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ABSTRACT. In this paper we have proved limitation theorem for (D, h(n)) summability methods and

have shown that it is best possible.
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1. INTRODUCTION
In his studies on the prime number theorem, Ingham defined a novel summability method called

(I) This was generalized by Segal [2] and he defined the notion of (D,h(n)) summability, where

h N R denotes a function with h(1) I We define the "Dirichlet inverse" h*(n) of h(n) by

1, n=1
h(d)h’(n/d) 0, n > 2

A series an is said to be (D,h(n)) summable to L ifand onlyif

n oo- v adh(v/d) L. (1 l)
v=l

Given a series an and a specific h(n), define the function

1

n< d[n

D(t) it clearly makes no difference to the existence or value of the limit (l 2)Since D([t])=
whether c is through real values or integers. Ingham’s method corresponds to the case h(n)

Segal [3] proved the limitation theorem for (I) summability. If an is (I) summable, then

’ an o(log x) and has shown in the following theorem that his result is best possible

TBEOREM A [4] Let e (x) be any positive function decreasing to 0 monotonically but arbitrarily
slowly as x oo. Then there exists a series Y a, which is (I) summable and such that

E a, : O( 6 (x)logx) as x oo.

Sukla [5] has shown an analogous limitation theorem for (D, h(n)) summability.
TREOREM B. Ifa is (D,h(n)) summable then an O(logx) if

(i) H’(r) E h’(n) 0(1)

and

(ii) Ih*(v)l O(logn).
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It is remarked in that paper that the condition (ii) cannot be dropped However ifwe replace (i) by a

slightly stronger condition then we get the result to be true without assuming (ii) In section 4 we show

that our revised version ofTheorem A is best possible.
2. MAIN RESULTS

THEOREM 1. If’ an is (D, h(n)) summable then

if Ea=<_ O(< [h*(n)[) (2 1)

h’(n) O((logr)--e) as r c. (2 2)

We will show that (3 1) is a best possible result

THEOREM 2. Let E (2:) be any positive function decreasing to 0 monotonically but arbitrarily

slowly as 2: oo. Then there exists a series a, which is (D, h(n)) summable and (3 2) holds and

l<d<
(2 3)

does not tend to zero as r oo holds and such that

E :/: o( (x) E lh*(n)[) as 2:

PROOF OF THEOREM 1. For m _> 0, let

roD(m) if m_>l
K(m)= 0 if m=O

then by (1 1) and (1.2) it follows that

K(m) O(m), as 0<3, and (2 4)

n<r d<_r

By (2 4) it is enough to show that

d d+l
(2 5)

The left hand side of (2.5) is maximized by

d+l

Now

and

,_<r d + 1 ,/-- << ]-<-<,"

E
d_<r

log
d + 1

d

-1-E I ) 0(I)
d+l

(2.6)

since H" (2:) O for x < 1

PROOF OF THEOREM 2. Define b, by
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as x:

then

n<t dtn n<t din

(2 7)

(28)

Since D(t) O, b, is (D, h(n))summable to 0.

Now

d<r

Since H" (z) 0 for z < 1

We have now

’ ’b + 0(1).
n<r

(2 9)

Suppose the theorem does not hold then

b,=n<_r o(e(r)-n_<r h" (n) [)
So (2 9) becomes

(2 lO)

Since D(d) 0 as n oo, let

(r)E Ih’(n)l d + 1
n_<r

It is well known that in order for c,d to transform all sequences tending to 0 into sequences tending to 0,

1 H*()-H* <c
,(r)E Ih*(n)l d’- 1

n<r

must hold for all r where c is independent ofr

rl/2<d<_r
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Since in this last sum + < 1 the inner sum contains at most one term, and so

1 a<]H.(r) (r)] 1

n<_r n_r

tends to infinity as r oo since by (2.3) the expression in the bracket does not tend to zero as r oo

This completes the proofofTheorem 2

Agnew [6] showed directly that, for r )0 the Ces/u’o and Riesz transforms C(n), P(n)
respectively of a given series an are equiconvergent i.e C(n), Re(n) exist for each n and

[lib
O.

These concepts are applied to arithmetic summation methods (I) and (D, h(n)) for particular values of

h(n) by Jukes [7] He has found different conditions under which the equiconvergence of (I) and

(D, "2(’----2), have been established. The (D, "-), and (I) transform are given by

b,,
n - n

respectively Let M2 limn sup E k[A ’*)[

A2 limn sup
(n + 1)k--o

TItEOREM C [7] Tauherian constants M do not exist for comparisons of conservative matrices

with non-conservative matrices

xarORr , tTa
A2<oo

We have proved (see Kuttner and Sukla [8]) that

TI:IEOREM E. The (D,h(n)) is conservative if and onlyif Ih(n)[ < oo It isto notethat if
rt--1

part of the above theorem was proved earlier by Jukes [9] See S. L. Segal, Math. Reviews 86e 11093

(May 1986, p 1864)
THEOREM 3. The (D,h(n)) and (I) are not equiconvergent whenever A < oo and

E Ih(n)l < oo

PROOF. By Theorem C since (I) is not conservative and (D,h(n)) is conservative for

Ih(n))] < oo whenever A2 < oo(D, h(n)) and (I) are not equiconvergent

From Theorem E also we get that the following theorem ofJukes as corollaries

COROLLARY 1. The methods (D, (-) and (D, x(-n2) are not conservative

PROOF. Since and are not absolutely convergent So by Theorem 3 the result
n=l n=l

follows.
COROLLARY 2. (D,#2(n)/n) and (D, E A(n)/Trg-(n)) transforms are not equiconvergent

whenever A2 < oo.
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