjl) obtained by means of the conformal mapping
(6.1).

The parametric equation of the phreatic lines λ1 and λ2 are

z(ξ) = L − 2Q
kπi

∫ ξ

1

1

1 + exp
(
−i∑∞

j=1 ajξ
j
) dξ
ξ
, ξ ∈ (0, 1],

z(ξ) = −L − 2Q
kπi

∫ ξ

−1

1

1 + exp
(
−i∑∞

j=1 ajξ
j
) dξ
ξ
, ξ ∈ [−1, 0).

(6.2)
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Figure 2: Seepage from channels with smooth contours.

From (3.2), (3.4), and (6.1)we obtain the complex velocity in the points z(ζ) as follows:

w(z(ζ)) = w(ζ) =
ik

2

⎡
⎣1 + exp

⎛
⎝−i

∞∑
j=1

ajζ
j

⎞
⎠

⎤
⎦. (6.3)

Imposing x(π) = −L in (5.7), we get the seepage loss

Q =
kLπ

2
∫π/2
0

(
1 − sinσ(s) exp(τ(s))

)
/
(
1 − 2 sinσ(s) exp(τ(s)) + exp(2τ(s))

)
ds
. (6.4)

In Figure 2, we present the seepage from channels having various smooth profiles. We use
dimensionless variables (x/L, y/L,w/k, and f/kL instead of x, y,w, and f). We employ
solid lines for the contour of the channel and the equipotential lines, dashed lines for the
stream lines (including the phreatic lines λ1 and λ2), and arrows for the velocity field. We
also indicate the numerical values of the dimensionless seepage loss Q∗ = Q/kL.

We considered the following expressions of ω: ω(ζ) = −π/2 + (π/4)ζ in Figure 2(a),
ω(ζ) = −π/2 + (π/3)ζ − (π/6)ζ3 + (π/12)ζ5 in Figure 2(b), ω(ζ) = −π/2 + (π/3)ζ − (π/3)ζ2

in Figure 2(c), and ω(ζ) = −π/2 + (π/3)ζ − (π/3)ζ4 + (π/6)ζ5 in Figure 2(d).
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6.2. Profiles with Angular Points

In this case, we employ for ω(ζ), σ(s), and τ(s) the formulas (4.6)–(4.8). The conformal
mapping z(ζ) is

z(ζ)

= z(ζ0) − 2Q
kπi

×
∫ ζ

ζ0

1

1+exp
(
−i∑∞

j=1 ajζ
j
)∏n

k=1
[
exp

(
2iμk(π−sk)

)((
exp(isk)−ζ

)
/
(
exp(−isk)−ζ

))μk]
dζ

ζ
.

(6.5)

The parametric equation of the phreatic lines λ1 and λ2 are

z(ξ)

= L − 2Q
kπi

×
∫ ξ

1

1

1 + exp
(
−i∑∞

j=1 ajξ
j
)∏n

k=1
[
exp

(
2iμk(π − sk)

)(
(exp(isk) − ξ)/(exp(−isk) − ξ)

)μk]
dξ

ξ
,

ξ ∈ (0, 1],

z(ξ)

= −L − 2Q
kπi

×
∫ ξ

−1

1

1 + exp
(
−i∑∞

j=1 ajξ
j
)∏n

k=1
[
exp

(
2iμk(π − sk)

)((
exp(isk) − ξ

)
/
(
exp(−isk) − ξ

))μk]
dξ

ξ
,

ξ ∈ [−1, 0).
(6.6)

The complex velocity at the points z(ζ) is as follows:

w(ζ) =
ik

2

⎡
⎣1 + exp

⎛
⎝−i

∞∑
j=1

ajζ
j

⎞
⎠ n∏

k=1

[
exp

(
2iμk(π − sk)

)( exp(isk) − ζ
exp(−isk) − ζ

)μk]⎤⎦. (6.7)



12 International Journal of Mathematics and Mathematical Sciences

−6

−6

−8

−10

−12

−4

−4

−2

−2

0

0 2 4 6

y
/
L

x/L

λ2 λ1

AB

(a) Q/kL = 7.0555

λ2 λ1

y
/
L

−5
−6
−7
−8

−4
−3
−2
−1
0
1

2 543

x/L

−4−5 −3 −2 −1 0 1

AB

(b) Q/kL = 5.2460

2 3

y
/
L

x/L

λ2 λ1

−5
−6
−7

−4
−3
−2
−1
0

1

−3 −2 −1 0 1

AB

(c) Q/kL = 5.4951

λ2 λ1

2 3

y
/
L

x/L

−5
−6
−7

−4
−3
−2
−1
0

1

−3 −2 −1 0 1

AB

(d) Q/kL = 5.5039

Figure 3: Seepage from channels with angular points.

In Figure 3, we present the seepage from various channels whose profiles have angular
points. In Figures 3(a) and 3(b) we considered, respectively,

ω(ζ) =
π

12
+
i

4
ln
ζ − exp(−i(π/3))
ζ − exp(i(π/3))

+
i

2
ln
ζ − exp(−i(3π/4))
ζ − exp(i(3π/4))

+
π

4
ζ, (6.8)

ω(ζ) =
5π
36

+
i

4
ln
ζ − exp(−i(π/6))
ζ − exp(i(π/6))

+
2i
3
ln
ζ − exp(−i(5π/6))
ζ − exp(i(5π/6))

+
π

4
ζ − π

4
ζ3 − π

8
ζ4 +

π

12
ζ5,

(6.9)

and we calculated numerically for each case the contour of the channel, the equipotential
lines, the stream lines (including the phreatic lines), the velocity field, and seepage loss.

In Figures 3(c) and 3(d)we considered Levi-Civitá’s functionω(ζ) = i ln(ζ+ i)/(ζ− i)+
π/2.

In this case, we can perform some analytical calculations, and we get the complex
velocity

w(ζ) =
k

ζ − i . (6.10)



International Journal of Mathematics and Mathematical Sciences 13

We also may obtain the conformal mapping of the unit half-disk onto the flow domain in the
porous medium

z(ζ) = − 2L
π − 2

(
ζ − i ln ζ − π

2

)
, (6.11)

as well as the parametric equations of the free lines

z(ξ) = − 2L
π − 2

(
ξ − i ln ξ − π

2

)
, ξ ∈ [−1, 0) ∪ [0, 1). (6.12)

On the contour of the channel we have

σ(s) =

⎧⎪⎪⎨
⎪⎪⎩
0, s ∈

[
0,
π

2

)
∪
(
3π
2
, 2π

]
,

π, s ∈
(
π

2
,
3π
2

)
,

(6.13)

τ(s) = ln tan
(s
2
+
π

4

)
, (6.14)

x(s) = L − 2L
π − 2

(s + cos s − 1), (6.15)

y(s) = − 2L
π − 2

sin s. (6.16)

The seepage loss is

Q =
2kLπ
π − 2

. (6.17)

Equations (6.15) and (6.16) are the parametric equations of an arc of cycloid with an angular
point. In Figure 3(c)we present the contour of the channel, the equipotential lines, the stream
lines (including the phreatic lines), the velocity field, and seepage loss calculated numerically
and in Figure 3(d) we present the same things calculated analytically. We notice a very good
agreement.

From the mathematical point of view, we obtained in this paper the following result: to
any sequence (−π/2, a1, a2, a3, . . .) of real coefficients of the Taylor expansion of the function
ω(ζ) there corresponds a channel contour for which one may calculate the phreatic lines, the
velocity field, and the seepage discharge. We have to mention that for some values of ak,
k = 1, 2, . . .. one may obtain results which are unacceptable from a physical point of view:
self-intersecting channel profiles, self-intersecting phreatic lines, and unreasonable values
of the coordinates of the velocity. For obtaining acceptable results we have to impose some
restrictions on ak, k = 1, 2, . . .. These coefficients also represent the Fourier coefficients of the
function σ(s) which satisfies the inequality −π ≤ σ(s) ≤ π . We have therefore

|ak| = 1
π

∣∣∣∣
∫π

−π
σ(s) cos ks ds

∣∣∣∣ ≤
∫π

−π
|cos ks|ds = 4, k = 1, 2, . . . . (6.18)



14 International Journal of Mathematics and Mathematical Sciences

These restrictions are not sufficient to ensure the physical correctness of the results. In
order to decide if the results are acceptable or not we have to examine the graphic
representations obtained by the aid of a numeric code which calculates the values of the
integral representations of the functions we have in view.
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