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ABSTRACT. In this paper we give an embedding characterization of 0-regularity using the

Wallman-type compactlfication. The productivity of 0-regularity and a slight generalization of

,Nagami’s Product Theorem to non-Hausdorff paracompact Z-spaces we obtain as a corollary.
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1. PRELIMINARIES

A filter base in a topological space X has a O-cluster point x E X if every closed neighbor-
hood H of x and every F E (P have a nonempty intersection. The filter base (I) O-converges to its

O-limit x if for every closed neighborhood H of x there is F (I) such that F C_ H. Recall that a

topological space X is said to be O-regular [3] if every filter base in X with a 0-cluster point has

a cluster point. A topological space is said to be a E-space [1] if there exist locally finite closed

collections q),, 1, 2 and a cover F which consists of closed counVably compact sets such

that if C F and C C_ U. where U is open in X, then C C_ F C_ U for some N, F 0,. A
topological space is called (sernz-) paracompact, if every its open cover has an open (a-) locally

finite refinement. Paracompact spaces are 0-regular [4].
Let X be a topological space with 5 its closed base which is a lattice (that means ,X E

and contains all its finite unions and intersections). Recall that the Wallman-type [2] or anm
[6] compactffication is defined as the set w(X, ) X U {Yl Y is an ultra-5 filter in X with no

cluster point}, where the term "ultra-D" means maximal among all filters with a base consisting

of elements from (R). The set w(X. ) can be topologized by the open base consisting of the sets

S(U) U U {Yl Y a(X. e) \ X, g y} where X -. U D. If : is the collection of all closed

sets in X then w(X, ) aX is the Wallman compactification o[ X.

2. MAIN RESULTS

Let X be a topological space with a closed base 5. We say that D is balanced if D is a lattice

and every x X has a neighborhood base. say . such that el U E for every U . Trivially,

the collection of all closed sets of X is balanced. Two disjoint sets A, B C_ X are said to be
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point-wase separated zn, X i[ every x E A. y B have open disjoint neighborhoods. Now, we can

state the theorem.

Theorem 1. Let X be a topological space with a balanced closed base 03. The following
statements are equivalent.

(i) X is O-regular

(ii) The sets X, ca(X. 03) \ X are point-wise separated in ca(X. ).
(iii) There exists a compact space K containing X as a subspace such that the sets X, K \ X

are point-wise separated in K.

Proof. Suppose (i). Let x X and y ca(X, ) \ X. Since X is 0-regular the filter y has

no 0-cluster point. It follows that x has an open neighborhood U with clU E such that

F c clU for some F E y. Then V X \ clU y and, consequently, y S(V). Now, let

W C_ U be an open neighborhood of x with X \ W . One can easily check that S(W), S(Iz)
are disjoint neighborhoods of the points x, y It follows (ii).

(ii) (iii) is trivial Suppose (ill). Let be a filter base with a 0-cluster point x X.
There exists a filter base P’ finer than P which 0-converges to x. Since K is compact, ’ has

some cluster point y K. But a 0-limit and a cluster point of the same filter base cannot have

disjoint neighborhoods; hence y X. Finally, y is a cluster point of q) which implies (i).

Corollary 1. The product of O-regular topologiced spaces is 0-regu/ar.

Proof. Let Xo, a E A be 0-regular topological spaces. It follows from the Theorem that there

are compact spaces Ko _D X, such that for every a A the sets Xo, Ko \ Xo are point-wise

separated. Let K l-I,ea K, X I-I,e xo. Then K is compact and, evidently, the sets X,

K \ X are point-wise separated. Hence, the space X is 0-regular.

K. Nagami in [5] proved that a countable product of paracompact Hausdorff E-spaces ks

paracompact. Nagami uses Hausdorff separation axiom for upgrading semiparacompactness to

paracompactness. However, Nagami’s proof essentially contains the result that a countable

product of paracompact E-spaces is semiparacompact which needs no separation axioms. The

following result now follows from the fact that 0-regular semiparacompact spaces are paracom-

pact ([4], Theorem 6).

Corollary 2. A countable product of paracompact (not necessarily regular or Hausdorff)
-spaces is paracompac.

It is easy to check that a second countable space has a countable balanced closed base.

Theorem 1 (with Theorem 6 [4]) also yields the following.

Corollary II. A topological space X is paracompact second countable if and only if there

exists a compact second counable space K containing X as a subspace such that the sets X,
K \ X are point-wise separated in K.
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