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ABSTRACT. In this paper we identify a relation between the coefficients that represents a critical case
for general fourth-order equations. We obtained the forms of solutions under this critical case
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1. INTRODUCTION
We consider the general fourth-order differential equation

1 1
(o) + (y) +5 ) {30} + {@pt? }(’)] +py=0 (L1)
=0

where z is the independent variable and the prime denotes d/dz. The functions p,(z)(0 < i < 2) and
¢,(z)(i = 1,2) are defined on an interval [a, 00) and are not necessarily real-valued and are all nowhere
zero in this interval. Our aim is to identify relations between the coefficients that represent a critical case
for (1.1) and to obtain the asymptotic forms of our linearly independent solutions under this case.
Al-Hammadi [1] considered (1.1) with the case where py and p; are the dominate coefficients and we
give a complete analysis for this case Similar fourth-order equations to (1.1) have been considered
previously by Walker [2, 3] and Al-Hammadi [4]. Eastham [5] considered a critical case for (1 1) with
p1 = g2 = 0 and showed that this case represents a borderline between situations where all solutions have
a certain exponential character as £ — oo and where only two solutions have this character.
The critical case for (1.1) that has been referred, is given by:

()

/
L const. 2 (1=1,2), *— ~const 2. (12)
@ ng e

We shall use the recent asymptotic theorem of Eastham [6, section 2] to obtain the solutions of (1.1)
under the above case. The main theorem for (1.1) is given in section 4 with discussion in section S.

2. A TRANSFORMATION OF THE DIFFERENTIAL EQUATION
We write (1.1) in the standard way [7] as a first order system

Y' = AY, @21

where the first component of Y is y and
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(2.2)

o = O O

As in [4], we express A in its diagonal form
T 'AT = A, 23)

and we therefore require the eigenvalues ); and eigenvectors v;(1 < j < 4) of A.
The characteristic equation of A is given by

M+ @+ oA+ @A+ =0. (2.49)
An eigenvector v, of A corresponding to ; is
= A 2 1 A 1 -1 '

U= (LAamAi +30A, — SR —mA; 2.5
where the superscript ¢ denotes the transpose. We assume at this stage that the A; are distinct, and we
define the matrix T in (2.3) by

T = (v1 v2 v3 V). (2.6)
Now from (2.2) we note that E A coincides with its own transpose, where
0 00O

E= 2.7

- O O
(= =]
o O -
O OO

Hence, by [8, section 2(i)], the v; have the orthogonality property
(Bun)'v, =0 (k #3). 28
We define the scalars m;(1 < j < 4) by

m, = (Ev,)"vj, 2.9
and the row vectors
r, = (Ev;)". (2.10)
Hence, by [8, section 2]
ml_l‘l']
-1
= |72 "2 2.11)
m3 T3
m;ln
and
m; = 4ppAd +3q1 2 +2pp); + o 2.12)
Now we define the matrix U by
U=(vynvev)=TK, (2.13)

where
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o =20 (2.18)
9
the matrix Kis given by
K =dg(1,1,1,¢). (2.15)
By (2.3) and (2.13), the transformation
Y=UZ (2.16)
takes (2.1) into
Z'=(A-U)z. (217)
Now by (2.13),
U2 =K 'T'T'K + K"K/, (2.18)
where
K'K' =dg(0,0,0,¢7'¢}), 2.19)
and we use (2.15).
Now we write
Ul =¢, (1<i,j<4), (2.20)
and
TT =¢; (1<4,5<4), @21
then by (2.18) to (2.21), we have
iy = ¥i, (1<4,7<3), (222)
bu = Yus + ey, (2.23)
i = Pue (1<ig3), (2.24)
¢ =Y 1<5<3). 2.25)

Now to work out ¢,,(1 <4,j <4), it suffices to deal with 1,; of the matrix T-'T'. Thus by (2.6),
(2.10), (2.11) and (2.12) we obtain

(1<i<9) (2.26)

and, fori #7,1<1%,j<4
- 1 1 | _
Yij=m, ‘{,\;(m,\? +3 qm) + X (poA§ +3 qlx,) — 5% (m% ‘)’}. (227)

Now we need to work out (2.26) and (2.27) in some detail in terms of po, p1, P2, ¢1 and go and then
(2.22)-(2.25) in order to determine the form of (2.17).

3. THE MATRICES L, T"'TAND U~ 'U
In our analysis, we impose a basic condition on the coefficients, as follows:
(I) pi(0 <i<2)andg,(i=1,2) are nowhere zero in some interval [a, o0}, and
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L=o(&l) (#=0,1) (z — o0) 3.1
Qi+1 Pit+1
and
@ _ o(ﬂ). (3.2)
41 @
If we write
Pop1 1 2340
€ ===, € =—, €GB = "3, (33)
¢ 4 @

then by (3.1) and (3.2) for (1 <1< 3)
€, =0(1) (z — 00). (3.9

Now as in [4], we can solve the characteristic equation (2.4) asymptotically as £ — oo. Using (3.1),
(3.2) and (3.3) we obtain the distinct eigenvalues \; as

A= — %(1 +61), (3.5)
[}
Ao = — =(1+6), 3.6
2 px( 62) (3.6)
M= = B1+6), G
q
and
A= — %(1 +6), (8
where
6 = 0(63), b = 0(62) +0(€3), 63 = 0(61) + 0(62), 6y = (61). (3.9
Now by (3.1) and (3.2), the ordering of A; is such that
Aj=o0(xy1) (2—00,1<35<3). (3.10)

Now we work out m;(1 < j < 4) asymptotically as z — oo, hence by (3.3)-(3.9), (2.12) gives for
(1<7<4)

my = g{1+0(e3)}, @3.11)
my = — @{1+0(e2) + 0(e3)}, (3.12)
m3 = :—f{l + 0(€1) + 0(e2)}, 3.13)
and
my= — %{1 +0(eq)}- (3.14)

Also on substituting \;(j = 1,2,3,4) into (2.12) and using (3.5)-(3.8) respectively and differentiating,
we obtain

m = g3{1+0(es)} + g2 {0(e3) + 0(es6}) + 0(ez€3) + O(€re3€3) }, (3.15)
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mh = — go{1+0(ez) + O(e3)} + g2 {0(63) + O(ez) + O(eied) },

my = (p_g) {140(e1) +0(e2)} + i{0(65) +0(e3) + 0(€1)},
q1 [}

and

- (8) 6+0an + G{0(ad) + o}

my

At this stage we also require the following conditions

an % 7 a

'
B, By L, 2, B, p_§€3 are all
n Q @ P )

L(a,0) (1£i<3).

Further, differentiating (3.3) for ¢;(1 < i < 3), we obtain

(o) s{fe) (o)
sofge) sofie) vl
sofge) o) o(d)

For reference shortly, we note on substituting (3.5)-(3.8) into (2.4) and differentiating, we obtain
8, = 0(e3) + 0(eze3) +0(er€3ed),

€

=
<
~

and

8 = 0(ep) + 0(e5) + 0(e€3),

8 = 0(¢;) +0(ez) + 0(e363),
and

8 = 0(€) +0(6e) + 0(6s€3e)).
Hence by (3.19) and (3.20)-(3.26)

€; and &, are L(a,0).

483

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
(3.24)

(3.25)

(3.26)

(3.27)

For the diagonal elements v;;(1 < j < 4) in (2.26) we can now substitute the estimates (3.11)~(3.18) into

(2.26). We obtain

=3 Zro(Ra) +od)+ o) + () +0(dde),

1 ! !/
Y=y 2 +0(%€2) +o(§e3) +0(83) +0(3) +0(€168),

(3.28)

(3.29)
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e 2o ()

+0(§i ) +o(—-e2> +0(63) + 0(ez) + 0(e1), (3.30)

Y4 = [ : ;—é] + 0(%:— €1) + 0(2 61) +0(8;) + 0(he?) +0(e}). 3.31)

Now for the non-diagonal elements ;;(z # j,1 < 1, j < 4), we consider (2.27). Hence (2.27) gives for
i=landj=2

- 1 1 1
Y12 = mll{'\é (Pox'{ + '2'411)\1) + A (Po'\g + '2'91/\2> 92 (p2237) } (332
Now by (3.5), (3.6), (3.3) and (3.11) we have

_ 1 1(d,
miNg (POI\f +3 ql/\l) =3 [% - %] e2e3{1 + 0(e3)} + O(e2€363), (3.33)

_ 1
m] W (p@% + 3 qlz\z) = 0(e2€363) + 0(626163) [ +2-== % -2 %’1]

[
+0(em)[q;l + % - 2] (3.34)
- %fémf‘ = - % % +0(%€3), (3.35)

and
mil(mAs!) = 0(%63) +o(%e3) +o(%e3) + 0(e36). (3.36)

Hence by (3.33)-(3.36), (3.32) gives

o= -3 o(g) () () st

+ o(eszs;) + o(% em) . (337

Similar work can be done for the other elements 1,;, so we obtain

o= =) () o) o

+0(-;% eles) + 0(% 5253). (3.38)
lg % 4 - 1’_6 -1
Y= '§E+O(qz ) M(_l€ ‘e ) +0(m “ 63)
+0(e " e3by) +o(£e1e2e3). (3.39)

QZ PZ
+ ( %) +0(—- 6263) +0(f—£ 616263) (3.40)
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e8] o{) of ) ()
o)l ) (o) () (2

+0(6%) +o(% el) + o(em %5) (3.41)

'3 eo(fa) ro(Ga) +o(So) +o(5e)

%,
é ) (— es) +0(52)+0(221“ ) ’1'0(;12—é 452‘3)] (42

o
= (%) (—eg)+0(5i€2)+0(ql )+0(§%e]e§e§) (3.43)
o =0(%0) +o(Ba) sty +o(ad %) +0(Sa) ro(ue ), ou
= o{) v so(Be) ()

+0(8}) +0("—‘em) o( 2 e%ézea)] (3.45)

Y =€ [0(-‘1— 6263) (q_é ) (—elez> + 0(6j€1€2) +0(p—6616262)] (3.46)
Va2 = (— 6162) (— 6162) +0(8z€1€2) + 0(:—3 6162)

+o(”(’ ée ) ( 6262e3) (3.47)
Y3 = 61{ 2 Zi +0(:;,l ) +0(%e ) (ﬁ 62) +0(83€1)
0(261) +0(2 616353) +0(% 6162)- (3.48)

Now we need to work out (2.22)-(2.25) in order to determine the form (2.17). Now by (3.28)-(3.31)
and (3.37)-(3.48), (2.22)-(2.25) will give:

én = % @ +0(4Ay), P22 = lg +0(Az2)
Q@ 2 g

1g W 14 (349

=B 28 0a) pu=B-78 404
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1 ¢} 1
2= — 3 Zz_g +0(As), $3= -3 % +0(As)
b1 = 0(A1) b= - 2 B +0ay)
14 = T) 1= 2 ® 8
1/q ‘15) b2 lq
=={=+=) -=4+0(A , ==-=404A 350
P23 2(41 . P (Do) d24 2 (Ao) (3 50)
1 !
¢31 = 0(An), ¢32 = 0(Ag2), b3 = — 2 'Z‘:' +0(A3)
1 !
$a1 = 0(Aw), $a2 = 0(Ass), Sz = — 3 %1‘ +0(Ag).
where
A; is L(a,00) (1<i<16) (3.51)
by (3.19) and (3.27).
Now by (3.49)-(3.51), we write the system (2.17) as
Z'=(A+R+S)Z (3.52)
where
-m M m 0
Il m -m om-m -m
R=| & T I TR (3.53)
0 0 3 -
with
-1/2)’
14 (™) 1
_la — 3.54
m 2 ® y T plql_.l/g 73 2 aQ ( )

and S is L(a, 00) by (3.51).

4. THE ASYMPTOTIC FORM OF SOLUTIONS
THEOREM 4.1. Let the coefficients q;, g and p, in (1.1) be C®[a, c0) and let py and p; to be
CW{a,00). Let (3.1), (3.2) and (3.19) hold. Let

. =wk%(l+¢k) 4.1

where wi(1 < k < 3) are “non-zero” constants and ¥, (z) = 0(1 < k £ 3, — 00). Alsolet

¥i(z) is L(a,00) 1<k <3) “42)
Let
Rel(z)(j=1,2) and Re[%(z\s Fhtmtm—h—A) ] 112]
be of one sign in [a, o) @3)
where
I = [a + O = 212, (4.4
I = [a% + (s = A2 @.5)

Then (1.1) has solutions
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- 1 [*
Y~ g ”2e7q)(§/ [/\1+»\2+(-1)"”11]dt), (k=1,2) (4.6)
a
12160 ( L [ 7
B~a Proexpl| Az + A + L)dt ), 4.7
a
12 -1 1 [
Y4 =09 q;' "p; exp E [/\3 +z\4—I2]dt . “4.8)
a

PROOF. As in [4) we apply Eastham Theorem [6, section 2] to the system (3.52) provided only
that A and R satisfy the conditions and we shall use (3.53), (3.54), (4.1) and (4.2). We first require that

Mk = o{(Ai - Az)} (1 # J:l S iy k'j) S 41k # 3): (49)

this being [6, (2.1)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied by (3.1) and
(3.2).
We also require that
{m = 2)"} € L(a,00) 1<k <3), (4.10)

for (2 # j) this being [9, (2.2)] for our system. By (4.1), (3.54), (3.5)-(3.8), this requirement is implied
by (3.19) and (4.2). Finally we require the eigenvalues u;(1 < k < 4) of A + R satisfy the dichotomy
condition [10], as in [4], the dichotomy condition holds if

pi—pm=f+g(#k1<5,k<4) 4.11)

where f has one sign in [a, 00) and g € L(a, 00) [6, (1.5)]. Now by (2.3) and (3.53)

1 1
pe= 50+ = 2m) + 5 (- D, (k=1,2) 4.12)

1 1
e =508+ = 2m) + 5(- DD, (k=3,4). 4.13)

Thus by (4.3), (4.11) holds since (3.52) satisfies all the conditions for the asymptotic result [6, section 2],
it follows that as £ — oo, (2.17) has four linearly independent solutions,

T
Zu(a) = {ex +oDesp( [ mtsat), @14)
a
where e; is the coordinate vector with k-th component unity and other components zero. We now
transform back to Y by means of (2.13) and (2.16). By taking the first component on each side of (2.16)

1/2 -1
and making use of (4.12) and (4.13) and carrying out the integration of — % g and :1 :_l for
1

(1 £ k < 4) respectively we obtain (4.6), (4.7) and (4.8) after an adjustment of a constant multiple in
w(1 <k <3)

5. DISCUSSION
(i) In the familiar case the coefficients which are covered by Theorem 4.1 are

pi(z) =z®(1=0,1,2,), @(z)=cipez™?(i=1,2)
with real constants a, and ¢;(0 < i < 4). Then the critical case (4.1) is given by
ag—ay =1. ¢.1)
The values of wi(1 < k < 3) in (4.1) are given by
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1 _ 1 _ 1 _
wy = 50402041, wy = (01 - 503)6264 Lowy= 3 scacy L (5.2)

where
Y(z) =0(1< k<) (5.3)
(if) More general coefficients are

_ogb b b
w=coz®e ™, p=czfer”, pm=czhe”,

_lgh
q =cx®e 2T, @ = c.f:c“‘e’b.

with real constants ¢;, a, (0 < i < 4) and b( > 0). Then the critical case (4.1) is given by
ag—ag=b-1 (5.4)

and the values of wi (1 < k < 4) are given by

w = lb¢: o = gw = - lw
1= 5 4Cr0, Wo = 3%n w3 = 2 1,
with ;= asb 'z, ¢y = $b7 (o1 — S o3)z b, 3 = —2a3b7'z®.  Here it is clear that

Y € L(a, 00) because b > 0.
(iii) We note that in both critical cases (5.1) and (5.4) represent an equation of line in the asay-
plane.
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